Nested (hierarchical) factors


Example:


Linear model

\[ Y_{ijk} = \mu + \alpha_i + \beta_{j(i)} + \epsilon_{k(ij)} \]


ANOVA table

SoV df SS MS EMS (Fixed) EMS (Random)
A \(a-1\) SSA MSA \(\sigma_{\epsilon}^2 + br\sum_{i=1}^a \frac{\alpha_i^2}{a-1}\) \(\sigma_{\epsilon}^2 + r\sigma_{\beta(\alpha)}^2 + br\sigma_{\alpha}^2\)
B(A) \(a(b-1)\) SSB(A) MSB(A) \(\sigma_{\epsilon}^2 +r \sum_{j=1}^b \frac{\beta_j^2}{b-1}\) \(\sigma_{\epsilon}^2 + r\sigma_{\beta(\alpha)}^2\)
Error \(ab(r-1)\) SSE MSE \(\sigma_{\epsilon}^2\) \(\sigma_{\epsilon}^2\)
TOTAL \(n - 1\) SST


Sums of squares: Computing formulas

\[\begin{align} SST &= \sum_{i=1}^a \sum_{j=1}^b \sum_{k=1}^r Y_{ijk}^2 - \frac{Y_{...}^2}{n}, n = abr \notag \\ SSA &= \frac{1}{br} \sum_{i=1}^a Y_{i..}^2 - \frac{Y_{...}^2}{n} \notag \\ SSB(A) &= \frac{1}{r} \sum_{i=1}^a \sum_{j=1}^b Y_{ij.}^2 - \frac{Y_{...}^2}{n} - SSA \notag \\ SSE &= SST - SSA - SSB(A) \end{align}\]


Test of hypothesis (Fixed Model)

Effect of A

Effect of B


Test of hypothesis (Random Model)

Effect of A

Effect of B


An example

A study was conducted to assess the diversity of an orchid species in forest reserves located in three municipalities in Leyte. In each municipality, four (4) sites were randomly identified and three (3) 10m x 10m quadrats were laid out in each selected site. Diversity is recorded per quadrat. The data is shown below.


Nested factors: an example

#Import/Load the data
biod <- read.csv("biodiversity.csv")

#Converts integer codes into nominal (factor) codes
biod$mun <- as.factor(biod$Mun)
biod$site <- as.factor(biod$Site)

#Runs nested ANOVA and store the results in m1
m1 <- aov(Diversity ~ mun/site, data= biod)

#Displays the ANOVA table
knitr::kable(anova(m1))
Df Sum Sq Mean Sq F value Pr(>F)
mun 2 4.50 2.25 0.500000 0.6127098
mun:site 9 128.25 14.25 3.166667 0.0115577
Residuals 24 108.00 4.50 NA NA


Post hoc analysis: sites within municipality(ies)

emmeans::emmeans(m1, pairwise ~ site | mun, adjust = "bonferroni")
## $emmeans
## mun = 1:
##  site emmean   SE df lower.CL upper.CL
##  1        11 1.22 24     8.47    13.53
##  2        10 1.22 24     7.47    12.53
##  3        10 1.22 24     7.47    12.53
##  4        12 1.22 24     9.47    14.53
## 
## mun = 2:
##  site emmean   SE df lower.CL upper.CL
##  1        11 1.22 24     8.47    13.53
##  2        11 1.22 24     8.47    13.53
##  3         9 1.22 24     6.47    11.53
##  4         9 1.22 24     6.47    11.53
## 
## mun = 3:
##  site emmean   SE df lower.CL upper.CL
##  1        13 1.22 24    10.47    15.53
##  2        13 1.22 24    10.47    15.53
##  3         7 1.22 24     4.47     9.53
##  4         7 1.22 24     4.47     9.53
## 
## Confidence level used: 0.95 
## 
## $contrasts
## mun = 1:
##  contrast      estimate   SE df t.ratio p.value
##  site1 - site2        1 1.73 24   0.577  1.0000
##  site1 - site3        1 1.73 24   0.577  1.0000
##  site1 - site4       -1 1.73 24  -0.577  1.0000
##  site2 - site3        0 1.73 24   0.000  1.0000
##  site2 - site4       -2 1.73 24  -1.155  1.0000
##  site3 - site4       -2 1.73 24  -1.155  1.0000
## 
## mun = 2:
##  contrast      estimate   SE df t.ratio p.value
##  site1 - site2        0 1.73 24   0.000  1.0000
##  site1 - site3        2 1.73 24   1.155  1.0000
##  site1 - site4        2 1.73 24   1.155  1.0000
##  site2 - site3        2 1.73 24   1.155  1.0000
##  site2 - site4        2 1.73 24   1.155  1.0000
##  site3 - site4        0 1.73 24   0.000  1.0000
## 
## mun = 3:
##  contrast      estimate   SE df t.ratio p.value
##  site1 - site2        0 1.73 24   0.000  1.0000
##  site1 - site3        6 1.73 24   3.464  0.0121
##  site1 - site4        6 1.73 24   3.464  0.0121
##  site2 - site3        6 1.73 24   3.464  0.0121
##  site2 - site4        6 1.73 24   3.464  0.0121
##  site3 - site4        0 1.73 24   0.000  1.0000
## 
## P value adjustment: bonferroni method for 6 tests


Summary table of means with letter designations

Municipality Site Mean
1 1 11
2 10
3 10
4 12
2 1 11
2 11
3 9
4 9
3 1 \(13^a\)
2 \(13^a\)
3 \(7^b\)
4 \(7^b\)