Overview of Data

The panel data used measures cigarette consumption in US states. It has 48 observations from 1985 and 1995. Below are the variables in this data set:

  • state - factor indicating state

  • year - factor indicating year

  • cpi - consumer price index

  • population - state population

  • packs - number of packs per capita

  • income - state personal income (total, nominal)

  • tax - average state, federal and average local excise taxes for fiscal year

  • price - average price during fiscal year, including sales tax

  • taxs - average excise taxes for fiscal year, including sales tax

# summary statistics
stargazer(df, type = "text",
          title = "Summary Statistics of CigarattesSW")
## 
## Summary Statistics of CigarattesSW
## ==================================================================
## Statistic  N       Mean         St. Dev.        Min        Max    
## ------------------------------------------------------------------
## cpi        96     1.300           0.225        1.076      1.524   
## population 96 5,168,866.000   5,442,345.000   478,447  31,493,524 
## packs      96    109.182         25.871       49.272     197.994  
## income     96 99,878,736.000 120,541,138.000 6,887,097 771,470,144
## tax        96     42.684         16.138       18.000     99.000   
## price      96    143.448         43.887       84.968     240.850  
## taxs       96     48.326         19.332       21.268     112.633  
## ------------------------------------------------------------------

Is the Panel Data Balanced?

size <- function(x) {
        factor(x, levels = names(sort(table(x), decreasing = TRUE)))
}

ggplot(data = df, 
       aes(x = size(year))) +
        geom_bar() +
        xlab("Year") + ylab("Frequency") +
        theme_minimal()

ggplot(data = df, 
       aes(x = size(state))) +
        geom_bar() +
        xlab("Year") + ylab("Frequency") +
        theme_minimal() + 
        theme(axis.text.x = element_text(angle= 90))

OLS

Higher average tax is expected to lead to lower cigarette consumption as people would have less real income to spend.

# build linear model 
lm_mod <- lm(data = df, formula = packs ~ tax)

summary(lm_mod)
## 
## Call:
## lm(formula = packs ~ tax, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -56.252  -8.771  -0.432   7.309  78.843 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 153.1210     5.7806  26.489  < 2e-16 ***
## tax          -1.0294     0.1268  -8.121 1.78e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 19.94 on 94 degrees of freedom
## Multiple R-squared:  0.4123, Adjusted R-squared:  0.4061 
## F-statistic: 65.95 on 1 and 94 DF,  p-value: 1.779e-12

As expected, as average tax increase by 1, the number of packs per capita decreases by approximately 1 as well. The results is also significant.

OLS (one-way)

We could potentially improve our model by including state fixed effects for these reasons:

  • cultural and social factors in each state might vary

  • different regulations between each state

  • demographic factors might also be different

# build linear model with state FE
lm_mod_fe <- lm(data = df, formula = packs ~ tax + state)

summary(lm_mod_fe)
## 
## Call:
## lm(formula = packs ~ tax + state, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -12.383  -3.273   0.000   3.273  12.383 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 147.31704    5.58752  26.365  < 2e-16 ***
## tax          -1.05565    0.05936 -17.783  < 2e-16 ***
## stateAR      21.29549    7.30661   2.915 0.005440 ** 
## stateAZ      -8.23157    7.31651  -1.125 0.266273    
## stateCA     -22.78515    7.29550  -3.123 0.003060 ** 
## stateCO      -9.95698    7.28390  -1.367 0.178133    
## stateCT       8.28586    7.39463   1.121 0.268184    
## stateDE      28.01213    7.28517   3.845 0.000361 ***
## stateFL      10.40133    7.31260   1.422 0.161518    
## stateGA      -1.18166    7.28855  -0.162 0.871902    
## stateIA       5.37204    7.31028   0.735 0.466075    
## stateID     -17.68783    7.28467  -2.428 0.019061 *  
## stateIL       6.59088    7.31558   0.901 0.372215    
## stateIN      23.46723    7.28662   3.221 0.002323 ** 
## stateKS      -2.37417    7.28662  -0.326 0.746002    
## stateKY      56.30436    7.32761   7.684 7.58e-10 ***
## stateLA       9.16431    7.28420   1.258 0.214567    
## stateMA      10.58753    7.39981   1.431 0.159107    
## stateMD      -1.11454    7.29912  -0.153 0.879292    
## stateME      19.17528    7.31841   2.620 0.011799 *  
## stateMI      29.16363    7.51985   3.878 0.000326 ***
## stateMN       6.55661    7.34922   0.892 0.376857    
## stateMO      16.04277    7.28420   2.202 0.032578 *  
## stateMS       0.72205    7.28436   0.099 0.921461    
## stateMT     -12.54930    7.28372  -1.723 0.091476 .  
## stateNC      15.90162    7.32442   2.171 0.035011 *  
## stateND      -0.84283    7.33434  -0.115 0.909002    
## stateNE      -1.43099    7.30545  -0.196 0.845548    
## stateNH      73.12992    7.28855  10.034 2.87e-13 ***
## stateNJ       6.55084    7.34532   0.892 0.377023    
## stateNM     -32.08034    7.28366  -4.404 6.09e-05 ***
## stateNV      17.92813    7.30111   2.456 0.017821 *  
## stateNY       8.17853    7.39981   1.105 0.274683    
## stateOH      13.34268    7.28517   1.831 0.073370 .  
## stateOK      13.34647    7.28752   1.831 0.073381 .  
## stateOR       9.68669    7.31841   1.324 0.192036    
## statePA       6.33239    7.29912   0.868 0.390046    
## stateRI      28.18485    7.41051   3.803 0.000411 ***
## stateSC      -1.16843    7.30545  -0.160 0.873614    
## stateSD      -4.24200    7.28517  -0.582 0.563162    
## stateTN      13.59669    7.28662   1.866 0.068291 .  
## stateTX      -0.31153    7.32842  -0.043 0.966272    
## stateUT     -47.22360    7.28548  -6.482 5.00e-08 ***
## stateVA      -3.86661    7.33091  -0.527 0.600370    
## stateVT      27.13432    7.28462   3.725 0.000523 ***
## stateWA      -3.36250    7.41326  -0.454 0.652219    
## stateWI       7.22054    7.33788   0.984 0.330150    
## stateWV       5.95008    7.28372   0.817 0.418106    
## stateWY       5.17149    7.29387   0.709 0.481815    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.284 on 47 degrees of freedom
## Multiple R-squared:  0.9608, Adjusted R-squared:  0.9207 
## F-statistic: 23.99 on 48 and 47 DF,  p-value: < 2.2e-16

By including states as a fixed effect, we can see that average tax has a negative effect on cigarette consumption in some states but a positive effect on others. The significance and \(R^2\) of the model have also increased.

OLS (two-way)

We will also include time for our two-way OLS model which will be explained with the PLM model.

lm_mod_fe_2 <- lm(data = df, formula = packs ~ tax + state + year)

summary(lm_mod_fe_2)
## 
## Call:
## lm(formula = packs ~ tax + state + year, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.004  -3.171   0.000   3.171  10.004 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 138.84014    5.30835  26.155  < 2e-16 ***
## tax          -0.67473    0.10844  -6.222 1.34e-07 ***
## stateAR      17.58152    6.43074   2.734 0.008854 ** 
## stateAZ     -12.67564    6.46816  -1.960 0.056106 .  
## stateCA     -25.45159    6.38849  -3.984 0.000240 ***
## stateCO     -10.33790    6.34416  -1.630 0.110034    
## stateCT       0.09608    6.75811   0.014 0.988719    
## stateDE      27.05983    6.34902   4.262 9.94e-05 ***
## stateFL       6.23026    6.45341   0.965 0.339382    
## stateGA       0.53248    6.36197   0.084 0.933660    
## stateIA       1.37238    6.44461   0.213 0.832307    
## stateID     -18.46872    6.34712  -2.910 0.005556 ** 
## stateIL       2.21030    6.46465   0.342 0.733979    
## stateIN      24.80045    6.35457   3.903 0.000308 ***
## stateKS      -3.70739    6.35457  -0.583 0.562460    
## stateKY      61.44679    6.50996   9.439 2.47e-12 ***
## stateLA       8.59293    6.34532   1.354 0.182283    
## stateMA       2.20729    6.77701   0.326 0.746126    
## stateMD      -4.16190    6.40228  -0.650 0.518883    
## stateME      14.60425    6.47533   2.255 0.028911 *  
## stateMI      17.16465    7.20446   2.383 0.021385 *  
## stateMN       0.27143    6.59074   0.041 0.967328    
## stateMO      16.61415    6.34532   2.618 0.011923 *  
## stateMS       1.37279    6.34593   0.216 0.829690    
## stateMT     -12.73976    6.34346  -2.008 0.050501 .  
## stateNC      20.85358    6.49799   3.209 0.002427 ** 
## stateND      -6.36617    6.53520  -0.974 0.335085    
## stateNE      -5.04973    6.42634  -0.786 0.436021    
## stateNH      71.41579    6.36197  11.225 9.08e-15 ***
## stateNJ       0.45612    6.57623   0.069 0.945004    
## stateNM     -32.08034    6.34323  -5.057 7.25e-06 ***
## stateNV      14.69031    6.40985   2.292 0.026542 *  
## stateNY      -0.20171    6.77701  -0.030 0.976384    
## stateOH      12.39038    6.34902   1.952 0.057097 .  
## stateOK      11.82279    6.35804   1.860 0.069359 .  
## stateOR       5.11566    6.47533   0.790 0.433568    
## statePA       3.28503    6.40228   0.513 0.610335    
## stateRI      19.42369    6.81594   2.850 0.006526 ** 
## stateSC       2.45031    6.42634   0.381 0.704742    
## stateSD      -5.19430    6.34902  -0.818 0.417503    
## stateTN      14.92991    6.35457   2.349 0.023148 *  
## stateTX      -5.50156    6.51302  -0.845 0.402649    
## stateUT     -48.27113    6.35024  -7.601 1.15e-09 ***
## stateVA       1.46627    6.52237   0.225 0.823125    
## stateVT      26.37248    6.34694   4.155 0.000140 ***
## stateWA     -12.21889    6.82590  -1.790 0.080025 .  
## stateWI       1.50674    6.54846   0.230 0.819041    
## stateWV       5.75962    6.34346   0.908 0.368631    
## stateWY       7.64747    6.38227   1.198 0.236962    
## year1995    -10.85336    2.71596  -3.996 0.000231 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.343 on 46 degrees of freedom
## Multiple R-squared:  0.9709, Adjusted R-squared:  0.9399 
## F-statistic: 31.31 on 49 and 46 DF,  p-value: < 2.2e-16

Fixed Effects Model

The fixed-effects model helps control for unobserved heterogeneity at the state and year levels. Below is the equation for this model which returns the number of packs consumed by state (i) in time period (t):

\[packs_{it}​=β_0​+β_1​⋅tax_{it}​+α_i​+γ_t​+ε_{it}​\]

  • \(\beta_1\) represents the estimated change in the number of packs consumed for a one-unit change in the average tax, after controlling for state and year fixed effects.

  • \(α_i\) and \(γ_t​\) capture state fixed effects and year fixed effects respectively

# build FE model with plm
fe_mod <- plm(formula = packs ~ tax, 
                    data    = df,
                    index   = c("state", "year"), 
                    model   = "within")

summary(fe_mod)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = packs ~ tax, data = df, model = "within", index = c("state", 
##     "year"))
## 
## Balanced Panel: n = 48, T = 2, N = 96
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -12.3834  -3.2727   0.0000   3.2727  12.3834 
## 
## Coefficients:
##      Estimate Std. Error t-value  Pr(>|t|)    
## tax -1.055649   0.059361 -17.784 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    19271
## Residual Sum of Squares: 2493.4
## R-Squared:      0.87061
## Adj. R-Squared: 0.73847
## F-statistic: 316.252 on 1 and 47 DF, p-value: < 2.22e-16

The coefficient is approximately the same as our first OLS model.

