## [1] "SubjectID" "Adate" "Age" "MosEmployLas"
## [5] "ConsentDate" "Cohort" "Outcome" "DOB"
## [9] "SexAtBirth" "Ethnicity" "Race" "MaritalStatus"
## [13] "BioChildren" "Child1Age" "Child2Age" "Child3Age"
## [17] "Child4Age" "Child5Age" "Child6Age" "Dependents"
## [21] "Education" "EmploymentSta" "EmploymentSt0" "HoursPerWeek"
## [25] "EmploymentFul" "EmploymentLas" "AnnualIncome" "ExclusionSta"
## [29] "Race_Text" "Minority_Text"
summary_allobs_emo <- describeBy(emo_resp ~ PicValence + Procedure, data=cert_mna, mat=T)
htmlTable::htmlTable(format(summary_allobs_emo,
digits = 2))
item | group1 | group2 | vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
emo_resp1 | 1 | neg | reg | 1 | 2178 | 3.1 | 1.19 | 3 | 3.2 | 1.5 | 1 | 5 | 4 | -0.024 | -0.92 | 0.026 |
emo_resp2 | 2 | neut | reg | 1 | 2153 | 1.3 | 0.58 | 1 | 1.1 | 0.0 | 1 | 5 | 4 | 2.537 | 7.38 | 0.013 |
emo_resp3 | 3 | neg | watch | 1 | 2183 | 3.7 | 1.15 | 4 | 3.8 | 1.5 | 1 | 5 | 4 | -0.562 | -0.59 | 0.025 |
emo_resp4 | 4 | neut | watch | 1 | 2163 | 1.3 | 0.65 | 1 | 1.1 | 0.0 | 1 | 5 | 4 | 2.606 | 7.52 | 0.014 |
summary_allobs_er <- describeBy(er_resp ~ PicValence + Procedure, data=cert_mna, mat=T)
#print(summary_allobs)
htmlTable::htmlTable(format(summary_allobs_er,
digits = 2))
item | group1 | group2 | vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
er_resp1 | 1 | neg | reg | 1 | 2180 | 3.1 | 1.15 | 3 | 3.1 | 1.5 | 1 | 5 | 4 | -0.091 | -0.80 | 0.025 |
er_resp2 | 2 | neut | reg | 1 | 2168 | 2.7 | 1.13 | 3 | 2.7 | 1.5 | 1 | 5 | 4 | 0.159 | -0.73 | 0.024 |
er_resp3 | 3 | neg | watch | 1 | 2151 | 1.7 | 1.07 | 1 | 1.5 | 0.0 | 1 | 5 | 4 | 1.489 | 1.44 | 0.023 |
er_resp4 | 4 | neut | watch | 1 | 2144 | 1.3 | 0.74 | 1 | 1.1 | 0.0 | 1 | 5 | 4 | 2.719 | 7.88 | 0.016 |
sumdf_l$Valence <- factor(sumdf_l$Valence,
levels=c("neg","neut"),
labels=c("Negative","Neutral"))
sumdf_l$Condition <- factor(sumdf_l$Condition,
levels=c("reg","watch"),
labels=c("Regulate","Watch"))
sumdf_l$Rating_Type <- factor(sumdf_l$Rating_Type,
levels=c("emo_resp","er_resp"),
labels=c("Emotion","Thinking Change"))
ggplot(data = sumdf_l, aes(x = Condition, y = Rating, color = Valence)) +
geom_boxplot(aes(fill=Valence), alpha = .5) +
facet_wrap(~Rating_Type) +
labs(y = "Rating", x = "Condition") +
ggtitle("Ratings across Valence and Conditions") +
theme_minimal()
# emosum <- ggplot(data = sumdf, aes(x = Procedure, y = emo_resp, color = PicValence)) +
# geom_boxplot(aes(fill=PicValence), alpha = .5) +
# labs(y = "Emotion Rating", x = "Condition") +
# ggtitle("Ratings across Valence and Conditions") +
# theme(legend.position = "none")
#
# regsum <- ggplot(data = sumdf, aes(x = Procedure, y = er_resp, color = PicValence)) +
# geom_boxplot(aes(fill=PicValence), alpha = .5) +
# labs(y = "Regulation Rating", x = "Condition") +
# ggtitle(" ")
#grid.arrange(emosum,regsum,nrow=1)
sumdf_emo$cond22<- paste(sumdf_emo$PicValence,sumdf_emo$Procedure,sep="_")
sumdf_reg$cond22<- paste(sumdf_reg$PicValence,sumdf_reg$Procedure,sep="_")
sumdf_emo <- sumdf_emo[,-c(2,3)]
sumdf_reg<- sumdf_reg[,-c(2,3)]
sumdf_emo_w<-spread(sumdf_emo, key=cond22, value=emo_resp)
sumdf_reg_w<-spread(sumdf_reg, key=cond22, value=er_resp)
sumdf_emo_w$diff <- sumdf_emo_w$neg_watch - sumdf_emo_w$neg_reg
sumdf_reg_w$diff <- sumdf_reg_w$neg_watch - sumdf_reg_w$neg_reg
negemodens<-ggplot(data = sumdf_emo_w) +
geom_density(aes(x=neg_reg), alpha = .4, fill = "plum4")+
geom_density(aes(x=neg_watch), alpha = .4, fill = "cadetblue4") +
geom_density(aes(x=diff), alpha = .4, fill = "palegreen4")
negemodens + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"))
negemoregdens<-ggplot(data = sumdf_reg_w) +
geom_density(aes(x=neg_reg), alpha = .4, fill = "plum1")+
