1 Functions

2 Data

genesets <- msigdb_download("Homo sapiens",category="H") %>% append( msigdb_download("Homo sapiens",category="C2",subcategory = "CP:KEGG_MEDICUS"))
Error in h(simpleError(msg, call)) : 
  error in evaluating the argument 'values' in selecting a method for function 'append': unknown subcategory
cell.labels = names(H1975Oct23)
condition = str_extract(cell.labels, "osiPersistors|comboPersistors|osi|ctrl|roxa")
metadata = data.frame(condition = condition, row.names = colnames(H1975Oct23))
library(DESeq2)
dds <- DESeqDataSetFromMatrix(countData = round(H1975Oct23),
                              colData = metadata,
                              design = ~condition)

3 PCA

nrow(dds)
dds1 <- dds[ rowSums(counts(dds)) >= 3, ]
nrow(dds1)
vst = vst(dds1, blind=FALSE)
library("ggfortify")
PCAdata <- prcomp(t(assay(vst)))
autoplot(PCAdata, data = metadata,colour = "condition",label = FALSE, main="PCA") # Show dots

4 DESeq

dds <- DESeq(dds)

5 DEG FC

cpVSop <- results(dds,contrast = c("condition","comboPersistors","osiPersistors"))  %>% as.data.frame()
roxaVSctrl <- results(dds,contrast = c("condition","roxa","ctrl"))  %>% as.data.frame()
diff_genes = data.frame(row.names = rownames(cpVSop), cpVSop_FC = cpVSop$log2FoldChange,roxaVSctrl_FC = roxaVSctrl$log2FoldChange,  cpVSop_padj = cpVSop$padj)
cpVSop = cpVSop[order(cpVSop$log2FoldChange, cpVSop$padj,decreasing = T),] #order by FC, ties bt padj
ranked_vec = cpVSop[,"log2FoldChange"]%>% setNames(rownames(cpVSop)) %>% na.omit() # make named vector

hyp_obj <- hypeR_fgsea(ranked_vec, genesets, up_only = F)

Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize, gseaParam, : There are ties in the preranked stats (10.89% of the list). The order of those tied genes will be arbitrary, which may produce unexpected results.

plt = hyp_dots(hyp_obj,merge = F)
plt1 = plt$up+ aes(size=nes)+ggtitle("up in comboPersistor")
plt2 = plt$dn+ aes(size=abs(nes))+ggtitle("up in osiPersistors")
print_tab(plt1+plt2,title = "cpVSop")

cpVSop

roxaVSctrl = roxaVSctrl[order(roxaVSctrl$log2FoldChange, roxaVSctrl$padj,decreasing = T),] #order by FC, ties bt padj
ranked_vec = roxaVSctrl[,"log2FoldChange"]%>% setNames(rownames(roxaVSctrl)) %>% na.omit()  # make named vector

hyp_obj <- hypeR_fgsea(ranked_vec, genesets, up_only = F)

Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize, gseaParam, : There are ties in the preranked stats (19.69% of the list). The order of those tied genes will be arbitrary, which may produce unexpected results.

plt = hyp_dots(hyp_obj,merge = F)
plt1 = plt$up+ aes(size=nes)+ggtitle("up in roxa")
plt2 = plt$dn+ aes(size=abs(nes))+ggtitle("up in ctrl")
print_tab(plt1+plt2,title = "cpVSop")

cpVSop

NA

6 DEG shrinked FC

dds$condition = relevel(dds$condition, ref = "osiPersistors")
dds <- nbinomWaldTest(dds)
cpVSop <- lfcShrink(dds,coef = "condition_comboPersistors_vs_osiPersistors")  %>% as.data.frame()

dds$condition = relevel(dds$condition, ref = "ctrl")
dds <- nbinomWaldTest(dds)
roxaVSctrl <- lfcShrink(dds,coef  = "condition_roxa_vs_ctrl")  %>% as.data.frame()


diff_genes = data.frame(row.names = rownames(cpVSop), cpVSop_FC = cpVSop$log2FoldChange,roxaVSctrl_FC = roxaVSctrl$log2FoldChange,  cpVSop_padj = cpVSop$padj)
ranked_vec = diff_genes[, 1] %>% setNames(rownames(diff_genes)) %>% sort(decreasing = TRUE)
hyp_obj <- hypeR_fgsea(ranked_vec, genesets, up_only = F)

Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize, gseaParam, : There are ties in the preranked stats (16.5% of the list). The order of those tied genes will be arbitrary, which may produce unexpected results.

plt = hyp_dots(hyp_obj,merge = F)
plt1 = plt$up+ aes(size=nes)+ggtitle("up in comboPersistor") + theme(  axis.text.y = element_text(size=10))
plt2 = plt$dn+ aes(size=abs(nes))+ggtitle("up in osiPersistors") + theme(axis.text.y = element_text(size=10))
print_tab(plt1+plt2,title = "cpVSop")

cpVSop

ranked_vec = diff_genes[, 2] %>% setNames(rownames(diff_genes)) %>% sort(decreasing = TRUE)
hyp_obj <- hypeR_fgsea(ranked_vec, genesets, up_only = F)

Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize, gseaParam, : There are ties in the preranked stats (16.41% of the list). The order of those tied genes will be arbitrary, which may produce unexpected results.

plt = hyp_dots(hyp_obj,merge = F)
plt1 = plt$up+ aes(size=nes)+ggtitle("up in roxa")
plt2 = plt$dn+ aes(size=abs(nes))+ggtitle("up in ctrl")
print_tab(plt1+plt2,title = "cpVSop")

cpVSop

NA

7 DEG in comboVSosi but not in roxaVSctrl

cpVSop <- results(dds,contrast = c("condition","comboPersistors","osiPersistors"))  %>% as.data.frame()
roxaVSctrl <- results(dds,contrast = c("condition","roxa","ctrl"))  %>% as.data.frame()
diff_genes = data.frame(row.names = rownames(cpVSop), cpVSop_FC = 2**cpVSop$log2FoldChange,roxaVSctrl_FC = 2**roxaVSctrl$log2FoldChange,  cpVSop_padj = cpVSop$padj)
up_genes_df =  diff_genes %>% filter(cpVSop_FC > 2 & roxaVSctrl_FC<1.2 & cpVSop_padj<0.05) 
down_genes_df = diff_genes %>% filter(cpVSop_FC < 0.5 & roxaVSctrl_FC>0.8 & cpVSop_padj<0.05)
up_genes = diff_genes %>% filter(cpVSop_FC > 2 & roxaVSctrl_FC<1.2 & cpVSop_padj<0.05) %>% rownames()
down_genes = diff_genes %>% filter(cpVSop_FC < 0.5 & roxaVSctrl_FC>0.8 & cpVSop_padj<0.1)%>% rownames()

print_tab(up_genes_df,title = "up")

up

print_tab(down_genes_df,title = "down")

down

NA

hyp_obj <- hypeR(up_genes, genesets, test = "hypergeometric", fdr=1, plotting=F,background = rownames(H1975Oct23))
plt1 = hyp_dots(hyp_obj,title = "up in comboVSosi but not in roxaVSctrl")
 

hyp_obj <- hypeR(down_genes, genesets, test = "hypergeometric", fdr=1, plotting=F,background = rownames(H1975Oct23))
plt2 = hyp_dots(hyp_obj,title = "down in comboVSosi but not in roxaVSctrl")

plt1 + plt2

print_tab(data.frame(up_genes[up_genes %in% genesets$HALLMARK_E2F_TARGETS]),title = "up genes in E2F")

up genes in E2F

print_tab(data.frame(up_genes[up_genes %in% genesets$HALLMARK_HYPOXIA]),title = "up genes in Hypoxia")

