Input data:
library(GAD)
Process <- rep(c(rep(1,4),rep(2,4),rep(3,4)),3)
Batch <- rep(rep(c(1,2,3,4),3),3)
obs <- c(25,19,15,15,19,23,18,35,14,35,38,25,30,28,17,16,17,24,21,27,15,21,54,29,26,20,14,13,14,21,17,25,20,24,50,33)
data <- data.frame(Process,Batch,obs)
data
## Process Batch obs
## 1 1 1 25
## 2 1 2 19
## 3 1 3 15
## 4 1 4 15
## 5 2 1 19
## 6 2 2 23
## 7 2 3 18
## 8 2 4 35
## 9 3 1 14
## 10 3 2 35
## 11 3 3 38
## 12 3 4 25
## 13 1 1 30
## 14 1 2 28
## 15 1 3 17
## 16 1 4 16
## 17 2 1 17
## 18 2 2 24
## 19 2 3 21
## 20 2 4 27
## 21 3 1 15
## 22 3 2 21
## 23 3 3 54
## 24 3 4 29
## 25 1 1 26
## 26 1 2 20
## 27 1 3 14
## 28 1 4 13
## 29 2 1 14
## 30 2 2 21
## 31 2 3 17
## 32 2 4 25
## 33 3 1 20
## 34 3 2 24
## 35 3 3 50
## 36 3 4 33
Model equation:
\[ \gamma_{ijk} = \mu + \alpha_{i} + \beta_{j(i))} + \epsilon_{ijk} \]
Hypothesis:
Factor process:
\(H_{o}\): \(\mu_{i1} = \mu_{i2} = \mu_{i3}\)
\(H_{a}\): at least one \(\mu\) is differrent
Factor Batch:
\(H_{o}\): \(\mu_{j1} = \mu_{j2} = \mu_{j3}\)
\(H_{a}\): at least one \(\mu\) is differrent
Build model and test:
Process <- as.fixed(Process)
Batch <- as.random(Batch)
model <- lm(obs ~ Process + Batch%in%Process)
GAD::gad(model)
## Analysis of Variance Table
##
## Response: obs
## Df Sum Sq Mean Sq F value Pr(>F)
## Process 2 676.06 338.03 1.4643 0.2815
## Process:Batch 9 2077.58 230.84 12.2031 5.477e-07 ***
## Residual 24 454.00 18.92
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
For factor process: P-value = 0.2815 > alpha (0.05). These is no evident to reject the Null hypothesis.
For factor batch: P-value = 5.477e-07 < alpha (0.05). Reject Null hypothesis.
#Input data
library(GAD)
Process <- rep(c(rep(1,4),rep(2,4),rep(3,4)),3)
Batch <- rep(rep(c(1,2,3,4),3),3)
obs <- c(25,19,15,15,19,23,18,35,14,35,38,25,30,28,17,16,17,24,21,27,15,21,54,29,26,20,14,13,14,21,17,25,20,24,50,33)
data <- data.frame(Process,Batch,obs)
#Build model and test
Process <- as.fixed(Process)
Batch <- as.random(Batch)
model <- lm(obs ~ Process + Batch%in%Process)
GAD::gad(model)