geom_density(aes(x=neg_watch), alpha = .4, fill = "cadetblue1") +
geom_density(aes(x=diff), alpha = .4, fill = "palegreen1")
negemoregdens + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"))
#Decompose within and between person effects for model
cert_mna$emo_win <- calc.mcent(emo_resp, subject, data=cert_mna)
cert_mna$emo_bw <- calc.mean(emo_resp, subject, data=cert_mna, expand=TRUE)
cert_mna$reg_win <- calc.mcent(er_resp, subject, data=cert_mna)
cert_mna$reg_bw <- calc.mean(er_resp, subject, data=cert_mna, expand=TRUE)
cert_mna_neg <- subset(cert_mna, cert_mna$PicValence=="neg")
sumdf_neg <- subset(sumdf, sumdf$PicValence=="neg")
# win <- ggplot(data = cert_mna_neg, aes(x = Procedure, y= emo_win)) +
# geom_smooth(aes(group = subject, color = subject), alpha = .4, size = .5, method = "lm", se = F) +
# geom_smooth(aes(group = 1), color = "black",size=1.5, method = "lm", se = F) +
# scale_color_gradient(low = "indianred4", high = "indianred2") +
# ylim(1,3.25) +
# ylab("Within-person Centered Emotion Ratings") +
# xlab("Condition") +
# theme_minimal()
#
# win <- win + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
# panel.background = element_blank(), axis.line = element_line(colour = "black"))
bw <- ggplot(data = sumdf_neg, aes(x = Procedure, y= emo_resp, group=subject,color=subject)) +
geom_line(alpha = .5, size = .5) +
geom_smooth(aes(group = 1), color = "black",size=1.5, method = "lm", se = F) +
scale_color_gradient(low = "deeppink4", high = "deeppink2") +
#scale_fill_gradient(low = "indianred4", high = "indianred2")
xlab("Condition") +
ylab("Person-mean Emotion Ratings on Negative Trials")
bw <- bw + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"))
bw
bw2 <- ggplot(data = sumdf_neg, aes(x = Procedure, y= er_resp, group=subject,color=subject)) +
geom_line(alpha = .5, size = .5) +
geom_smooth(aes(group = 1), color = "black",size=1.5, method = "lm", se = F) +
scale_color_gradient(low = "darkblue", high = "skyblue3") +
#scale_fill_gradient(low = "indianred4", high = "indianred2")
xlab("Condition") +
ylab("Person-mean Thinking Change Ratings on Negative Trials")
bw2 <- bw2 + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"))
bw2
longest_emo <- subset(longest,longest$Rating_Type=="emo_resp")
longest_reg <- subset(longest,longest$Rating_Type=="er_resp")
longest_emo$emo_win <- calc.mcent(Rating, Subject, data=longest_emo)
longest_emo$emo_bw <- calc.mean(Rating, Subject, data=longest_emo, expand=TRUE)
longest_reg$reg_win <- calc.mcent(Rating, Subject, data=longest_reg)
longest_reg$reg_bw <- calc.mean(Rating, Subject, data=longest_reg, expand=TRUE)
model1 <- lmer(Rating ~ Valence*Condition + (1|Subject), data=longest_emo)
#summary(model1)
#htmlTable::htmlTable(format(model1, digits = 2))
#sjPlot::tab_model(model1, p.val = "kr", show.df = TRUE)
gtsummary::tbl_regression(model1)
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
Valence | |||
neg | — | — | |
neut | -1.9 | -1.9, -1.8 | <0.001 |
Condition | |||
reg | — | — | |
watch | 0.56 | 0.51, 0.61 | <0.001 |
Valence * Condition | |||
neut * watch | -0.54 | -0.61, -0.47 | <0.001 |
1 CI = Confidence Interval |
cor.test(sumdf_neg_reg$emo_resp,sumdf_neg_reg$er_resp)
##
## Pearson's product-moment correlation
##
## data: sumdf_neg_reg$emo_resp and sumdf_neg_reg$er_resp
## t = -1.4378, df = 111, p-value = 0.1533
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.3121514 0.0507794
## sample estimates:
## cor
## -0.1352188
# Make df ever longer by gathering the difference pairwise condition comparisons and letting there be just 1 dissim variable
cert_rsa_l <- gather(cert_rsa, key = "comparison", value = "dissimilarity",
NtW_by_NtW:NgR_by_NgR, factor_key = TRUE,
-subject, -ROI, -session)