Fixed Effects Model (two-way)

Now, we will create a two-way FE model to estimate how changes in the average tax and the specific years (1985 and 1995) are associated with changes in the number of packs consumed, while accounting for unobserved state-specific factors.

\[ packs_{it}​−packsˉ​_i​=β_1​⋅(tax_{it}​−taxˉ_i​)+ε_{it​} \]

  • \(\beta_1\) represents the estimated change in the number of packs consumed for a one-unit change in the average tax, after controlling for time effects

Time FE seems to be more significant than state FE since we are only observing two time periods (1985 and 1995) with a gap of ten years.

fe_mod_2 <- plm(formula = packs ~ tax + as.factor(year), 
                    data    = df,
                    index   = c("state", "year"), 
                    model   = "within")

summary(fe_mod_2)
## Oneway (individual) effect Within Model
## 
## Call:
## plm(formula = packs ~ tax + as.factor(year), data = df, model = "within", 
##     index = c("state", "year"))
## 
## Balanced Panel: n = 48, T = 2, N = 96
## 
## Residuals:
##     Min.  1st Qu.   Median  3rd Qu.     Max. 
## -10.0041  -3.1711   0.0000   3.1711  10.0041 
## 
## Coefficients:
##                      Estimate Std. Error t-value  Pr(>|t|)    
## tax                  -0.67473    0.10844 -6.2222 1.344e-07 ***
## as.factor(year)1995 -10.85336    2.71596 -3.9961 0.0002306 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Total Sum of Squares:    19271
## Residual Sum of Squares: 1850.9
## R-Squared:      0.90396
## Adj. R-Squared: 0.80165
## F-statistic: 216.473 on 2 and 46 DF, p-value: < 2.22e-16

After controlling for time effects, the number of packs consumed decreases by 0.675 (~1 pack) for a one-unit change in the average tax.

