# import data
library(readr)
d <- read_csv("/Users/melissalagunas/Desktop/Lab/Contextualizing\ Stigma\ and\ Trauma/LatineData_Subscales.csv")
## New names:
## Rows: 259 Columns: 16
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," dbl
## (16): ...1, SSRPH, SSOSH, MHSAS, PR_PF, PR_A, PR_D, PR_SR, PR_PI, ANG, C...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
View(d)

# import data
library(readr)
dat <- read_csv("/Users/melissalagunas/Desktop/Lab/Contextualizing\ Stigma\ and\ Trauma/LatineData2.csv")
## New names:
## Rows: 259 Columns: 151
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (4): AHELP, GEN_8_TEXT, ETH_7_TEXT, BORN_1 dbl (146): ...1, Progress,
## Duration..in.seconds., Consent, SSRPH_1, SSRPH_2,... lgl (1): EDU_11_TEXT
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `` -> `...1`
View(dat)
# Extract variables of interest 
dat <- dat[, 88:100]
# Recode
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ purrr     1.0.2
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# Recode the scale with dichotomous items
dat$scale <- rowSums(dat[, c("SLESQ_1", "SLESQ_2", "SLESQ_3", "SLESQ_4", "SLESQ_5", "SLESQ_6", "SLESQ_7", "SLESQ_8", "SLESQ_9", "SLESQ_10", "SLESQ_11","SLESQ_12", "SLESQ_13")])
#data set with only familismo (PHFS), stressful life events (SLESQ), and central sensitization (CSA)
library(dplyr)
d <- data.frame(d$PHFS, dat$scale, d$CSA, d$PCL5)
d <- rename(d, familism = d.PHFS, stressful_life_events = dat.scale, central_sensitization = d.CSA, trauma_symptoms = d.PCL5 )
# remove NA variables
d <- na.omit(d)
# loading packages
library(lavaan)
## This is lavaan 0.6-16
## lavaan is FREE software! Please report any bugs.
library(semPlot)
library(tidyverse)
library(psych)
## 
## Attaching package: 'psych'
## The following object is masked from 'package:lavaan':
## 
##     cor2cov
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(jtools)
library(interactions)
library(ggplot2)
library(tidySEM)
## Loading required package: OpenMx
## OpenMx may run faster if it is compiled to take advantage of multiple cores.
## 
## Attaching package: 'OpenMx'
## The following object is masked from 'package:psych':
## 
##     tr
## Registered S3 method overwritten by 'tidySEM':
##   method          from  
##   predict.MxModel OpenMx
## 
## Attaching package: 'tidySEM'
## The following object is masked from 'package:jtools':
## 
##     get_data

Preliminary Analyses

# Correlation analysis 
table <- apaTables::apa.cor.table(d, table.number = 1, show.sig.stars = TRUE,
    landscape = TRUE, filename = "table.doc")
## Registered S3 methods overwritten by 'broom':
##   method            from  
##   tidy.glht         jtools
##   tidy.summary.glht jtools
print(table)
## 
## 
## Table 1 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable                 M     SD   1            2          3         
##   1. familism              3.67  0.96                                   
##                                                                         
##   2. stressful_life_events 16.72 2.85 -.21**                            
##                                       [-.32, -.09]                      
##                                                                         
##   3. central_sensitization 1.63  0.72 -.34**       .33**                
##                                       [-.45, -.23] [.21, .43]           
##                                                                         
##   4. trauma_symptoms       1.51  0.97 -.37**       .30**      .68**     
##                                       [-.47, -.25] [.18, .40] [.61, .75]
##                                                                         
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 
psych::pairs.panels(d)

# Checking the table of means, standard deviations, and correlations 
table <- apaTables::apa.cor.table(d, table.number = 1, show.sig.stars = TRUE,
    landscape = TRUE, filename = "Lewis_Corr.doc")
print(table)
## 
## 
## Table 1 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable                 M     SD   1            2          3         
##   1. familism              3.67  0.96                                   
##                                                                         
##   2. stressful_life_events 16.72 2.85 -.21**                            
##                                       [-.32, -.09]                      
##                                                                         
##   3. central_sensitization 1.63  0.72 -.34**       .33**                
##                                       [-.45, -.23] [.21, .43]           
##                                                                         
##   4. trauma_symptoms       1.51  0.97 -.37**       .30**      .68**     
##                                       [-.47, -.25] [.18, .40] [.61, .75]
##                                                                         
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
##  * indicates p < .05. ** indicates p < .01.
## 
# quick peak at data
psych::describe(d)
##                       vars   n  mean   sd median trimmed  mad min  max range
## familism                 1 251  3.67 0.96   3.80    3.76 0.89   1  5.0   4.0
## stressful_life_events    2 251 16.72 2.85  16.00   16.48 2.97  13 26.0  13.0
## central_sensitization    3 251  1.63 0.72   1.64    1.63 0.77   0  3.8   3.8
## trauma_symptoms          4 251  1.51 0.97   1.50    1.48 1.11   0  4.0   4.0
##                        skew kurtosis   se
## familism              -0.74     0.18 0.06
## stressful_life_events  0.69    -0.03 0.18
## central_sensitization  0.03    -0.31 0.05
## trauma_symptoms        0.26    -0.83 0.06