# for the wide format data...
cert_rsa$NtR_by_NtW_similarity_fz <- fisherz(1 - cert_rsa$NtR_by_NtW)
cert_rsa$NgW_by_NtW_similarity_fz <- fisherz(1 - cert_rsa$NgW_by_NtW)
cert_rsa$NgW_by_NtR_similarity_fz <- fisherz(1 - cert_rsa$NgW_by_NtR)
cert_rsa$NgR_by_NtW_similarity_fz <- fisherz(1 - cert_rsa$NgR_by_NtW)
cert_rsa$NgR_by_NgW_similarity_fz <- fisherz(1 - cert_rsa$NgR_by_NgW)
cert_rsa$NtR_by_NtR_similarity_fz <- fisherz(1 - cert_rsa$NgR_by_NtR)
# IF we want fisher transformed values:
cert_rsa_l$dissimilarity_corr <- (1 - cert_rsa_l$dissimilarity)
cert_rsa_l$dissimilarity_fz <- (1 - fisherz(cert_rsa_l$dissimilarity_corr))
cert_rsa_l$similarity_fz <- fisherz(cert_rsa_l$dissimilarity_corr)
cert_rsa_l_red <- subset(cert_rsa_l,
!(cert_rsa_l$comparison %in% c("NtW_by_NtW", "NtR_by_NtR", "NgW_by_NgW", "NgR_by_NgR")))
plot(cert_rsa_l_red$dissimilarity)
hist(cert_rsa_l_red$dissimilarity)
#plot(cert_rsa_l_red$dissimilarity_fz)
#hist(cert_rsa_l_red$dissimilarity_fz)
plot(cert_rsa_l_red$similarity_fz)
hist(cert_rsa_l_red$similarity_fz)
summary_rsa <- describeBy(similarity_fz ~ comparison + ROI, data=cert_rsa_l_red, mat=T)
#print(summary_allobs)
#htmlTable::htmlTable(format(summary_rsa,
# digits = 2))
cert_rsa_l_red$comparison <- as.factor(cert_rsa_l_red$comparison)
rois1234<-subset(cert_rsa_l_red,cert_rsa_l_red$ROI<5)
rois5678<-subset(cert_rsa_l_red,cert_rsa_l_red$ROI>4 & cert_rsa_l_red$ROI <9)
rois91011<-subset(cert_rsa_l_red,cert_rsa_l_red$ROI>8)
allROIs<-ggplot(data = rois1234, aes(x = comparison, y = similarity_fz, color = comparison)) +
geom_violin(aes(fill=comparison), alpha = .5) +
stat_summary(fun=mean, color="black", geom="point", size = 1) +
facet_wrap(~ROI, scales = "free", ncol = 2) +
labs(y = "", x = "Comparison") +
#ggtitle("Ratings across Valence and Conditions") +
theme_minimal()
allROIs + theme(
axis.text.x = element_text(angle = 45, hjust = 1, size=8), # rotate x-axis labels if needed
strip.text = element_text(size = 8), # adjust the size of facet labels
strip.background = element_blank())
allROIs<-ggplot(data = rois5678, aes(x = comparison, y = similarity_fz, color = comparison)) +
geom_violin(aes(fill=comparison), alpha = .5) +
stat_summary(fun=mean, color="black", geom="point", size = 1) +
facet_wrap(~ROI, scales = "free", ncol = 2) +
labs(y = "Dissimilarity (lower is more alike)", x = "Comparison") +
#ggtitle("Ratings across Valence and Conditions") +
theme_minimal()
allROIs + theme(
axis.text.x = element_text(angle = 45, hjust = 1, size=8), # rotate x-axis labels if needed
strip.text = element_text(size = 8), # adjust the size of facet labels
strip.background = element_blank())
allROIs<-ggplot(data = rois91011, aes(x = comparison, y = similarity_fz, color = comparison)) +
geom_violin(aes(fill=comparison), alpha = .5) +
stat_summary(fun=mean, color="black", geom="point", size = 1) +
facet_wrap(~ROI, scales = "free", ncol = 2) +
labs(y = "Dissimilarity (lower is more alike)", x = "Comparison") +
#ggtitle("Ratings across Valence and Conditions") +
theme_minimal()
allROIs + theme(
axis.text.x = element_text(angle = 45, hjust = 1, size=8), # rotate x-axis labels if needed
strip.text = element_text(size = 8), # adjust the size of facet labels
strip.background = element_blank())
# further reduce conditions to 3 from 6
cert_rsa_l_redcons <- subset(cert_rsa_l_red,
(cert_rsa_l_red$comparison %in% c("NgR_by_NgW", "NtR_by_NtW", "NgR_by_NtW")))
# using the wide form dataset, plot the density distribution for the conditions (not transformed btw)
cert_rsa_rois1234<-subset(cert_rsa,cert_rsa$ROI<5)
cert_rsa_rois5678<-subset(cert_rsa,cert_rsa$ROI>4 & cert_rsa$ROI <9)
cert_rsa_rois91011<-subset(cert_rsa,cert_rsa$ROI>8)
density1<-ggplot(data = cert_rsa_rois1234) +
