Functions
Data
HCC827Jun23 = read.table(
file = "./Data/osiRoxa_bulk/Jun23/gene_fpkm.xls",
sep = "\t",
header = TRUE
)
rownames(HCC827Jun23) = make.unique(HCC827Jun23[,"gene_name",drop=T]) #set genes names
HCC827Jun23 = HCC827Jun23[,2:31]
names (HCC827Jun23) = gsub(x = names(HCC827Jun23),pattern = "op",replacement = "osiPersistors")%>% gsub(pattern = "cp",replacement = "_comboPersistors")
HCC827Jun23 = HCC827Jun23[,16:ncol(HCC827Jun23)] #take only HCC827
# create metadata
cell.labels = names(HCC827Jun23)
condition = str_extract(cell.labels, "osiPersistors|comboPersistors|osi|ctrl|roxa")
metadata = data.frame(condition = condition, row.names = colnames(HCC827Jun23))
library(DESeq2)
dds <- DESeqDataSetFromMatrix(countData = round(HCC827Jun23),
colData = metadata,
design = ~condition)
PCA
nrow(dds)
dds1 <- dds[ rowSums(counts(dds)) >= 3, ]
nrow(dds1)
vst = vst(dds1, blind=FALSE)
library("ggfortify")
PCAdata <- prcomp(t(assay(vst)))
autoplot(PCAdata, data = metadata,colour = "condition",label = FALSE, main="PCA") # Show dots

#DESeq
dds <- DESeq(dds)
DEG
FC
cpVSop <- results(dds,contrast = c("condition","comboPersistors","osiPersistors")) %>% as.data.frame()
roxaVSctrl <- results(dds,contrast = c("condition","roxa","ctrl")) %>% as.data.frame()
diff_genes = data.frame(row.names = rownames(cpVSop), cpVSop_FC = cpVSop$log2FoldChange,roxaVSctrl_FC = roxaVSctrl$log2FoldChange, cpVSop_padj = cpVSop$padj)
cpVSop = cpVSop[order(cpVSop$log2FoldChange, cpVSop$padj,decreasing = T),] #order by FC, ties bt padj
ranked_vec = cpVSop[,"log2FoldChange"]%>% setNames(rownames(cpVSop)) %>% na.omit() # make named vector
hyp_obj <- hypeR_fgsea(ranked_vec, genesets, up_only = F)
Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize,
gseaParam, : There are ties in the preranked stats (11.24% of the list).
The order of those tied genes will be arbitrary, which may produce
unexpected results.
plt = hyp_dots(hyp_obj,merge = F)
plt1 = plt$up+ aes(size=nes)+ggtitle("up in comboPersistor")
plt2 = plt$dn+ aes(size=abs(nes))+ggtitle("up in osiPersistors")
print_tab(plt1+plt2,title = "cpVSop")
cpVSop

roxaVSctrl = roxaVSctrl[order(roxaVSctrl$log2FoldChange, roxaVSctrl$padj,decreasing = T),] #order by FC, ties bt padj
ranked_vec = roxaVSctrl[,"log2FoldChange"]%>% setNames(rownames(roxaVSctrl)) %>% na.omit() # make named vector
hyp_obj <- hypeR_fgsea(ranked_vec, genesets, up_only = F)
Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize,
gseaParam, : There are ties in the preranked stats (12.19% of the list).
The order of those tied genes will be arbitrary, which may produce
unexpected results.
plt = hyp_dots(hyp_obj,merge = F)
plt1 = plt$up+ aes(size=nes)+ggtitle("up in roxa")
plt2 = plt$dn+ aes(size=abs(nes))+ggtitle("up in ctrl")
print_tab(plt1+plt2,title = "cpVSop")
cpVSop

NA
DEG
shrinked FC
dds$condition = relevel(dds$condition, ref = "osiPersistors")
dds <- nbinomWaldTest(dds)
cpVSop <- lfcShrink(dds,coef = "condition_comboPersistors_vs_osiPersistors") %>% as.data.frame()
dds$condition = relevel(dds$condition, ref = "ctrl")
dds <- nbinomWaldTest(dds)
roxaVSctrl <- lfcShrink(dds,coef = "condition_roxa_vs_ctrl") %>% as.data.frame()
diff_genes = data.frame(row.names = rownames(cpVSop), cpVSop_FC = cpVSop$log2FoldChange,roxaVSctrl_FC = roxaVSctrl$log2FoldChange, cpVSop_padj = cpVSop$padj)
ranked_vec = diff_genes[, 1] %>% setNames(rownames(diff_genes)) %>% sort(decreasing = TRUE)
hyp_obj <- hypeR_fgsea(ranked_vec, genesets, up_only = F)
Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize,
gseaParam, : There are ties in the preranked stats (23.49% of the list).
