library(googlesheets4) #handles data
library(dplyr) #for data manipulation
library(ggplot2) # for plotting
theme_set(theme_classic(base_size = 18))Relationships of Different Covers
Load Libraries
Load Data
# Load in the data and turn degree/minute/second into latlong
kelp_labels <- read_sheet("https://docs.google.com/spreadsheets/d/1rpz1wXdVTWC8lSkdoh4vjBuHYXUA7L86Qg1rVo_sOU4/",
col_types = "cccccddd")
kelp_labels_filtered <-
kelp_labels |>
filter(!is.na(`Kelp % Cover`),
!is.na(`Non-Kelp Vegetation % Cover`),
!is.na(`Substrate % Cover`))Kelp v. Understory Vegetation
ggplot(kelp_labels_filtered,
mapping = aes(x = `Kelp % Cover`,
y = `Non-Kelp Vegetation % Cover`)) +
geom_point(size = 2) +
stat_smooth()Pearson Correlation: -0.65
Kelp v. Substrate
ggplot(kelp_labels_filtered,
mapping = aes(x = `Kelp % Cover`,
y = `Substrate % Cover`)) +
geom_point(size = 2) +
stat_smooth()Pearson Correlation: -0.32
Understory Vegetation v. Substrate
ggplot(kelp_labels_filtered,
mapping = aes(x = `Substrate % Cover`,
y = `Non-Kelp Vegetation % Cover`)) +
geom_point(size = 2) +
stat_smooth()Pearson Correlation: -0.51