geom_density(aes(x=NgR_by_NgW_similarity_fz), fill="slateblue2", alpha = .5) +
geom_density(aes(x=NgR_by_NtW_similarity_fz), fill="goldenrod", alpha = .5) +
facet_wrap(~ROI, scales = "free", ncol = 2) +
theme_minimal()
density1 + theme(
axis.text.x = element_text(angle = 45, hjust = 1, size=8), # rotate x-axis labels if needed
strip.text = element_text(size = 8), # adjust the size of facet labels
strip.background = element_blank())
density1<-ggplot(data = cert_rsa_rois5678) +
geom_density(aes(x=NgR_by_NgW_similarity_fz), fill="slateblue2", alpha = .5) +
geom_density(aes(x=NgR_by_NtW_similarity_fz), fill="goldenrod", alpha = .5) +
facet_wrap(~ROI, scales = "free", ncol = 2) +
theme_minimal()
density1 + theme(
axis.text.x = element_text(angle = 45, hjust = 1, size=8), # rotate x-axis labels if needed
strip.text = element_text(size = 8), # adjust the size of facet labels
strip.background = element_blank())
density1<-ggplot(data = cert_rsa_rois91011) +
geom_density(aes(x=NgR_by_NgW_similarity_fz), fill="slateblue2", alpha = .5) +
geom_density(aes(x=NgR_by_NtW_similarity_fz), fill="goldenrod", alpha = .5) +
facet_wrap(~ROI, scales = "free", ncol = 2) +
theme_minimal()
density1 + theme(
axis.text.x = element_text(angle = 45, hjust = 1, size=8), # rotate x-axis labels if needed
strip.text = element_text(size = 8), # adjust the size of facet labels
strip.background = element_blank())
for (roi in 1:4){
tmpdata <- subset(cert_rsa, cert_rsa$ROI == roi)
#create correlation matrix for fz similarity vals of interest
cor1_tab <- rcorr(as.matrix(tmpdata[,14:19]),type="pearson")
r1 <- as.data.frame(cor1_tab$r)
#print(r1)
p1 <- as.data.frame(cor1_tab$P)
p.mat1 <- cor_pmat(tmpdata[,14:19])
# FDR correct the lower triangle values
p.mat.tri <- p.mat1[lower.tri(p.mat1)]
p.mat.tri.fdr <- p.adjust(p.mat.tri, method="fdr")
p.mat1[lower.tri(p.mat1)] <- p.mat.tri.fdr
print(paste("plot of correlations for ROI #", roi,sep=""))
plot_roi <- ggcorrplot(r1, method = "square", ggtheme = ggplot2::theme_minimal, title = " ", show.legend = TRUE, legend.title = "Corr", show.diag = FALSE,
colors = c("turquoise4","white", "violetred4"), outline.color = "black",
hc.order = F, hc.method = "pairwise", lab = T,
p.mat = p.mat1, sig.level = 0.05,
insig = c("pch"), pch = 4, pch.col = "black",
pch.cex = 5, tl.cex = 10, tl.col = "black", tl.srt = 45,
digits = 2)
print(plot_roi)
}
## [1] "plot of correlations for ROI #1"
## [1] "plot of correlations for ROI #2"
## [1] "plot of correlations for ROI #3"
## [1] "plot of correlations for ROI #4"
## Prep behavioral data for merge:
#calc mean for each person each condition:
personmn_emo <- describeBy(emo_resp ~ PicValence + Procedure + subject, data=cert_mna, mat=T)
personmn_emo <- personmn_emo[,c(2:4,6,7)]
personmn_emo$condition <- paste(personmn_emo$group1, personmn_emo$group2, sep = "_")
personmn_n <- personmn_emo[,c(3,4,6)]
personmn_emo <- personmn_emo[,c(3,5,6)]
personmn_think <- describeBy(er_resp ~ PicValence + Procedure + subject, data=cert_mna, mat=T)
personmn_think <- personmn_think[,c(2:4,6,7)]
personmn_think$condition <- paste(personmn_think$group1, personmn_think$group2, sep = "_")
personmn_think <- personmn_think[,c(3,5,6)]
#spread to wide form
colnames(personmn_n) <- c("subject","number","ntrials")
personmn_n_wide = personmn_n %>%
spread(ntrials, number, sep = "_") #ntrials actually = conditions, but labelled weird for naming purposes
colnames(personmn_emo) <- c("subject","value","AvgEmo")
personmn_emo_wide = personmn_emo %>%
spread(AvgEmo, value, sep = "_") #ntrials actually = conditions, but labelled weird for naming purposes
colnames(personmn_think) <- c("subject","value","AvgThink")
personmn_think_wide = personmn_think %>%
spread(AvgThink, value, sep = "_") #ntrials actually = conditions, but labelled weird for naming purposes