The order of those tied genes will be arbitrary, which may produce
unexpected results.
plt = hyp_dots(hyp_obj,merge = F)
plt1 = plt$up+ aes(size=nes)+ggtitle("up in comboPersistor") + theme( axis.text.y = element_text(size=10))
plt2 = plt$dn+ aes(size=abs(nes))+ggtitle("up in osiPersistors") + theme(axis.text.y = element_text(size=10))
print_tab(plt1+plt2,title = "cpVSop")
cpVSop

ranked_vec = diff_genes[, 2] %>% setNames(rownames(diff_genes)) %>% sort(decreasing = TRUE)
hyp_obj <- hypeR_fgsea(ranked_vec, genesets, up_only = F)
Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize,
gseaParam, : There are ties in the preranked stats (23.49% of the list).
The order of those tied genes will be arbitrary, which may produce
unexpected results.
plt = hyp_dots(hyp_obj,merge = F)
plt1 = plt$up+ aes(size=nes)+ggtitle("up in roxa")
plt2 = plt$dn+ aes(size=abs(nes))+ggtitle("up in ctrl")
print_tab(plt1+plt2,title = "cpVSop")
cpVSop

NA
DEG in
comboVSosi but not in roxaVSctrl
cpVSop <- results(dds,contrast = c("condition","comboPersistors","osiPersistors")) %>% as.data.frame()
roxaVSctrl <- results(dds,contrast = c("condition","roxa","ctrl")) %>% as.data.frame()
diff_genes = data.frame(row.names = rownames(cpVSop), cpVSop_FC = 2**cpVSop$log2FoldChange,roxaVSctrl_FC = 2**roxaVSctrl$log2FoldChange, cpVSop_padj = cpVSop$padj)
up_genes_df = diff_genes %>% filter(cpVSop_FC > 2 & roxaVSctrl_FC<1.2 & cpVSop_padj<0.05)
down_genes_df = diff_genes %>% filter(cpVSop_FC < 0.5 & roxaVSctrl_FC>0.8 & cpVSop_padj<0.05)
up_genes = diff_genes %>% filter(cpVSop_FC > 2 & roxaVSctrl_FC<1.2 & cpVSop_padj<0.05) %>% rownames()
down_genes = diff_genes %>% filter(cpVSop_FC < 0.5 & roxaVSctrl_FC>0.8 & cpVSop_padj<0.1)%>% rownames()
print_tab(up_genes_df,title = "up")
up
print_tab(down_genes_df,title = "down")
hyp_obj <- hypeR(up_genes, genesets, test = "hypergeometric", fdr=1, plotting=F,background = rownames(H1975Oct23))
plt1 = hyp_dots(hyp_obj,title = "up in comboVSosi but not in roxaVSctrl")
hyp_obj <- hypeR(down_genes, genesets, test = "hypergeometric", fdr=1, plotting=F,background = rownames(H1975Oct23))
