library(foreign)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.2
library(MASS)
library(openxlsx)
## Warning: package 'openxlsx' was built under R version 4.3.1
info <- read.csv("C:/Users/Mauri/Downloads/Alumnos1.csv")
info$pasa<-factor(info$pasa, levels = c(0,1), labels = c("No pasa","Pasa"))
dis=lda(pasa~futbol+tenis+escuela+ingles, data=info,prior=c(0.5,0.5))
dis
## Call:
## lda(pasa ~ futbol + tenis + escuela + ingles, data = info, prior = c(0.5,
## 0.5))
##
## Prior probabilities of groups:
## No pasa Pasa
## 0.5 0.5
##
## Group means:
## futbol tenis escuela ingles
## No pasa 4.520000 2.560000 2.080000 6.600000
## Pasa 5.448276 2.724138 2.068966 5.310345
##
## Coefficients of linear discriminants:
## LD1
## futbol 0.243469380
## tenis -0.092641981
## escuela -0.006693476
## ingles -0.289571372
#Nueva observación Supongamos que entra un alumno nuevo. Y que: hrs_estudio =4.3 hrs_fiesta =1.5 hrs_camino =1.3 calif_mate =8.0
Creamos el perfil del estudiante:
nuevo.alumno=rbind(c(4.3,1.5,1.3,8.0))
colnames(nuevo.alumno)=colnames(info[,2:5])
nuevo.alumno=data.frame(nuevo.alumno)
predict(dis,newdata =nuevo.alumno)
## $class
## [1] No pasa
## Levels: No pasa Pasa
##
## $posterior
## No pasa Pasa
## 1 0.5935033 0.4064967
##
## $x
## LD1
## 1 -0.6477027