# Load packages
# Core
library(tidyverse)
library(tidyquant)
library(readr)
# Time series
library(lubridate)
library(tibbletime)
# modeling
library(broom)
Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
asset_returns_wide_tbl
## AGG EEM EFA IJS SPY
## 2013-01-31 -0.0062319040 -0.0029354844 0.0366063564 0.052133154 4.992266e-02
## 2013-02-28 0.0058919479 -0.0231054123 -0.0129695801 0.016175322 1.267825e-02
## 2013-03-28 0.0009846972 -0.0102345922 0.0129695801 0.040258245 3.726770e-02
## 2013-04-30 0.0096396933 0.0120845357 0.0489676492 0.001222713 1.903041e-02
## 2013-05-31 -0.0202140311 -0.0494834727 -0.0306553154 0.041976321 2.333563e-02
## 2013-06-28 -0.0157786380 -0.0547284273 -0.0271447318 -0.001403271 -1.343439e-02
## 2013-07-31 0.0026880099 0.0131601527 0.0518603677 0.063541466 5.038594e-02
## 2013-08-30 -0.0082982915 -0.0257059451 -0.0197464131 -0.034743344 -3.045150e-02
## 2013-09-30 0.0111436777 0.0695890406 0.0753384375 0.063873462 3.115610e-02
## 2013-10-31 0.0082925208 0.0408611523 0.0320819076 0.034234215 4.526657e-02
## 2013-11-29 -0.0025100675 -0.0025942096 0.0054496043 0.041661011 2.920693e-02
## 2013-12-31 -0.0055833495 -0.0040741678 0.0215280253 0.012892014 2.559597e-02
## 2014-01-31 0.0152918063 -0.0903225062 -0.0534133163 -0.035775125 -3.588442e-02
## 2014-02-28 0.0037567310 0.0332200299 0.0595050498 0.045257274 4.451063e-02
## 2014-03-31 -0.0014814373 0.0380220938 -0.0046025085 0.013315406 8.260890e-03
## 2014-04-30 0.0081836905 0.0077727547 0.0165293746 -0.023184270 6.927396e-03
## 2014-05-30 0.0117213925 0.0290910772 0.0158284495 0.006205334 2.294145e-02
## 2014-06-30 -0.0005759786 0.0237338661 0.0091654505 0.037718587 2.043444e-02
## 2014-07-31 -0.0025119022 0.0135556986 -0.0263798746 -0.052009177 -1.352874e-02
## 2014-08-29 0.0114302802 0.0279047090 0.0018003362 0.043657703 3.870483e-02
## 2014-09-30 -0.0061672497 -0.0808566437 -0.0395983901 -0.061260365 -1.389231e-02
## 2014-10-31 0.0105850854 0.0140961407 -0.0026549068 0.068875042 2.327803e-02
## 2014-11-28 0.0065483020 -0.0155413112 0.0006253048 0.004773581 2.710113e-02
## 2014-12-31 0.0014749912 -0.0404418478 -0.0407466568 0.025295482 -2.539448e-03
## 2015-01-30 0.0203154397 -0.0068957389 0.0062264488 -0.054627652 -3.007719e-02
## 2015-02-27 -0.0089879773 0.0431360303 0.0614506437 0.056914542 5.468150e-02
## 2015-03-31 0.0037400309 -0.0150861191 -0.0143887809 0.010156495 -1.583014e-02
## 2015-04-30 -0.0032333898 0.0662811948 0.0358166005 -0.018417687 9.786096e-03
## 2015-05-29 -0.0043829386 -0.0419108762 0.0019526299 0.007509723 1.277396e-02
## 2015-06-30 -0.0108257018 -0.0297468307 -0.0316787437 0.004171475 -2.052108e-02
## 2015-07-31 0.0085844900 -0.0651780633 0.0201143031 -0.027375559 2.233803e-02
## 2015-08-31 -0.0033637532 -0.0925124330 -0.0771524370 -0.047268280 -6.288682e-02
## 2015-09-30 0.0080814802 -0.0318248313 -0.0451946803 -0.038464595 -2.584721e-02
## 2015-10-30 0.0006853732 0.0618081395 0.0640259361 0.063589443 8.163506e-02
## 2015-11-30 -0.0038982927 -0.0255602827 -0.0075558683 0.024415314 3.648358e-03
## 2015-12-31 -0.0019189562 -0.0389472365 -0.0235952734 -0.052156975 -1.743342e-02
## 2016-01-29 0.0123299110 -0.0516363622 -0.0567576470 -0.060306856 -5.106900e-02
## 2016-02-29 0.0088320113 -0.0082118780 -0.0339139945 0.020605482 -8.258504e-04
## 2016-03-31 0.0087088374 0.1218792145 0.0637458677 0.089910043 6.510019e-02
## 2016-04-29 0.0025458317 0.0040789664 0.0219750672 0.021044488 3.933158e-03
## 2016-05-31 0.0001357085 -0.0376282281 -0.0008562720 0.004396955 1.686887e-02
## 2016-06-30 0.0191669447 0.0445823475 -0.0244912450 0.008292207 3.469635e-03
## 2016-07-29 0.0054293838 0.0524419290 0.0390000052 0.049348429 3.582192e-02
## 2016-08-31 -0.0021562446 0.0087987068 0.0053269137 0.011261074 1.197031e-03
## 2016-09-30 0.0005161190 0.0248728062 0.0132790421 0.008614403 5.783827e-05
## 2016-10-31 -0.0082053041 -0.0083120212 -0.0224036715 -0.038134481 -1.748916e-02
## 2016-11-30 -0.0259899568 -0.0451621008 -0.0179743747 0.125246281 