library(readxl)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
your_data <- readxl::read_excel("bike_orderlines.xlsx")


result <- your_data %>%
  group_by(bikeshop_name) %>%
  summarise(
    total_quantity = sum(quantity),
    total_percentage = sum(quantity) / sum(your_data$quantity) * 100
  )

print(result)
## # A tibble: 30 × 3
##    bikeshop_name            total_quantity total_percentage
##    <chr>                             <dbl>            <dbl>
##  1 Albuquerque Cycles                  286             1.42
##  2 Ann Arbor Speed                     602             2.98
##  3 Austin Cruisers                     246             1.22
##  4 Cincinnati Speed                    391             1.94
##  5 Columbus Race Equipment             394             1.95
##  6 Dallas Cycles                       234             1.16
##  7 Denver Bike Shop                   2301            11.4 
##  8 Detroit Cycles                      504             2.50
##  9 Indianapolis Velocipedes            319             1.58
## 10 Ithaca Mountain Climbers           1264             6.27
## # ℹ 20 more rows