up genes in Hypoxia

NA

LS0tCnRpdGxlOiAnYHIgcnN0dWRpb2FwaTo6Z2V0U291cmNlRWRpdG9yQ29udGV4dCgpJHBhdGggJT4lIGJhc2VuYW1lKCkgJT4lIGdzdWIocGF0dGVybiA9ICJcXC5SbWQiLHJlcGxhY2VtZW50ID0gIiIpYCcgCmF1dGhvcjogIkF2aXNoYWkgV2l6ZWwiCmRhdGU6ICdgciBTeXMudGltZSgpYCcKb3V0cHV0OiAKICBodG1sX25vdGVib29rOiAKICAgIGNvZGVfZm9sZGluZzogaGlkZQogICAgdG9jOiB5ZXMKICAgIHRvY19jb2xsYXBzZTogeWVzCiAgICB0b2NfZmxvYXQ6IAogICAgICBjb2xsYXBzZWQ6IEZBTFNFCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIHRvY19kZXB0aDogMQotLS0KCjxzdHlsZSB0eXBlPSJ0ZXh0L2NzcyI+Ci5tYWluLWNvbnRhaW5lciB7CiAgbWF4LXdpZHRoOiA4NSUgIWltcG9ydGFudDsKICBtYXJnaW46IGF1dG87Cn0KPC9zdHlsZT4KCiMgRnVuY3Rpb25zCgpgYGB7ciB3YXJuaW5nPUZBTFNFfQpgYGAKCiMgRGF0YQoKYGBge3J9CmdlbmVzZXRzIDwtIG1zaWdkYl9kb3dubG9hZCgiSG9tbyBzYXBpZW5zIixjYXRlZ29yeT0iSCIpICU+JSBhcHBlbmQoIG1zaWdkYl9kb3dubG9hZCgiSG9tbyBzYXBpZW5zIixjYXRlZ29yeT0iQzIiLHN1YmNhdGVnb3J5ID0gIkNQOktFR0ciKSkKCkgxOTc1T2N0MjMgPSByZWFkLnRhYmxlKAogIGZpbGUgPSAiLi9EYXRhL29zaVJveGFfYnVsay9PY3QyMy9nZW5lX2Zwa20ueGxzIiwKICBzZXAgPSAiXHQiLAogIGhlYWRlciA9IFRSVUUKKQpyb3duYW1lcyhIMTk3NU9jdDIzKSA9IG1ha2UudW5pcXVlKEgxOTc1T2N0MjNbLCJnZW5lX25hbWUiLGRyb3A9VF0pCkgxOTc1T2N0MjMgPSBIMTk3NU9jdDIzWywyOjE2XQpuYW1lcyAoSDE5NzVPY3QyMykgPSBnc3ViKHggPSBuYW1lcyhIMTk3NU9jdDIzKSxwYXR0ZXJuID0gIl9DIixyZXBsYWNlbWVudCA9ICJfY3RybCIpJT4lIGdzdWIocGF0dGVybiA9ICJwX09SIixyZXBsYWNlbWVudCA9ICJfY29tYm9QZXJzaXN0b3JzIikgJT4lIGdzdWIocGF0dGVybiA9ICJwX08iLHJlcGxhY2VtZW50ID0gIl9vc2lQZXJzaXN0b3JzIikgJT4lIGdzdWIocGF0dGVybiA9ICJfUiIscmVwbGFjZW1lbnQgPSAiX3JveGEiKSU+JSBnc3ViKCxwYXR0ZXJuID0gIl9PIixyZXBsYWNlbWVudCA9ICJfb3NpIikKCmBgYAoKYGBge3J9CmNlbGwubGFiZWxzID0gbmFtZXMoSDE5NzVPY3QyMykKY29uZGl0aW9uID0gc3RyX2V4dHJhY3QoY2VsbC5sYWJlbHMsICJvc2lQZXJzaXN0b3JzfGNvbWJvUGVyc2lzdG9yc3xvc2l8Y3RybHxyb3hhIikKbWV0YWRhdGEgPSBkYXRhLmZyYW1lKGNvbmRpdGlvbiA9IGNvbmRpdGlvbiwgcm93Lm5hbWVzID0gY29sbmFtZXMoSDE5NzVPY3QyMykpCmBgYAoKYGBge3J9CmxpYnJhcnkoREVTZXEyKQpkZHMgPC0gREVTZXFEYXRhU2V0RnJvbU1hdHJpeChjb3VudERhdGEgPSByb3VuZChIMTk3NU9jdDIzKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29sRGF0YSA9IG1ldGFkYXRhLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkZXNpZ24gPSB+Y29uZGl0aW9uKQpgYGAKCgojIFBDQQpgYGB7cn0KbnJvdyhkZHMpCmRkczEgPC0gZGRzWyByb3dTdW1zKGNvdW50cyhkZHMpKSA+PSAzLCBdCm5yb3coZGRzMSkKYGBgCgpgYGB7cn0KdnN0ID0gdnN0KGRkczEsIGJsaW5kPUZBTFNFKQpgYGAKCmBgYHtyfQpsaWJyYXJ5KCJnZ2ZvcnRpZnkiKQpQQ0FkYXRhIDwtIHByY29tcCh0KGFzc2F5KHZzdCkpKQphdXRvcGxvdChQQ0FkYXRhLCBkYXRhID0gbWV0YWRhdGEsY29sb3VyID0gImNvbmRpdGlvbiIsbGFiZWwgPSBGQUxTRSwgbWFpbj0iUENBIikgIyBTaG93IGRvdHMKCmBgYAojIERFU2VxCmBgYHtyfQpkZHMgPC0gREVTZXEoZGRzKQpgYGAKCiMgREVHIEZDIHsudGFic2V0fQpgYGB7cn0KY3BWU29wIDwtIHJlc3VsdHMoZGRzLGNvbnRyYXN0ID0gYygiY29uZGl0aW9uIiwiY29tYm9QZXJzaXN0b3JzIiwib3NpUGVyc2lzdG9ycyIpKSAgJT4lIGFzLmRhdGEuZnJhbWUoKQpyb3hhVlNjdHJsIDwtIHJlc3VsdHMoZGRzLGNvbnRyYXN0ID0gYygiY29uZGl0aW9uIiwicm94YSIsImN0cmwiKSkgICU+JSBhcy5kYXRhLmZyYW1lKCkKZGlmZl9nZW5lcyA9IGRhdGEuZnJhbWUocm93Lm5hbWVzID0gcm93bmFtZXMoY3BWU29wKSwgY3BWU29wX0ZDID0gY3BWU29wJGxvZzJGb2xkQ2hhbmdlLHJveGFWU2N0cmxfRkMgPSByb3hhVlNjdHJsJGxvZzJGb2xkQ2hhbmdlLCAgY3BWU29wX3BhZGogPSBjcFZTb3AkcGFkaikKYGBgCgoKYGBge3IgZmlnLmhlaWdodD02LCBmaWcud2lkdGg9MTMsIHJlc3VsdHM9J2FzaXMnfQpjcFZTb3AgPSBjcFZTb3Bbb3JkZXIoY3BWU29wJGxvZzJGb2xkQ2hhbmdlLCBjcFZTb3AkcGFkaixkZWNyZWFzaW5nID0gVCksXSAjb3JkZXIgYnkgRkMsIHRpZXMgYnQgcGFkagpyYW5rZWRfdmVjID0gY3BWU29wWywibG9nMkZvbGRDaGFuZ2UiXSU+JSBzZXROYW1lcyhyb3duYW1lcyhjcFZTb3ApKSAlPiUgbmEub21pdCgpICMgbWFrZSBuYW1lZCB2ZWN0b3IKCmh5cF9vYmogPC0gaHlwZVJfZmdzZWEocmFua2VkX3ZlYywgZ2VuZXNldHMsIHVwX29ubHkgPSBGKQpwbHQgPSBoeXBfZG90cyhoeXBfb2JqLG1lcmdlID0gRikKcGx0MSA9IHBsdCR1cCsgYWVzKHNpemU9bmVzKStnZ3RpdGxlKCJ1cCBpbiBjb21ib1BlcnNpc3RvciIpCnBsdDIgPSBwbHQkZG4rIGFlcyhzaXplPWFicyhuZXMpKStnZ3RpdGxlKCJ1cCBpbiBvc2lQZXJzaXN0b3JzIikKcHJpbnRfdGFiKHBsdDErcGx0Mix0aXRsZSA9ICJjcFZTb3AiKQoKCnJveGFWU2N0cmwgPSByb3hhVlNjdHJsW29yZGVyKHJveGFWU2N0cmwkbG9nMkZvbGRDaGFuZ2UsIHJveGFWU2N0cmwkcGFkaixkZWNyZWFzaW5nID0gVCksXSAjb3JkZXIgYnkgRkMsIHRpZXMgYnQgcGFkagpyYW5rZWRfdmVjID0gcm94YVZTY3RybFssImxvZzJGb2xkQ2hhbmdlIl0lPiUgc2V0TmFtZXMocm93bmFtZXMocm94YVZTY3RybCkpICU+JSBuYS5vbWl0KCkgICMgbWFrZSBuYW1lZCB2ZWN0b3IKCmh5cF9vYmogPC0gaHlwZVJfZmdzZWEocmFua2VkX3ZlYywgZ2VuZXNldHMsIHVwX29ubHkgPSBGKQpwbHQgPSBoeXBfZG90cyhoeXBfb2JqLG1lcmdlID0gRikKcGx0MSA9IHBsdCR1cCsgYWVzKHNpemU9bmVzKStnZ3RpdGxlKCJ1cCBpbiByb3hhIikKcGx0MiA9IHBsdCRkbisgYWVzKHNpemU9YWJzKG5lcykpK2dndGl0bGUoInVwIGluIGN0cmwiKQpwcmludF90YWIocGx0MStwbHQyLHRpdGxlID0gImNwVlNvcCIpCmBgYAoKIyBERUcgc2hyaW5rZWQgRkMgey50YWJzZXR9CmBgYHtyfQpkZHMkY29uZGl0aW9uID0gcmVsZXZlbChkZHMkY29uZGl0aW9uLCByZWYgPSAib3NpUGVyc2lzdG9ycyIpCmRkcyA8LSBuYmlub21XYWxkVGVzdChkZHMpCmNwVlNvcCA8LSBsZmNTaHJpbmsoZGRzLGNvZWYgPSAiY29uZGl0aW9uX2NvbWJvUGVyc2lzdG9yc192c19vc2lQZXJzaXN0b3JzIikgICU+JSBhcy5kYXRhLmZyYW1lKCkKCmRkcyRjb25kaXRpb24gPSByZWxldmVsKGRkcyRjb25kaXRpb24sIHJlZiA9ICJjdHJsIikKZGRzIDwtIG5iaW5vbVdhbGRUZXN0KGRkcykKcm94YVZTY3RybCA8LSBsZmNTaHJpbmsoZGRzLGNvZWYgID0gImNvbmRpdGlvbl9yb3hhX3ZzX2N0cmwiKSAgJT4lIGFzLmRhdGEuZnJhbWUoKQoKCmRpZmZfZ2VuZXMgPSBkYXRhLmZyYW1lKHJvdy5uYW1lcyA9IHJvd25hbWVzKGNwVlNvcCksIGNwVlNvcF9GQyA9IGNwVlNvcCRsb2cyRm9sZENoYW5nZSxyb3hhVlNjdHJsX0ZDID0gcm94YVZTY3RybCRsb2cyRm9sZENoYW5nZSwgIGNwVlNvcF9wYWRqID0gY3BWU29wJHBhZGopCgpgYGAKCgpgYGB7ciBmaWcuaGVpZ2h0PTYsIGZpZy53aWR0aD0xMyxyZXN1bHRzPSdhc2lzJ30KcmFua2VkX3ZlYyA9IGRpZmZfZ2VuZXNbLCAxXSAlPiUgc2V0TmFtZXMocm93bmFtZXMoZGlmZl9nZW5lcykpICU+JSBzb3J0KGRlY3JlYXNpbmcgPSBUUlVFKQpoeXBfb2JqIDwtIGh5cGVSX2Znc2VhKHJhbmtlZF92ZWMsIGdlbmVzZXRzLCB1cF9vbmx5ID0gRikKcGx0ID0gaHlwX2RvdHMoaHlwX29iaixtZXJnZSA9IEYpCnBsdDEgPSBwbHQkdXArIGFlcyhzaXplPW5lcykrZ2d0aXRsZSgidXAgaW4gY29tYm9QZXJzaXN0b3IiKSArIHRoZW1lKCAgYXhpcy50ZXh0LnkgPSBlbGVtZW50X3RleHQoc2l6ZT0xMCkpCnBsdDIgPSBwbHQkZG4rIGFlcyhzaXplPWFicyhuZXMpKStnZ3RpdGxlKCJ1cCBpbiBvc2lQZXJzaXN0b3JzIikgKyB0aGVtZShheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplPTEwKSkKcHJpbnRfdGFiKHBsdDErcGx0Mix0aXRsZSA9ICJjcFZTb3AiKQoKcmFua2VkX3ZlYyA9IGRpZmZfZ2VuZXNbLCAyXSAlPiUgc2V0TmFtZXMocm93bmFtZXMoZGlmZl9nZW5lcykpICU+JSBzb3J0KGRlY3JlYXNpbmcgPSBUUlVFKQpoeXBfb2JqIDwtIGh5cGVSX2Znc2VhKHJhbmtlZF92ZWMsIGdlbmVzZXRzLCB1cF9vbmx5ID0gRikKcGx0ID0gaHlwX2RvdHMoaHlwX29iaixtZXJnZSA9IEYpCnBsdDEgPSBwbHQkdXArIGFlcyhzaXplPW5lcykrZ2d0aXRsZSgidXAgaW4gcm94YSIpCnBsdDIgPSBwbHQkZG4rIGFlcyhzaXplPWFicyhuZXMpKStnZ3RpdGxlKCJ1cCBpbiBjdHJsIikKcHJpbnRfdGFiKHBsdDErcGx0Mix0aXRsZSA9ICJjcFZTb3AiKQoKYGBgCiMgREVHIGluIGNvbWJvVlNvc2kgYnV0IG5vdCBpbiByb3hhVlNjdHJsIHsudGFic2V0fQoKYGBge3IgcmVzdWx0cz0nYXNpcyd9CmNwVlNvcCA8LSByZXN1bHRzKGRkcyxjb250cmFzdCA9IGMoImNvbmRpdGlvbiIsImNvbWJvUGVyc2lzdG9ycyIsIm9zaVBlcnNpc3RvcnMiKSkgICU+JSBhcy5kYXRhLmZyYW1lKCkKcm94YVZTY3RybCA8LSByZXN1bHRzKGRkcyxjb250cmFzdCA9IGMoImNvbmRpdGlvbiIsInJveGEiLCJjdHJsIikpICAlPiUgYXMuZGF0YS5mcmFtZSgpCmRpZmZfZ2VuZXMgPSBkYXRhLmZyYW1lKHJvdy5uYW1lcyA9IHJvd25hbWVzKGNwVlNvcCksIGNwVlNvcF9GQyA9IDIqKmNwVlNvcCRsb2cyRm9sZENoYW5nZSxyb3hhVlNjdHJsX0ZDID0gMioqcm94YVZTY3RybCRsb2cyRm