prsnmn_all <- merge(personmn_n_wide,personmn_emo_wide, by = "subject")
prsnmn_all <- merge(prsnmn_all,personmn_think_wide, by = "subject")
#rsa and behavior
#long
cert_rsa_l_red_beh <- merge(cert_rsa_l_red, prsnmn_all, by="subject", all.x = T)
#wide
cert_rsa_beh_w <- merge(cert_rsa, prsnmn_all, by="subject", all.x = T)
#now add demogrpahic data
#long
cert_rsa_beh_dem <- merge(cert_rsa_l_red_beh, MNA, by.x ="subject", by.y = "SubjectID", all.x = T)
#wide
cert_rsa_beh_dem_w <- merge(cert_rsa_beh_w, MNA, by.x ="subject", by.y = "SubjectID", all.x = T)
#created an averaged value across sessions:
#long
cert_rsa_beh_dem_NegRxNegW <- subset(cert_rsa_beh_dem, cert_rsa_beh_dem$comparison == "NgR_by_NgW")
cert_rsa_beh_dem_NegRxNegW$ROI <- as.factor(cert_rsa_beh_dem_NegRxNegW$ROI)
avgsim2sess <- describeBy(similarity_fz ~ ROI + subject, data=cert_rsa_beh_dem_NegRxNegW, mat=T)
avgsim2sess <- avgsim2sess[,c(2,3,6)]
colnames(avgsim2sess) <- c("ROI","subject","avgsimilarity_fz")
cert_rsa_beh_dem_NegRxNegW_avg <- merge(cert_rsa_beh_dem_NegRxNegW,avgsim2sess, by=c("subject", "ROI"), all.x = T)
cert_rsa_beh_dem_NegRxNegW_avg <- subset(cert_rsa_beh_dem_NegRxNegW_avg,cert_rsa_beh_dem_NegRxNegW_avg$session==1)
#wide
avgsim2sess <- describeBy(NgR_by_NgW_similarity_fz ~ ROI + subject, data=cert_rsa_beh_dem_w, mat=T)
avgsim2sess <- avgsim2sess[,c(2,3,6)]
colnames(avgsim2sess) <- c("ROI","subject","NgR_by_NgW_avgsimilarity_fz")
cert_rsa_beh_dem_w_avg <- merge(cert_rsa_beh_dem_w,avgsim2sess, by=c("subject", "ROI"), all.x = T)
avgsim2sess <- describeBy(NtR_by_NtW_similarity_fz ~ ROI + subject, data=cert_rsa_beh_dem_w, mat=T)
avgsim2sess <- avgsim2sess[,c(2,3,6)]
colnames(avgsim2sess) <- c("ROI","subject","NtR_by_NtW_avgsimilarity_fz")
cert_rsa_beh_dem_w_avg <- merge(cert_rsa_beh_dem_w_avg,avgsim2sess, by=c("subject", "ROI"), all.x = T)
cert_rsa_beh_dem_w_avg <- subset(cert_rsa_beh_dem_w_avg,cert_rsa_beh_dem_w_avg$session==1)
# Primary model:
# Dissimilarity between Neg watch and Neg regulate ~ thinking change on Neg regulate + behavioral response rate + age + sex
### Thinking Change on NegR trials ~ ROI sim between Neg watch and Neg regulate + behavioral response rate + age + sex
# also think about adding emotion rating as another variable (it is not significantly corr with thinking change)
R1 <- lm(AvgThink_neg_reg ~ NgR_by_NgW_avgsimilarity_fz + Cohort + AvgEmo_neg_reg + Age + SexAtBirth, data = subset(cert_rsa_beh_dem_w_avg, cert_rsa_beh_dem_w_avg$ROI==1))
R2<- lm(AvgThink_neg_reg ~ NgR_by_NgW_avgsimilarity_fz + Cohort + AvgEmo_neg_reg + Age + SexAtBirth, data = subset(cert_rsa_beh_dem_w_avg, cert_rsa_beh_dem_w_avg$ROI==2))
R3<- lm(AvgThink_neg_reg ~ NgR_by_NgW_avgsimilarity_fz + Cohort + AvgEmo_neg_reg + Age + SexAtBirth, data = subset(cert_rsa_beh_dem_w_avg, cert_rsa_beh_dem_w_avg$ROI==3))
R4<- lm(AvgThink_neg_reg ~ NgR_by_NgW_avgsimilarity_fz + Cohort + AvgEmo_neg_reg + Age + SexAtBirth, data = subset(cert_rsa_beh_dem_w_avg, cert_rsa_beh_dem_w_avg$ROI==4))
R5<- lm(AvgThink_neg_reg ~ NgR_by_NgW_avgsimilarity_fz + Cohort + AvgEmo_neg_reg + Age + SexAtBirth, data = subset(cert_rsa_beh_dem_w_avg, cert_rsa_beh_dem_w_avg$ROI==5))
R6<- lm(AvgThink_neg_reg ~ NgR_by_NgW_avgsimilarity_fz + Cohort + AvgEmo_neg_reg + Age + SexAtBirth, data = subset(cert_rsa_beh_dem_w_avg, cert_rsa_beh_dem_w_avg$ROI==6))
R7<- lm(AvgThink_neg_reg ~ NgR_by_NgW_avgsimilarity_fz + Cohort + AvgEmo_neg_reg + Age + SexAtBirth, data = subset(cert_rsa_beh_dem_w_avg, cert_rsa_beh_dem_w_avg$ROI==7))
R8<- lm(AvgThink_neg_reg ~ NgR_by_NgW_avgsimilarity_fz + Cohort + AvgEmo_neg_reg + Age + SexAtBirth, data = subset(cert_rsa_beh_dem_w_avg, cert_rsa_beh_dem_w_avg$ROI==8))