Working the Moderated Mediation

Piecewise assembly of the moderated mediation

Analysis 1: A simple moderation

# Y = central sensitization; X = stressful life events; W = familism

Mod_a_path <- lm(central_sensitization ~ stressful_life_events* familism, data = d)
jtools::summ(Mod_a_path, digits = 3)
## MODEL INFO:
## Observations: 251
## Dependent Variable: central_sensitization
## Type: OLS linear regression 
## 
## MODEL FIT:
## F(3,247) = 18.539, p = 0.000
## R² = 0.184
## Adj. R² = 0.174 
## 
## Standard errors: OLS
## ----------------------------------------------------------------------
##                                          Est.    S.E.   t val.       p
## ------------------------------------ -------- ------- -------- -------
## (Intercept)                             1.120   1.102    1.016   0.310
## stressful_life_events                   0.077   0.062    1.235   0.218
## familism                               -0.169   0.284   -0.595   0.553
## stressful_life_events:familism         -0.003   0.016   -0.161   0.872
## ----------------------------------------------------------------------
#graph interaction
interactions::interact_plot(Mod_a_path, pred = stressful_life_events, modx = familism) +
    ylim(0, 10)

#probing the interaction with simple slopes
interactions::sim_slopes(Mod_a_path, pred = stressful_life_events, modx = familism)
## JOHNSON-NEYMAN INTERVAL 
## 
## When familism is INSIDE the interval [1.64, 5.45], the slope of
## stressful_life_events is p < .05.
## 
## Note: The range of observed values of familism is [1.00, 5.00]
## 
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of stressful_life_events when familism = 2.709182 (- 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.07   0.02     3.15   0.00
## 
## Slope of stressful_life_events when familism = 3.672510 (Mean): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.07   0.01     4.52   0.00
## 
## Slope of stressful_life_events when familism = 4.635838 (+ 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.06   0.02     3.08   0.00

Analysis 2: Another simple moderation

# Y = trauma symtpoms; X = stressful life events; W = familism

Mod_b_path <- lm(trauma_symptoms ~ stressful_life_events * familism, data = d)
jtools::summ(Mod_b_path, digits = 3)
## MODEL INFO:
## Observations: 251
## Dependent Variable: trauma_symptoms
## Type: OLS linear regression 
## 
## MODEL FIT:
## F(3,247) = 19.436, p = 0.000
## R² = 0.191
## Adj. R² = 0.181 
## 
## Standard errors: OLS
## ----------------------------------------------------------------------
##                                          Est.    S.E.   t val.       p
## ------------------------------------ -------- ------- -------- -------
## (Intercept)                             3.290   1.479    2.225   0.027
## stressful_life_events                  -0.031   0.084   -0.375   0.708
## familism                               -0.830   0.381   -2.179   0.030
## stressful_life_events:familism          0.029   0.022    1.348   0.179
## ----------------------------------------------------------------------
#graph interaction
interactions::interact_plot(Mod_b_path, pred = stressful_life_events, modx = familism) +
    ylim(1, 10)
## Warning: Removed 14 rows containing missing values (`geom_path()`).

#probing the interaction with simple slopes
interactions::sim_slopes(Mod_b_path, pred = stressful_life_events, modx = familism)
## JOHNSON-NEYMAN INTERVAL 
## 
## When familism is INSIDE the interval [2.88, 9.24], the slope of
## stressful_life_events is p < .05.
## 
## Note: The range of observed values of familism is [1.00, 5.00]
## 
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of stressful_life_events when familism = 2.709182 (- 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.05   0.03     1.63   0.11
## 
## Slope of stressful_life_events when familism = 3.672510 (Mean): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.08   0.02     3.84   0.00
## 
## Slope of stressful_life_events when familism = 4.635838 (+ 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------ ------ -------- ------
##   0.11   0.03     3.72   0.00

Analysis 3: A simple mediation

# Y = central sensitization; X = stressful life events; M = trauma symptoms
LMedModel <- "
          central_sensitization ~ b*trauma_symptoms + c_p*stressful_life_events
          trauma_symptoms ~a*stressful_life_events
          