9sZENoYW5nZSwgIGNwVlNvcF9wYWRqID0gY3BWU29wJHBhZGopCnVwX2dlbmVzX2RmID0gIGRpZmZfZ2VuZXMgJT4lIGZpbHRlcihjcFZTb3BfRkMgPiAyICYgcm94YVZTY3RybF9GQzwxLjIgJiBjcFZTb3BfcGFkajwwLjA1KSAKZG93bl9nZW5lc19kZiA9IGRpZmZfZ2VuZXMgJT4lIGZpbHRlcihjcFZTb3BfRkMgPCAwLjUgJiByb3hhVlNjdHJsX0ZDPjAuOCAmIGNwVlNvcF9wYWRqPDAuMDUpCnVwX2dlbmVzID0gZGlmZl9nZW5lcyAlPiUgZmlsdGVyKGNwVlNvcF9GQyA+IDIgJiByb3hhVlNjdHJsX0ZDPDEuMiAmIGNwVlNvcF9wYWRqPDAuMDUpICU+JSByb3duYW1lcygpCmRvd25fZ2VuZXMgPSBkaWZmX2dlbmVzICU+JSBmaWx0ZXIoY3BWU29wX0ZDIDwgMC41ICYgcm94YVZTY3RybF9GQz4wLjggJiBjcFZTb3BfcGFkajwwLjEpJT4lIHJvd25hbWVzKCkKCnByaW50X3RhYih1cF9nZW5lc19kZix0aXRsZSA9ICJ1cCIpCnByaW50X3RhYihkb3duX2dlbmVzX2RmLHRpdGxlID0gImRvd24iKQpgYGAKIyB7LX0KCmBgYHtyIGZpZy5oZWlnaHQ9NiwgZmlnLndpZHRoPTEzLHJlc3VsdHM9J2FzaXMnfQpoeXBfb2JqIDwtIGh5cGVSKHVwX2dlbmVzLCBnZW5lc2V0cywgdGVzdCA9ICJoeXBlcmdlb21ldHJpYyIsIGZkcj0xLCBwbG90dGluZz1GLGJhY2tncm91bmQgPSByb3duYW1lcyhIMTk3NU9jdDIzKSkKcGx0MSA9IGh5cF9kb3RzKGh5cF9vYmosdGl0bGUgPSAidXAgaW4gY29tYm9WU29zaSBidXQgbm90IGluIHJveGFWU2N0cmwiKQogCgpoeXBfb2JqIDwtIGh5cGVSKGRvd25fZ2VuZXMsIGdlbmVzZXRzLCB0ZXN0ID0gImh5cGVyZ2VvbWV0cmljIiwgZmRyPTEsIHBsb3R0aW5nPUYsYmFja2dyb3VuZCA9IHJvd25hbWVzKEgxOTc1T2N0MjMpKQpwbHQyID0gaHlwX2RvdHMoaHlwX29iaix0aXRsZSA9ICJkb3duIGluIGNvbWJvVlNvc2kgYnV0IG5vdCBpbiByb3hhVlNjdHJsIikKCnBsdDEgKyBwbHQyCmBgYApgYGB7ciByZXN1bHRzPSdhc2lzJ30KcHJpbnRfdGFiKGRhdGEuZnJhbWUodXBfZ2VuZXNbdXBfZ2VuZXMgJWluJSBnZW5lc2V0cyRIQUxMTUFSS19FMkZfVEFSR0VUU10pLHRpdGxlID0gInVwIGdlbmVzIGluIEUyRiIpCnByaW50X3RhYihkYXRhLmZyYW1lKHVwX2dlbmVzW3VwX2dlbmVzICVpbiUgZ2VuZXNldHMkSEFMTE1BUktfSFlQT1hJQV0pLHRpdGxlID0gInVwIGdlbmVzIGluIEh5cG94aWEiKQoKCmBgYAoKPHNjcmlwdCBzcmM9Imh0dHBzOi8vaHlwb3RoZXMuaXMvZW1iZWQuanMiIGFzeW5jPjwvc2NyaXB0PgoK