3.617617e-02
## 2016-12-30 0.0025379332 -0.0025297591 0.0267028261 0.031491640 2.006892e-02
## 2017-01-31 0.0021263938 0.0644313492 0.0323819846 -0.012143670 1.773636e-02
## 2017-02-28 0.0064378625 0.0172577327 0.0118363766 0.013428744 3.853935e-02
## 2017-03-31 -0.0005528011 0.0361890692 0.0318057520 -0.006533051 1.249435e-03
## 2017-04-28 0.0090292167 0.0168665502 0.0239521063 0.005107782 9.876988e-03
## 2017-05-31 0.0068474133 0.0280596287 0.0348103994 -0.022862910 1.401442e-02
## 2017-06-30 -0.0001827914 0.0092241468 0.0029559201 0.029151711 6.354549e-03
## 2017-07-31 0.0033342737 0.0565943115 0.0261876594 0.007481937 2.034588e-02
## 2017-08-31 0.0093694244 0.0232437110 -0.0004483091 -0.027564624 2.913656e-03
## 2017-09-29 -0.0057322182 -0.0004461751 0.0233428382 0.082321554 1.994868e-02
## 2017-10-31 0.0009779633 0.0322786091 0.0166537014 0.005916133 2.329072e-02
## 2017-11-30 -0.0014841287 -0.0038970433 0.0068700624 0.036913166 3.010826e-02
## 2017-12-29 0.0047402365 0.0369253728 0.0133982941 -0.003731478 1.205494e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)
covariance_matrix
## AGG EEM EFA IJS SPY
## AGG 7.398526e-05 0.0001042098 4.178168e-05 -7.812162e-05 -9.032054e-06
## EEM 1.042098e-04 0.0017547085 1.039017e-03 6.437724e-04 6.795422e-04
## EFA 4.178168e-05 0.0010390168 1.064237e-03 6.490289e-04 6.975408e-04
## IJS -7.812162e-05 0.0006437724 6.490289e-04 1.565444e-03 8.290231e-04
## SPY -9.032054e-06 0.0006795422 6.975408e-04 8.290231e-04 7.408294e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
## [,1]
## [1,] 0.02347489
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
## AGG EEM EFA IJS SPY
## [1,] 0.0003874095 0.009257143 0.005815634 0.005684454 0.002330248
rowSums(component_contribution)
## [1] 0.02347489
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
component_percentages
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%
as_tibble() %>%
gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
## asset contribution
## <chr> <dbl>
## 1 AGG 0.017
## 2 EEM 0.394
## 3 EFA 0.248
## 4 IJS 0.242
## 5 SPY 0.099
# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
pivot_wider(names_from = asset, values_from = returns) %>%
column_to_rownames(var = "date")
# Custom function
calculate_component_contribution <- function(asset_returns_wide_tbl, w) {
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)
# Standard deviation of portfolio
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
# Component contribution
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
round(3) %>%
as_tibble()
return(component_percentages)
}
asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25, 0.25, 0.2, 0.2, 0.1))
## # A tibble: 1 × 5
## AGG EEM EFA IJS SPY
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
Column Chart of Component Contribution
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(0.25, 0.25, 0.2, 0.2, 0.1)) %>%
# Transform to long form
pivot_longer(cols = everything(), names_to = "asset", values_to = "Contribution")
plot_data %>%
ggplot(aes(x = asset, y = Contribution)) +
geom_col(fill = "cornflowerblue") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
theme(plot.title = element_text(hjust = 0.5)) +
labs(title = "Percent Contribution to Portfolio Volatility")
Column Chart of Component Contribution and weight
plot_data <- asset_returns_wide_tbl %>%
calculate_component_contribution(w = c(0.25, 0.25, 0.2, 0.2, 0.1)) %>%
# Transform to long form
pivot_longer(cols = everything(), names_to = "asset", values_to = "Contribution") %>%
# Add weights
add_column(weight = c(0.25, 0.25, 0.2, 0.2, 0.1)) %>%
# Transform to long
pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")
plot_data %>%
ggplot(aes(x = asset, y = value, fill = type)) +
geom_col(position = "dodge") +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
scale_fill_tq() +
theme(plot.title = element_text(hjust = 0.5)) +
theme_tq() +
labs(title = "Percent Contribution to Portfolio Volatility and Weight",
y = "Percent",
x = NULL)