*** Correlation is a statistical relationship between two variables. Correlations are useful because they can indicate a predictive relationship that can be exploited in practice. Generally it can have three results of its absolute result. 0-0.3 is weak correlated, 0.3-0.7 is intermediate correlated and above 0.7 is strong correlated. The sign decides if two variables are positive or negative correlated. https://en.wikipedia.org/wiki/Correlation ***

*** Covariance is a measure of relationship between two variables. It evaluates how much two variable change each other. The sign indicates the positive or negative relationship. Positive means two variables are moving in same direction and negative means different direction***

*** https://corporatefinanceinstitute.com/resources/data-science/covariance/ ***

df1 <- read.csv('lebron_playoffs.csv')
df2 <- read.csv('jordan_playoffs.csv')

df3 <- rbind(df1, df2)

head(df3)
##   game       date series series_game team opp  result mp fg fga   fgp three
## 1    1 2006-04-22    EC1           1  CLE WAS W (+11) 48 12  27 0.444     1
## 2    2 2006-04-25    EC1           2  CLE WAS  L (-5) 43  7  25 0.280     1
## 3    3 2006-04-28    EC1           3  CLE WAS  W (+1) 48 16  28 0.571     3
## 4    4 2006-04-30    EC1           4  CLE WAS L (-10) 45 13  23 0.565     7
## 5    5 2006-05-03    EC1           5  CLE WAS  W (+1) 46 14  23 0.609     0
## 6    6 2006-05-05    EC1           6  CLE WAS  W (+1) 53 15  25 0.600     1
##   threeatt threep ft fta   ftp orb drb trb ast stl blk tov pts game_score
## 1        4  0.250  7  11 0.636   3   8  11  11   0   0   4  32       23.3
## 2        6  0.167 11  15 0.733   2   7   9   2   2   3  10  26        6.7
## 3        5  0.600  6   9 0.667   1   4   5   3   2   0   4  41       27.4
## 4       12  0.583  5   7 0.714   1   5   6   5   0   0   7  38       23.0
## 5        1  0.000 17  18 0.944   5   2   7   6   2   0   4  45       38.4
## 6        6  0.167  1   3 0.333   0   7   7   7   2   1   5  32       22.8
##   plus_minus
## 1         11
## 2         -2
## 3          1
## 4        -16
## 5         -4
## 6          1

*** To briefly explain the dataset I am interested in relation of goat players’ result(y) with independent variables(rest) ***

library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
stargazer(df3, type = "text")
## 
## ================================================================
## Statistic    N   Mean  St. Dev.   Min   Pctl(25) Pctl(75)  Max  
## ----------------------------------------------------------------
## game        439 9.706   5.841      1       5        14      23  
## series_game 439 3.187   1.660      1       2        4       7   
## mp          439 41.670  4.363     24      39.5      44      57  
## fg          439 11.068  3.690      2       9        13      24  
## fga         439 22.517  5.977      8       18       26      45  
## fgp         439 0.492   0.108    0.111   0.423    0.560   0.846 
## three       439 1.280   1.335      0       0        2       7   
## threeatt    439 3.829   2.507      0       2        5       12  
## threep      402 0.310   0.261    0.000   0.000    0.500   1.000 
## ft          439 7.285   4.053      0       4        10      23  
## fta         439 9.355   4.681      0       6        12      28  
## ftp         435 0.766   0.179    0.000   0.667    0.889   1.000 
## orb         439 1.592   1.388      0       1        2       8   
## drb         439 6.380   2.985      0       4        8       16  
## trb         439 7.973   3.333      0       6        10      19  
## ast         439 6.590   2.938      1       4        8       16  
## stl         439 1.870   1.339      0       1        3       6   
## blk         439 0.929   1.021      0       0        1       5   
## tov         439 3.408   2.017      0       2        5       10  
## pts         439 30.702  8.725      7       25       36      63  
## game_score  439 24.246  8.281   -0.700   19.150   29.550  49.800
## plus_minus  260 5.008   14.012  -32.000  -4.000   14.250  46.000
## ----------------------------------------------------------------

I set type=text to produce ASCII text output, rather than LATEX code

corr <- cor(df3$pts, df3$fga)
corr
## [1] 0.7154493
cov <- cov(df3$pts, df3$fga)
cov
## [1] 37.3099

*** Above checks the correlation and covariance between field goal attempt and points earned The corr = 0.71 which is high correlation between two variables and they are positively correlated cov = 37.3099 proves the positive relationship again The result satisfy general understanding***