R9<- lm(AvgThink_neg_reg ~ NgR_by_NgW_avgsimilarity_fz + Cohort + AvgEmo_neg_reg + Age + SexAtBirth, data = subset(cert_rsa_beh_dem_w_avg, cert_rsa_beh_dem_w_avg$ROI==9))
R10<- lm(AvgThink_neg_reg ~ NgR_by_NgW_avgsimilarity_fz + Cohort + AvgEmo_neg_reg + Age + SexAtBirth, data = subset(cert_rsa_beh_dem_w_avg, cert_rsa_beh_dem_w_avg$ROI==10))
R11<- lm(AvgThink_neg_reg ~ NgR_by_NgW_avgsimilarity_fz + Cohort + AvgEmo_neg_reg + Age + SexAtBirth, data = subset(cert_rsa_beh_dem_w_avg, cert_rsa_beh_dem_w_avg$ROI==11))
#summary(R1)
gtsummary::tbl_regression(R1)
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
NgR_by_NgW_avgsimilarity_fz | 0.15 | -0.16, 0.47 | 0.3 |
Cohort | |||
MDD | — | — | |
HC | 0.04 | -0.29, 0.38 | 0.8 |
AvgEmo_neg_reg | -0.10 | -0.27, 0.08 | 0.3 |
Age | 0.03 | -0.01, 0.08 | 0.2 |
SexAtBirth | 0.24 | -0.06, 0.55 | 0.12 |
1 CI = Confidence Interval |
gtsummary::tbl_regression(R2)
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
NgR_by_NgW_avgsimilarity_fz | 0.16 | -0.12, 0.43 | 0.3 |
Cohort | |||
MDD | — | — | |
HC | 0.08 | -0.24, 0.40 | 0.6 |
AvgEmo_neg_reg | -0.09 | -0.27, 0.08 | 0.3 |
Age | 0.04 | -0.01, 0.08 | 0.2 |
SexAtBirth | 0.25 | -0.05, 0.56 | 0.10 |
1 CI = Confidence Interval |
gtsummary::tbl_regression(R3)
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
NgR_by_NgW_avgsimilarity_fz | -0.13 | -0.40, 0.14 | 0.4 |
Cohort | |||
MDD | — | — | |
HC | 0.10 | -0.22, 0.42 | 0.5 |
AvgEmo_neg_reg | -0.12 | -0.30, 0.06 | 0.2 |
Age | 0.03 | -0.01, 0.08 | 0.2 |
SexAtBirth | 0.26 | -0.04, 0.56 | 0.091 |
1 CI = Confidence Interval |
gtsummary::tbl_regression(R4)
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
NgR_by_NgW_avgsimilarity_fz | 0.14 | -0.24, 0.52 | 0.5 |
Cohort | |||
MDD | — | — | |
HC | 0.10 | -0.22, 0.42 | 0.5 |
AvgEmo_neg_reg | -0.12 | -0.29, 0.06 | 0.2 |
Age | 0.03 | -0.02, 0.08 | 0.2 |
SexAtBirth | 0.28 | -0.03, 0.59 | 0.071 |
1 CI = Confidence Interval |
gtsummary::tbl_regression(R5)
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
NgR_by_NgW_avgsimilarity_fz | -0.17 | -0.49, 0.16 | 0.3 |
Cohort | |||
MDD | — | — | |
HC | 0.14 | -0.19, 0.48 | 0.4 |
AvgEmo_neg_reg | -0.11 | -0.29, 0.06 | 0.2 |
Age | 0.03 | -0.02, 0.08 | 0.2 |
SexAtBirth | 0.27 | -0.03, 0.57 | 0.078 |
1 CI = Confidence Interval |
gtsummary::tbl_regression(R6)
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
NgR_by_NgW_avgsimilarity_fz | -0.02 | -0.31, 0.26 | 0.9 |
Cohort | |||
MDD | — | — | |
HC | 0.10 | -0.23, 0.43 | 0.6 |
AvgEmo_neg_reg | -0.10 | -0.28, 0.07 | 0.2 |
Age | 0.04 | -0.01, 0.09 | 0.15 |
SexAtBirth | 0.27 | -0.04, 0.57 | 0.087 |
1 CI = Confidence Interval |
gtsummary::tbl_regression(R7)
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
NgR_by_NgW_avgsimilarity_fz | 0.09 | -0.19, 0.37 | 0.5 |
Cohort | |||
MDD | — | — | |
HC | 0.10 | -0.22, 0.43 | 0.5 |
AvgEmo_neg_reg | -0.09 | -0.27, 0.08 | 0.3 |
Age | 0.03 | -0.02, 0.08 | 0.2 |
SexAtBirth | 0.27 | -0.03, 0.58 | 0.079 |
1 CI = Confidence Interval |
gtsummary::tbl_regression(R8)
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
NgR_by_NgW_avgsimilarity_fz | -0.17 | -0.48, 0.15 | 0.3 |
Cohort | |||
MDD | — | — | |
HC | 0.11 | -0.22, 0.43 | 0.5 |
AvgEmo_neg_reg | -0.08 | -0.26, 0.10 | 0.4 |
Age | 0.03 | -0.02, 0.08 | 0.2 |
SexAtBirth | 0.25 | -0.05, 0.56 | 0.10 |
1 CI = Confidence Interval |
gtsummary::tbl_regression(R9)
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
NgR_by_NgW_avgsimilarity_fz | 0.10 | -0.17, 0.37 | 0.5 |
Cohort | |||
MDD | — | — | |
HC | 0.05 | -0.29, 0.39 | 0.8 |
AvgEmo_neg_reg | -0.10 | -0.27, 0.07 | 0.2 |
Age | 0.04 | -0.01, 0.08 | 0.15 |
SexAtBirth | 0.26 | -0.04, 0.57 | 0.088 |
1 CI = Confidence Interval |
gtsummary::tbl_regression(R10)
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