plt2 = hyp_dots(hyp_obj,title = "down in comboVSosi but not in roxaVSctrl")
plt1 + plt2

print_tab(data.frame(up_genes[up_genes %in% genesets$HALLMARK_GLYCOLYSIS]),title = "up genes in GLYCOLYSIS")
up genes in GLYCOLYSIS
NA
LS0tCnRpdGxlOiAnYHIgcnN0dWRpb2FwaTo6Z2V0U291cmNlRWRpdG9yQ29udGV4dCgpJHBhdGggJT4lIGJhc2VuYW1lKCkgJT4lIGdzdWIocGF0dGVybiA9ICJcXC5SbWQiLHJlcGxhY2VtZW50ID0gIiIpYCcgCmF1dGhvcjogIkF2aXNoYWkgV2l6ZWwiCmRhdGU6ICdgciBTeXMudGltZSgpYCcKb3V0cHV0OiAKICBodG1sX25vdGVib29rOiAKICAgIGNvZGVfZm9sZGluZzogaGlkZQogICAgdG9jOiB5ZXMKICAgIHRvY19jb2xsYXBzZTogeWVzCiAgICB0b2NfZmxvYXQ6IAogICAgICBjb2xsYXBzZWQ6IEZBTFNFCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIHRvY19kZXB0aDogMQotLS0KCjxzdHlsZSB0eXBlPSJ0ZXh0L2NzcyI+Ci5tYWluLWNvbnRhaW5lciB7CiAgbWF4LXdpZHRoOiA4NSUgIWltcG9ydGFudDsKICBtYXJnaW46IGF1dG87Cn0KPC9zdHlsZT4KCiMgRnVuY3Rpb25zCgpgYGB7ciB3YXJuaW5nPUZBTFNFfQpgYGAKCiMgRGF0YQoKYGBge3J9CkhDQzgyN0p1bjIzID0gcmVhZC50YWJsZSgKICBmaWxlID0gIi4vRGF0YS9vc2lSb3hhX2J1bGsvSnVuMjMvZ2VuZV9mcGttLnhscyIsCiAgc2VwID0gIlx0IiwKICBoZWFkZXIgPSBUUlVFCikKcm93bmFtZXMoSENDODI3SnVuMjMpID0gbWFrZS51bmlxdWUoSENDODI3SnVuMjNbLCJnZW5lX25hbWUiLGRyb3A9VF0pICNzZXQgZ2VuZXMgbmFtZXMKSENDODI3SnVuMjMgPSBIQ0M4MjdKdW4yM1ssMjozMV0KbmFtZXMgKEhDQzgyN0p1bjIzKSA9IGdzdWIoeCA9IG5hbWVzKEhDQzgyN0p1bjIzKSxwYXR0ZXJuID0gIm9wIixyZXBsYWNlbWVudCA9ICJvc2lQZXJzaXN0b3JzIiklPiUgZ3N1YihwYXR0ZXJuID0gImNwIixyZXBsYWNlbWVudCA9ICJfY29tYm9QZXJzaXN0b3JzIikgCkhDQzgyN0p1bjIzID0gSENDODI3SnVuMjNbLDE2Om5jb2woSENDODI3SnVuMjMpXSAjdGFrZSBvbmx5IEhDQzgyNwpgYGAKCgpgYGB7cn0KIyBjcmVhdGUgbWV0YWRhdGEKY2VsbC5sYWJlbHMgPSBuYW1lcyhIQ0M4MjdKdW4yMykKY29uZGl0aW9uID0gc3RyX2V4dHJhY3QoY2VsbC5sYWJlbHMsICJvc2lQZXJzaXN0b3JzfGNvbWJvUGVyc2lzdG9yc3xvc2l8Y3RybHxyb3hhIikKbWV0YWRhdGEgPSBkYXRhLmZyYW1lKGNvbmRpdGlvbiA9IGNvbmRpdGlvbiwgcm93Lm5hbWVzID0gY29sbmFtZXMoSENDODI3SnVuMjMpKQpgYGAKCmBgYHtyfQpsaWJyYXJ5KERFU2VxMikKZGRzIDwtIERFU2VxRGF0YVNldEZyb21NYXRyaXgoY291bnREYXRhID0gcm91bmQoSENDODI3SnVuMjMpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb2xEYXRhID0gbWV0YWRhdGEsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGRlc2lnbiA9IH5jb25kaXRpb24pCmBgYAojIFBDQQpgYGB7cn0KbnJvdyhkZHMpCmRkczEgPC0gZGRzWyByb3dTdW1zKGNvdW50cyhkZHMpKSA+PSAzLCBdCm5yb3coZGRzMSkKYGBgCgpgYGB7cn0KdnN0ID0gdnN0KGRkczEsIGJsaW5kPUZBTFNFKQpgYGAKCmBgYHtyfQpsaWJyYXJ5KCJnZ2ZvcnRpZnkiKQpQQ0FkYXRhIDwtIHByY29tcCh0KGFzc2F5KHZzdCkpKQphdXRvcGxvdChQQ0FkYXRhLCBkYXRhID0gbWV0YWRhdGEsY29sb3VyID0gImNvbmRpdGlvbiIsbGFiZWwgPSBGQUxTRSwgbWFpbj0iUENBIikgIyBTaG93IGRvdHMKCmBgYAojREVTZXEKYGBge3J9CmRkcyA8LSBERVNlcShkZHMpCmBgYAoKCgojIERFRyBGQyB7LnRhYnNldH0KYGBge3J9CmNwVlNvcCA8LSByZXN1bHRzKGRkcyxjb250cmFzdCA9IGMoImNvbmRpdGlvbiIsImNvbWJvUGVyc2lzdG9ycyIsIm9zaVBlcnNpc3RvcnMiKSkgICU+JSBhcy5kYXRhLmZyYW1lKCkKcm94YVZTY3RybCA8LSByZXN1bHRzKGRkcyxjb250cmFzdCA9IGMoImNvbmRpdGlvbiIsInJveGEiLCJjdHJsIikpICAlPiUgYXMuZGF0YS5mcmFtZSgpCmRpZmZfZ2VuZXMgPSBkYXRhLmZyYW1lKHJvdy5uYW1lcyA9IHJvd25hbWVzKGNwVlNvcCksIGNwVlNvcF9GQyA9IGNwVlNvcCRsb2cyRm9sZENoYW5nZSxyb3hhVlNjdHJsX0ZDID0gcm94YVZTY3RybCRsb2cyRm9sZENoYW5nZSwgIGNwVlNvcF9wYWRqID0gY3BWU29wJHBhZGopCmBgYAoKCmBgYHtyIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTEzLCByZXN1bHRzPSdhc2lzJ30KY3BWU29wID0gY3BWU29wW29yZGVyKGNwVlNvcCRsb2cyRm9sZENoYW5nZSwgY3BWU29wJHBhZGosZGVjcmVhc2luZyA9IFQpLF0gI29yZGVyIGJ5IEZDLCB0aWVzIGJ0IHBhZGoKcmFua2VkX3ZlYyA9IGNwVlNvcFssImxvZzJGb2xkQ2hhbmdlIl0lPiUgc2V0TmFtZXMocm93bmFtZXMoY3BWU29wKSkgJT4lIG5hLm9taXQoKSAjIG1ha2UgbmFtZWQgdmVjdG9yCgpoeXBfb2JqIDwtIGh5cGVSX2Znc2VhKHJhbmtlZF92ZWMsIGdlbmVzZXRzLCB1cF9vbmx5ID0gRikKcGx0ID0gaHlwX2RvdHMoaHlwX29iaixtZXJnZSA9IEYpCnBsdDEgPSBwbHQkdXArIGFlcyhzaXplPW5lcykrZ2d0aXRsZSgidXAgaW4gY29tYm9QZXJzaXN0b3IiKQpwbHQyID0gcGx0JGRuKyBhZXMoc2l6ZT1hYnMobmVzKSkrZ2d0aXRsZSgidXAgaW4gb3NpUGVyc2lzdG9ycyIpCnByaW50X3RhYihwbHQxK3BsdDIsdGl0bGUgPSAiY3BWU29wIikKCgpyb3hhVlNjdHJsID0gcm94YVZTY3RybFtvcmRlcihyb3hhVlNjdHJsJGxvZzJGb2xkQ2hhbmdlLCByb3hhVlNjdHJsJHBhZGosZGVjcmVhc2luZyA9IFQpLF0gI29yZGVyIGJ5IEZDLCB0aWVzIGJ0IHBhZGoKcmFua2VkX3ZlYyA9IHJveGFWU2N0cmxbLCJsb2cyRm9sZENoYW5nZSJdJT4lIHNldE5hbWVzKHJvd25hbWVzKHJveGFWU2N0cmwpKSAlPiUgbmEub21pdCgpICAjIG1ha2UgbmFtZWQgdmVjdG9yCgpoeXBfb2JqIDwtIGh5cGVSX2Znc2VhKHJhbmtlZF92ZWMsIGdlbmVzZXRzLCB1cF9vbmx5ID0gRikKcGx0ID0gaHlwX2RvdHMoaHlwX29iaixtZXJnZSA9IEYpCnBsdDEgPSBwbHQkdXArIGFlcyhzaXplPW5lcykrZ2d0aXRsZSgidXAgaW4gcm94YSIpCnBsdDIgPSBwbHQkZG4rIGFlcyhzaXplPWFicyhuZXMpKStnZ3RpdGxlKCJ1cCBpbiBjdHJsIikKcHJpbnRfdGFiKHBsdDErcGx0Mix0aXRsZSA9ICJjcFZTb3AiKQpgYGAKCgojIERFRyBzaHJpbmtlZCBGQyB7LnRhYnNldH0KYGBge3J9CmRkcyRjb25kaXRpb24gPSByZWxldmVsKGRkcyRjb25kaXRpb24sIHJlZiA9ICJvc2lQZXJzaXN0b3JzIikKZGRzIDwtIG5iaW5vbVdhbGRUZXN0KGRkcykKY3BWU29wIDwtIGxmY1NocmluayhkZHMsY29lZiA9ICJjb25kaXRpb25fY29tYm9QZXJzaXN0b3JzX3ZzX29zaVBlcnNpc3RvcnMiKSAgJT4lIGFzLmRhdGEuZnJhbWUoKQoKZGRzJGNvbmRpdGlvbiA9IHJlbGV2ZWwoZGRzJGNvbmRpdGlvbiwgcmVmID0gImN0cmwiKQpkZHMgPC0gbmJpbm9tV2FsZFRlc3QoZGRzKQpyb3hhVlNjdHJsIDwtIGxmY1NocmluayhkZHMsY29lZiAgPSAiY29uZGl0aW9uX3JveGFfdnNfY3RybCIpICAlPiUgYXMuZGF0YS5mcmFtZSgpCgoKZGlmZl9nZW5lcyA9IGRhdGEuZnJhbWUocm93Lm5hbWVzID0gcm93bmFtZXMoY3BWU29wKSwgY3BWU29wX0ZDID0gY3BWU29wJGxvZzJGb2xkQ2hhbmdlLHJveGFWU2N0cmxfRkMgPSByb3hhVlNjdHJsJGxvZzJGb2xkQ2hhbmdlLCAgY3BWU29wX3BhZGogPSBjcFZTb3AkcGFkaikKCmBgYAoKCmBgYHtyIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTEzLHJlc3VsdHM9J2FzaXMnfQpyYW5rZWRfdmVjID0gZGlmZl9nZW5lc1ssIDFdICU+JSBzZXROYW1lcyhyb3duYW1lcyhkaWZmX2dlbmVzKSkgJT4lIHNvcnQoZGVjcmVhc2luZyA9IFRSVUUpCmh5cF9vYmogPC0gaHlwZVJfZmdzZWEocmFua2VkX3ZlYywgZ2VuZXNldHMsIHVwX29ubHkgPSBGKQpwbHQgPSBoeXBfZG90cyhoeXBfb2JqLG1lcmdlID0gRikKcGx0MSA9IHBsdCR1cCsgYWVzKHNpemU9bmVzKStnZ3RpdGxlKCJ1cCBpbiBjb21ib1BlcnNpc3RvciIpICsgdGhlbWUoICBheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplPTEwKSkKcGx0MiA9IHBsdCRkbisgYWVzKHNpemU9YWJzKG5lcykpK2dndGl0bGUoInVwIGluIG9zaVBlcnNpc3RvcnMiKSArIHRoZW1lKGF4aXMudGV4dC55ID0gZWxlbWVudF90ZXh0KHNpemU9MTApKQpwcmludF90YWIocGx0MStwbHQyLHRpdGxlID0gImNwVlNvcCIpCgpyYW5rZWRfdmVjID0gZGlmZl9nZW5lc1ssIDJdICU+JSBzZXROYW1lcyhyb3duYW1lcyhkaWZmX2dlbmVzKSkgJT4lIHNvcnQoZGVjcmVhc2luZyA9IFRSVUUpCmh5cF9vYmogPC0gaHlwZVJfZmdzZWEocmFua2VkX3ZlYywgZ2VuZXNldHMsIHVwX29ubHkgPSBGKQpwbHQgPSBoeXBfZG90cyhoeXBfb2JqLG1lcmdlID0gRikKcGx0MSA9IHBsdCR1cCsgYWVzKHNpemU9bmVzKStnZ3RpdGxlKCJ1cCBpbiByb3hhIikKcGx0MiA9IHBsdCRkbisgYWVzKHNpemU9YWJzKG5lcykpK2dndGl0bGUoInVwIGluIGN0cmwiKQpwcmludF90YWIocGx0MStwbHQyLHRpdGxlID0gImNwVlNvcCIpCgpgYGAKCiMgREVHIGluIGNvbWJvVlNvc2kgYnV0IG5vdCBpbiByb3hhVlNjdHJsIHsudGFic2V0fQoKYGBge3J9CmNwVlNvcCA8LSByZXN1bHRzKGRkcyxjb250cmFzdCA9IGMoImNvbmRpdGlvbiIsImNvbWJvUGVyc2lzdG9ycyIsIm9zaVBlcnNpc3RvcnMiKSkgICU+JSBhcy5kYXRhLmZyYW1lKCkKcm94YVZTY3RybCA8LSByZXN1bHRzKGRkcyxjb250cmFzdCA9IGMoImNvbmRpdGlvbiIsInJveGEiLCJjdHJsIikpICAlPiUgYXMuZGF0YS5mcmFtZSgpCmRpZmZfZ2VuZXMgPSBkYXRhLmZyYW1lKHJvdy5uYW1lcyA9IHJvd25hbWVzKGNwVlNvcCksIGNwVlNvcF9GQyA9IDIqKmNwVlNvcCRsb2cyRm9sZENoYW5nZSxyb3hhVlNjdHJsX0ZDID0gMioqcm94YVZTY3RybCRsb2cyRm9sZENoYW5nZSwgIGNwVlNvcF9wYWRqID0gY3BWU29wJHBhZGopCmBgYAoKYGBge3IgcmVzdWx0cz0nYXNpcyd9CnVwX2dlbmVzX2RmID0gIGRpZmZfZ2VuZXMgJT4lIGZpbHRlcihjcFZTb3BfRkMgPiAyICYgcm94YVZTY3RybF9GQzwxLjIgJiBjcFZTb3BfcGFkajwwLjA1KSAKZG93bl9nZW5lc19kZiA9IGRpZmZfZ2VuZXMgJT4lIGZpbHRlcihjcFZTb3BfRkMgPCAwLjUgJiByb3hhVlNjdHJsX0ZDPjAuOCAmIGNwVlNvcF9wYWRqPDAuMDUpCnVwX2dlbmVzID0gZGlmZl9nZW5lcyAlPiUgZmlsdGVyKGNwVlNvcF9GQyA+IDIgJiByb3hhVlNjdHJsX0ZDPDEuMiAmIGNwVlNvcF9wYWRqPDAuMDUpICU+JSByb3duYW1lcygpCmRvd25fZ2VuZXMgPSBkaWZmX2dlbmVzICU+JSBmaWx0ZXIoY3BWU29wX0ZDIDwgMC41ICYgcm94YVZTY3RybF9GQz4wLjggJiBjcFZTb3BfcGFkajwwLjEpJT4lIHJvd25hbWVzKCkKCnByaW50X3RhYih1cF9nZW5lc19kZix0aXRsZSA9ICJ1cCIpCnByaW50X3RhYihkb3duX2dlbmVzX2RmLHRpdGxlID0gImRvd24iKQoKCmBgYAojIHstfQoKYGBge3IgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9MTMscmVzdWx0cz0nYXNpcyd9Cmh5cF9vYmogPC0gaHlwZVIodXBfZ2VuZXMsIGdlbmVzZXRzLCB0ZXN0ID0gImh5cGVyZ2VvbWV0cmljIiwgZmRyPTEsIHBsb3R0aW5nPUYsYmFja2dyb3VuZCA9IHJvd25hbWVzKEgxOTc1T2N0MjMpKQpwbHQxID0gaHlwX2RvdHMoaHlwX29iaix0aXRsZSA9ICJ1cCBpbiBjb21ib1ZTb3NpIGJ1dCBub3QgaW4gcm94YVZTY3RybCIpCiAKCmh5cF9vYmogPC0gaHlwZVIoZG93bl9nZW5lcywgZ2VuZXNldHMsIHRlc3QgPSAiaHlwZXJnZW9tZXRyaWMiLCBmZHI9MSwgcGxvdHRpbmc9RixiYWNrZ3JvdW5kID0gcm93bmFtZXMoSDE5NzVPY3QyMykpCnBsdDIgPSBoeXBfZG90cyhoeXBfb2JqLHRpdGxlID0gImRvd24gaW4gY29tYm9WU29zaSBidXQgbm90IGluIHJveGFWU2N0cmwiKQoKcGx0MSArIHBsdDIKYGBgCmBgYHtyIHJlc3VsdHM9J2FzaXMnfQpwcmludF90YWIoZGF0YS5mcmFtZSh1cF9nZW5lc1t1cF9nZW5lcyAlaW4lIGdlbmVzZXRzJEhBTExNQVJLX0dMWUNPTFlTSVNdKSx0aXRsZSA9ICJ1cCBnZW5lcyBpbiBHTFlDT0xZU0lTIikKYGBgCjxzY3JpcHQgc3JjPSJodHRwczovL2h5cG90aGVzLmlzL2VtYmVkLmpzIiBhc3luYz48L3NjcmlwdD4KCg==