Basic ideas

Uses of split-plot experiments


Example layout: Split Plot in RCBD


Linear model (CRD)

\[ Y_{ijk} = \mu + \alpha_i + \delta_{ij} + \beta_k + (\alpha \beta)_{ik} +\epsilon_{ijk} \] where:


Test of hypothesis

Split plot experiment in CRD: an example

An experiment is conducted to evaluate effects of grass species (G1 and G2) and stocking density (20 and 24) on the daily gain of sheeps kept on a pasture. Six 1-hactare pastures were planted with the two species of grass. Each grass species is randomly assigned to three pastures (replicates). Then each pasture is split into two where different numbers of sheeps (20 and 24) is randomly assigned. At the end of the experiment the daily gains in weight were determined.

grassden <- read.csv("GrassStockingDensity.csv")
head(grassden)
##   Rep Grass Density weight
## 1  R1    G1      D2    310
## 2  R1    G1      D1    290
## 3  R1    G2      D1    310
## 4  R1    G2      D2    330
## 5  R2    G2      D2    400
## 6  R2    G2      D1    380
spcrd.out <- aov(weight ~ Grass + Grass:Rep + Density + Grass:Density,
                 data = grassden)
anova(spcrd.out)
## Analysis of Variance Table
## 
## Response: weight
##               Df Sum Sq Mean Sq F value    Pr(>F)    
## Grass          1 7500.0  7500.0   112.5 0.0004472 ***
## Density        1 1200.0  1200.0    18.0 0.0132356 *  
## Grass:Rep      4 8266.7  2066.7    31.0 0.0028687 ** 
## Grass:Density  1   33.3    33.3     0.5 0.5185185    
## Residuals      4  266.7    66.7                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


SoV df SS MS F p
Grass (A) 1 7500.0 7500.0 3.63 0.1295
Error A 4 8266.7 2066.7
Density (B) 1 1200.0 1200.0 18.0 0.0132
A*B 1 33.3 33.3 0.5 0.5185
Residual or Error B 4 266.7 66.7



HSD.test(spcrd.out,
         trt = "Density",
         group = TRUE,
         console = TRUE)
## 
## Study: spcrd.out ~ "Density"
## 
## HSD Test for weight 
## 
## Mean Square Error:  66.66667 
## 
## Density,  means
## 
##      weight      std r Min Max
## D1 333.3333 37.77124 6 290 380
## D2 353.3333 42.26898 6 310 410
## 
## Alpha: 0.05 ; DF Error: 4 
## Critical Value of Studentized Range: 3.926503 
## 
## Minimun Significant Difference: 13.08834 
## 
## Treatments with the same letter are not significantly different.
## 
##      weight groups
## D2 353.3333      a
## D1 333.3333      b


Linear model (RCBD)

\[ Y_{ijk} = \mu + \alpha_i + \rho_j + \delta_{ij} + \beta_k + (\alpha \beta)_{ik} +\epsilon_{ijk} \] where:



Test of hypothesis


Split plot experiment in RCBD: an example

An experiment was conducted in order to investigate four different treatments of pasture and two mineral supplements on milk yield. The experiment was designed as a split-plot, with pasture treatments (factor A) assigned to the main plots and mineral supplements (factor B) assigned to sub-plots. The experiment was replicated in three blocks.


supp <- read.csv("mineral_supplement.csv")
supp$Block <- factor(supp$block)
supp$Pasture <- factor(supp$Pasture)
supp$Mineral <- factor(supp$Mineral)
sprbd.out <- aov(Milk.Yield ~ Block + Pasture + Block:Pasture + Mineral + Pasture:Mineral, data = supp)

anova(sprbd.out)
## Analysis of Variance Table
## 
## Response: Milk.Yield
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## Block            2 212.583 106.292 47.2407 3.713e-05 ***
## Pasture          3  71.167  23.722 10.5432  0.003742 ** 
## Mineral          1   8.167   8.167  3.6296  0.093224 .  
## Block:Pasture    6  26.083   4.347  1.9321  0.190897    
## Pasture:Mineral  3   5.833   1.944  0.8642  0.498130    
## Residuals        8  18.000   2.250                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


\[\begin{align} F_{Block} &= \frac{MS_{Block}}{MS_{A:Block}} \notag \\ &= \frac{106.292}{4.347} \notag \\ &= 24.45\notag \\ p-value &= 0.0013 \end{align}\]


\[\begin{align} F_{Pasture} &= \frac{MS_{Pasture}}{MS_{A:Block}} \notag \\ &= \frac{23.722}{4.347} \notag \\ &= 5.46\notag \\ p-value &= 0.0377 \end{align}\]


SoV df SS MS F p
Block 2 212.583 106.292 24.45 0.0013
Pasture (A) 3 71.167 23.722 5.46 0.0377
Error A 6 26.083 4.347
Mineral (B) 1 8.167 8.167 3.6296 0.0932
A*B 3 5.833 1.944 0.8642 0.4981
Residual or Error B 8 18.000 2.250


#Modified HSD.test()
hsd.test(sprbd.out,
         trt = "Pasture",
         group = TRUE,
         console = TRUE)
## 
## Study: sprbd.out ~ "Pasture"
## 
## HSD Test for Milk.Yield 
## 
## Mean Square Error:  4.347 
## 
## Pasture,  means
## 
##   Milk.Yield      std r Min Max
## 1   29.66667 3.204164 6  25  34
## 2   30.66667 3.777124 6  26  37
## 3   30.00000 3.949684 6  24  33
## 4   34.00000 3.741657 6  29  38
## 
## Alpha: 0.05 ; DF Error: 6 
## Critical Value of Studentized Range: 4.895599 
## 
## Minimun Significant Difference: 4.167015 
## 
## Treatments with the same letter are not significantly different.
## 
##   Milk.Yield groups
## 4   34.00000      a
## 2   30.66667     ab
## 3   30.00000     ab
## 1   29.66667      b