NgR_by_NgW_avgsimilarity_fz | 0.15 | -0.08, 0.37 | 0.2 |
Cohort | |||
MDD | — | — | |
HC | 0.08 | -0.23, 0.40 | 0.6 |
AvgEmo_neg_reg | -0.10 | -0.28, 0.07 | 0.2 |
Age | 0.03 | -0.01, 0.08 | 0.2 |
SexAtBirth | 0.25 | -0.05, 0.55 | 0.10 |
1 CI = Confidence Interval |
gtsummary::tbl_regression(R11)
Characteristic | Beta | 95% CI1 | p-value |
---|---|---|---|
NgR_by_NgW_avgsimilarity_fz | -0.15 | -0.38, 0.08 | 0.2 |
Cohort | |||
MDD | — | — | |
HC | 0.13 | -0.19, 0.46 | 0.4 |
AvgEmo_neg_reg | -0.11 | -0.28, 0.06 | 0.2 |
Age | 0.03 | -0.02, 0.08 | 0.2 |
SexAtBirth | 0.28 | -0.02, 0.58 | 0.068 |
1 CI = Confidence Interval |
sim_thinking <- ggplot(data = subset(cert_rsa_beh_dem_w_avg,cert_rsa_beh_dem_w_avg$ROI<5), aes(x = NgR_by_NgW_avgsimilarity_fz, y = AvgThink_neg_reg)) +
geom_point(aes(color=subject), alpha = .5, size = 1.5) +
geom_smooth(aes(group = 1), color = "black",size=1.5, method = "lm", se = F) +
#scale_color_gradient(low = "orchid4", high = "orchid2") +
facet_wrap(~ROI, ncol = 2)+
xlab("Negative Reg vs Watch similarity") +
ylab("Thinking Change")
sim_thinking <- sim_thinking + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"))
sim_thinking
## `geom_smooth()` using formula = 'y ~ x'
sim_thinking <- ggplot(data = subset(cert_rsa_beh_dem_w_avg,cert_rsa_beh_dem_w_avg$ROI>4 & cert_rsa_beh_dem_w_avg$ROI<9), aes(x = NgR_by_NgW_avgsimilarity_fz, y = AvgThink_neg_reg)) +
geom_point(aes(color=subject), alpha = .5, size = 1.5) +
geom_smooth(aes(group = 1), color = "black",size=1.5, method = "lm", se = F) +
#scale_color_gradient(low = "orchid4", high = "orchid2") +
facet_wrap(~ROI, ncol = 2)+
xlab("Negative Reg vs Watch similarity") +
ylab("Thinking Change")
sim_thinking <- sim_thinking + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"))
sim_thinking
## `geom_smooth()` using formula = 'y ~ x'
sim_thinking <- ggplot(data = subset(cert_rsa_beh_dem_w_avg,cert_rsa_beh_dem_w_avg$ROI>8), aes(x = NgR_by_NgW_avgsimilarity_fz, y = AvgThink_neg_reg)) +
geom_point(aes(color=subject), alpha = .5, size = 1.5) +
geom_smooth(aes(group = 1), color = "black",size=1.5, method = "lm", se = F) +
#scale_color_gradient(low = "orchid4", high = "orchid2") +
facet_wrap(~ROI, ncol = 2)+
xlab("Negative Reg vs Watch similarity") +
ylab("Thinking Change")
sim_thinking <- sim_thinking + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"))
sim_thinking
## `geom_smooth()` using formula = 'y ~ x'
summary(lmer(AvgThink_neg_reg ~ similarity_fz*ROI + Cohort + Age + SexAtBirth + (1|subject), data = cert_rsa_beh_dem_NegRxNegW))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 2.78609 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: AvgThink_neg_reg ~ similarity_fz * ROI + Cohort + Age + SexAtBirth +
## (1 | subject)
## Data: cert_rsa_beh_dem_NegRxNegW
##
## REML criterion at convergence: -48965.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.035e-06 -4.212e-07 1.940e-08 6.414e-07 3.683e-06
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 2.506e-02 1.583e-01
## Residual 3.679e-13 6.065e-07
## Number of obs: 2024, groups: subject, 92
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -4.299e-01 1.319e-01 5.487e-02 -3.260 0.834
## similarity_fz 5.451e-13 7.016e-08 1.535e+01 0.000 1.000
## ROI2 7.687e-13 1.184e-07 1.535e+01 0.000 1.000
## ROI3 8.539e-13 1.218e-07 1.535e+01 0.000 1.000
## ROI4 8.358e-13 1.178e-07 1.535e+01 0.000 1.000
## ROI5 8.581e-13 1.179e-07 1.535e+01 0.000 1.000
## ROI6 8.562e-13 1.165e-07 1.535e+01 0.000 1.000
## ROI7 8.206e-13 1.130e-07 1.535e+01 0.000 1.000
## ROI8 8.784e-13 1.114e-07 1.535e+01 0.000 1.000
## ROI9 8.117e-13 1.131e-07 1.535e+01 0.000 1.000
## ROI10 8.073e-13 1.111e-07 1.535e+01 0.000 1.000
## ROI11 8.862e-13 1.163e-07 1.535e+01 0.000 1.000