Overview of Models

stargazer(lm_mod_fe, lm_mod_fe_2, fe_mod_2, type = "text", 
          column.labels = c("State", "State|Time", "State|Time (PLM)"))
## 
## ===========================================================================================
##                                               Dependent variable:                          
##                     -----------------------------------------------------------------------
##                                                      packs                                 
##                                           OLS                                panel         
##                                                                             linear         
##                              State                State|Time           State|Time (PLM)    
##                               (1)                     (2)                     (3)          
## -------------------------------------------------------------------------------------------
## tax                        -1.056***               -0.675***               -0.675***       
##                             (0.059)                 (0.108)                 (0.108)        
##                                                                                            
## stateAR                    21.295***               17.582***                               
##                             (7.307)                 (6.431)                                
##                                                                                            
## stateAZ                     -8.232                 -12.676*                                
##                             (7.317)                 (6.468)                                
##                                                                                            
## stateCA                   -22.785***              -25.452***                               
##                             (7.295)                 (6.388)                                
##                                                                                            
## stateCO                     -9.957                  -10.338                                
##                             (7.284)                 (6.344)                                
##                                                                                            
## stateCT                      8.286                   0.096                                 
##                             (7.395)                 (6.758)                                
##                                                                                            
## stateDE                    28.012***               27.060***                               
##                             (7.285)                 (6.349)                                
##                                                                                            
## stateFL                     10.401                   6.230                                 
##                             (7.313)                 (6.453)                                
##                                                                                            
## stateGA                     -1.182                   0.532                                 
##                             (7.289)                 (6.362)                                
##                                                                                            
## stateIA                      5.372                   1.372                                 
##                             (7.310)                 (6.445)                                
##                                                                                            
## stateID                    -17.688**              -18.469***                               
##                             (7.285)                 (6.347)                                
##                                                                                            
## stateIL                      6.591                   2.210                                 
##                             (7.316)                 (6.465)                                
##                                                                                            
## stateIN                    23.467***               24.800***                               
##                             (7.287)                 (6.355)                                
##                                                                                            
## stateKS                     -2.374                  -3.707                                 
##                             (7.287)                 (6.355)                                
##                                                                                            
## stateKY                    56.304***               61.447***                               
##                             (7.328)                 (6.510)                                
##                                                                                            
## stateLA                      9.164                   8.593                                 
##                             (7.284)                 (6.345)                                
##                                                                                            
## stateMA                     10.588                   2.207                                 
##                             (7.400)                 (6.777)                                
##                                                                                            
## stateMD                     -1.115                  -4.162                                 
##                             (7.299)                 (6.402)                                
##                                                                                            
## stateME                    19.175**                14.604**                                
##                             (7.318)                 (6.475)                                
##                                                                                            
## stateMI                    29.164***               17.165**                                
##                             (7.520)                 (7.204)                                
##                                                                                            
## stateMN                      6.557                   0.271                                 
##                             (7.349)                 (6.591)                                
##                                                                                            
## stateMO                    16.043**                16.614**                                
##                             (7.284)                 (6.345)                                
##                                                                                            
## stateMS                      0.722                   1.373                                 
##                             (7.284)                 (6.346)                                
##                                                                                            
## stateMT                    -12.549*                -12.740*                                
##                             (7.284)                 (6.343)                                
##                                                                                            
## stateNC                    15.902**                20.854***                               
##                             (7.324)                 (6.498)                                
##                                                                                            
## stateND                     -0.843                  -6.366                                 
##                             (7.334)                 (6.535)                                
##                                                                                            
## stateNE                     -1.431                  -5.050                                 
##                             (7.305)                 (6.426)                                
##                                                                                            
## stateNH                    73.130***               71.416***                               
##                             (7.289)                 (6.362)                                
##                                                                                            
## stateNJ                      6.551                   0.456                                 
##                             (7.345)                 (6.576)                                
##                                                                                            
## stateNM                   -32.080***              -32.080***                               
##                             (7.284)                 (6.343)                                
##                                                                                            
## stateNV                    17.928**                14.690**                                
##                             (7.301)                 (6.410)                                
##                                                                                            
## stateNY                      8.179                  -0.202                                 
##                             (7.400)                 (6.777)                                
##                                                                                            
## stateOH                     13.343*                 12.390*                                
##                             (7.285)                 (6.349)                                
##                                                                                            
## stateOK                     13.346*                 11.823*                                
##                             (7.288)                 (6.358)                                
##                                                                                            
## stateOR                      9.687                   5.116                                 
##                             (7.318)                 (6.475)                                
##                                                                                            
## statePA                      6.332                   3.285                                 
##                             (7.299)                 (6.402)                                
##                                                                                            
## stateRI                    28.185***               19.424***                               
##                             (7.411)                 (6.816)                                
##                                                                                            
## stateSC                     -1.168                   2.450                                 
##                             (7.305)                 (6.426)                                
##                                                                                            
## stateSD                     -4.242                  -5.194                                 
##                             (7.285)                 (6.349)                                
##                                                                                            
## stateTN                     13.597*                14.930**                                
##                             (7.287)                 (6.355)                                
##                                                                                            
## stateTX                     -0.312                  -5.502                                 
##                             (7.328)                 (6.513)                                
##                                                                                            
## stateUT                   -47.224***              -48.271***                               
##                             (7.285)                 (6.350)                                
##                                                                                            
## stateVA                     -3.867                   1.466                                 
##                             (7.331)                 (6.522)                                
##                                                                                            
## stateVT                    27.134***               26.372***                               
##                             (7.285)                 (6.347)                                
##                                                                                            
## stateWA                     -3.363                 -12.219*                                
##                             (7.413)                 (6.826)                                
##                                                                                            
## stateWI                      7.221                   1.507                                 
##                             (7.338)                 (6.548)                                
##                                                                                            
## stateWV                      5.950                   5.760                                 
##                             (7.284)                 (6.343)                                
##                                                                                            
## stateWY                      5.171                   7.647                                 
##                             (7.294)                 (6.382)                                
##                                                                                            
## year1995                                          -10.853***                               
##                                                     (2.716)                                
##                                                                                            
## as.factor(year)1995                                                       -10.853***       
##                                                                             (2.716)        
##                                                                                            
## Constant                  147.317***              138.840***                               
##                             (5.588)                 (5.308)                                
##                                                                                            
## -------------------------------------------------------------------------------------------
## Observations                  96                      96                      96           
## R2                           0.961                   0.971                   0.904         
## Adjusted R2                  0.921                   0.940                   0.802         
## Residual Std. Error     7.284 (df = 47)         6.343 (df = 46)                            
## F Statistic         23.991*** (df = 48; 47) 31.312*** (df = 49; 46) 216.473*** (df = 2; 46)
## ===========================================================================================
## Note:                                                           *p<0.1; **p<0.05; ***p<0.01

Three of these models produce a rather similar coefficient. When we round them to the nearest whole number, all models reflect a decrease in one pack of cigarette per capita. However, time FE does appear to be important here. The two-way FE models does give a slightly lower negative coefficient irregardless of the fixed effect method used.