## CohortHC 2.331e-01 3.704e-02 1.495e+01 6.293 1.46e-05 ***
## Age 1.428e-01 5.652e-03 5.896e-02 25.265 0.731
## SexAtBirth 4.458e-01 3.529e-02 6.164e+00 12.633 1.23e-05 ***
## similarity_fz:ROI2 -4.700e-13 9.646e-08 1.535e+01 0.000 1.000
## similarity_fz:ROI3 -5.586e-13 9.634e-08 1.535e+01 0.000 1.000
## similarity_fz:ROI4 -5.398e-13 1.072e-07 1.535e+01 0.000 1.000
## similarity_fz:ROI5 -5.665e-13 1.007e-07 1.535e+01 0.000 1.000
## similarity_fz:ROI6 -5.626e-13 9.444e-08 1.535e+01 0.000 1.000
## similarity_fz:ROI7 -5.205e-13 9.670e-08 1.535e+01 0.000 1.000
## similarity_fz:ROI8 -6.055e-13 1.031e-07 1.535e+01 0.000 1.000
## similarity_fz:ROI9 -5.170e-13 8.728e-08 1.535e+01 0.000 1.000
## similarity_fz:ROI10 -5.056e-13 9.066e-08 1.535e+01 0.000 1.000
## similarity_fz:ROI11 -5.904e-13 9.053e-08 1.535e+01 0.000 1.000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 25 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
## optimizer (nloptwrap) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 2.78609 (tol = 0.002, component 1)
## Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
summary(lmer(AvgThink_neg_reg ~ avgsimilarity_fz*ROI + Cohort + Age + SexAtBirth + (1|subject), data = cert_rsa_beh_dem_NegRxNegW_avg))
## Warning in optwrap(optimizer, devfun, getStart(start, rho$pp), lower =
## rho$lower, : convergence code -4 from nloptwrap: NLOPT_ROUNDOFF_LIMITED:
## Roundoff errors led to a breakdown of the optimization algorithm. In this case,
## the returned minimum may still be useful. (e.g. this error occurs in NEWUOA if
## one tries to achieve a tolerance too close to machine precision.)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## AvgThink_neg_reg ~ avgsimilarity_fz * ROI + Cohort + Age + SexAtBirth +
## (1 | subject)
## Data: cert_rsa_beh_dem_NegRxNegW_avg
##
## REML criterion at convergence: -19101.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.345e-05 -4.524e-06 -4.002e-07 5.236e-06 1.988e-05
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 4.123e-02 2.031e-01
## Residual 2.529e-11 5.029e-06
## Number of obs: 1012, groups: subject, 92
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.144e+00 1.713e-01 4.826e-01 12.515 0.1903
## avgsimilarity_fz 9.713e-12 1.151e-06 8.313e+01 0.000 1.0000
## ROI2 6.747e-13 1.766e-06 8.313e+01 0.000 1.0000
## ROI3 1.611e-11 1.803e-06 8.313e+01 0.000 1.0000
## ROI4 6.558e-12 1.829e-06 8.313e+01 0.000 1.0000
## ROI5 1.746e-11 1.771e-06 8.313e+01 0.000 1.0000
## ROI6 1.089e-11 1.757e-06 8.313e+01 0.000 1.0000
## ROI7 5.066e-12 1.689e-06 8.313e+01 0.000 1.0000
## ROI8 1.833e-11 1.654e-06 8.313e+01 0.000 1.0000
## ROI9 5.240e-12 1.742e-06 8.313e+01 0.000 1.0000
## ROI10 3.775e-12 1.657e-06 8.313e+01 0.000 1.0000
## ROI11 1.866e-11 1.714e-06 8.313e+01 0.000 1.0000
## CohortHC 1.228e-01 4.756e-02 8.469e+01 2.581 0.0116 *
## Age 3.499e-02 7.335e-03 4.814e-01 4.771 0.3030
## SexAtBirth 2.498e-01 4.544e-02 5.450e+01 5.498 1.05e-06 ***
## avgsimilarity_fz:ROI2 1.075e-12 1.541e-06 8.313e+01 0.000 1.0000
## avgsimilarity_fz:ROI3 -1.472e-11 1.517e-06 8.313e+01 0.000 1.0000
## avgsimilarity_fz:ROI4 -4.001e-12 1.825e-06 8.313e+01 0.000 1.0000
## avgsimilarity_fz:ROI5 -1.740e-11 1.624e-06 8.313e+01 0.000 1.0000
## avgsimilarity_fz:ROI6 -9.720e-12 1.539e-06 8.313e+01 0.000 1.0000
## avgsimilarity_fz:ROI7 -2.235e-12 1.558e-06 8.313e+01 0.000 1.0000
## avgsimilarity_fz:ROI8 -2.134e-11 1.639e-06 8.313e+01 0.000 1.0000
## avgsimilarity_fz:ROI9 -4.069e-12 1.476e-06 8.313e+01 0.000 1.0000
## avgsimilarity_fz:ROI10 -1.063e-12 1.460e-06 8.313e+01 0.000 1.0000
## avgsimilarity_fz:ROI11 -1.731e-11 1.427e-06 8.313e+01 0.000 1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 25 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it