          #intercepts
          trauma_symptoms ~ trauma_symptoms.mean*1
          central_sensitization ~ central_sensitization.mean*1
          
          indirect :=  a*b
          direct  := c_p
          total_c  := c_p + (a*b)
          "
set.seed(230925)  #required for reproducible results because lavaan introduces randomness into the calculations
LMed_fit <- lavaan::sem(LMedModel, data = d, se = "bootstrap", missing = "fiml")
LMed_Sum <- lavaan::summary(LMed_fit, standardized = T, rsq = T, ci = TRUE)
LMed_ParEsts <- lavaan::parameterEstimates(LMed_fit, boot.ci.type = "bca.simple",
    standardized = TRUE)
LMed_Sum
## lavaan 0.6.16 ended normally after 1 iteration
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         7
## 
##   Number of observations                           251
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                           Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   central_sensitization ~                                                      
##     trm_symp   (b)           0.479    0.037   12.851    0.000    0.409    0.557
##     strssf__ (c_p)           0.034    0.013    2.691    0.007    0.008    0.060
##   trauma_symptoms ~                                                            
##     strssf__   (a)           0.101    0.021    4.762    0.000    0.059    0.143
##    Std.lv  Std.all
##                   
##     0.479    0.645
##     0.034    0.134
##                   
##     0.101    0.296
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .trm_sym (tr_.)   -0.179    0.362   -0.495    0.621   -0.866    0.539
##    .cntrl_s (cn_.)    0.337    0.200    1.685    0.092   -0.059    0.715
##    Std.lv  Std.all
##    -0.179   -0.184
##     0.337    0.468
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .centrl_snstztn    0.267    0.022   12.000    0.000    0.224    0.310
##    .trauma_symptms    0.861    0.063   13.657    0.000    0.724    0.978
##    Std.lv  Std.all
##     0.267    0.514
##     0.861    0.913
## 
## R-Square:
##                    Estimate
##     centrl_snstztn    0.486
##     trauma_symptms    0.087
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     indirect          0.048    0.011    4.248    0.000    0.027    0.073
##     direct            0.034    0.013    2.689    0.007    0.008    0.060
##     total_c           0.082    0.015    5.382    0.000    0.052    0.112
##    Std.lv  Std.all
##     0.048    0.191
##     0.034    0.134
##     0.082    0.325
LMed_ParEsts
##                      lhs op                   rhs                      label
## 1  central_sensitization  ~       trauma_symptoms                          b
## 2  central_sensitization  ~ stressful_life_events                        c_p
## 3        trauma_symptoms  ~ stressful_life_events                          a
## 4        trauma_symptoms ~1                             trauma_symptoms.mean
## 5  central_sensitization ~1                       central_sensitization.mean
## 6  central_sensitization ~~ central_sensitization                           
## 7        trauma_symptoms ~~       trauma_symptoms                           
## 8  stressful_life_events ~~ stressful_life_events                           
## 9  stressful_life_events ~1                                                 
## 10              indirect :=                   a*b                   indirect
## 11                direct :=                   c_p                     direct
## 12               total_c :=             c_p+(a*b)                    total_c
##       est    se      z pvalue ci.lower ci.upper std.lv std.all std.nox
## 1   0.479 0.037 12.851  0.000    0.407    0.555  0.479   0.645   0.645
## 2   0.034 0.013  2.691  0.007    0.009    0.060  0.034   0.134   0.047
## 3   0.101 0.021  4.762  0.000    0.058    0.142  0.101   0.296   0.104
## 4  -0.179 0.362 -0.495  0.621   -0.852    0.558 -0.179  -0.184  -0.184
## 5   0.337 0.200  1.685  0.092   -0.066    0.705  0.337   0.468   0.468
## 6   0.267 0.022 12.000  0.000    0.231    0.324  0.267   0.514   0.514
## 7   0.861 0.063 13.657  0.000    0.741    0.997  0.861   0.913   0.913
## 8   8.083 0.000     NA     NA    8.083    8.083  8.083   1.000   8.083
## 9  16.717 0.000     NA     NA   16.717   16.717 16.717   5.880  16.717
## 10  0.048 0.011  4.248  0.000    0.028    0.073  0.048   0.191   0.067
## 11  0.034 0.013  2.689  0.007    0.009    0.060  0.034   0.134   0.047
## 12  0.082 0.015  5.382  0.000    0.052    0.113  0.082   0.325   0.114

Analysis 4: The moderated mediation - a combined analysis

# Y = central sensitization, X = stressful life events, M = trauma symptoms, W = familismo
Combined <- '
    #equations
    trauma_symptoms ~ a1*stressful_life_events + a2*familism + a3*stressful_life_events:familism
    central_sensitization ~ c_p1*stressful_life_events + c_p2*familism + c_p3*stressful_life_events:familism + b*trauma_symptoms

    #intercepts
    trauma_symptoms ~ trauma_symptoms.mean*1
    central_sensitization ~ central_sensitization.mean*1

    #means, variances of W for simple slopes
    familism ~ familism.mean*1
    familism ~~ familism.var*familism
    
    #index of moderated mediation, there will be an a and b path in the product
    #if the a and/or b path is moderated, select the label that represents the moderation
    
    imm := a3*b

    #Note that we first create the indirect product, then add to it the product of the imm and the W level
    indirect.SDbelow := a1*b + imm*(familism.mean - sqrt(familism.var))
    indirect.mean := a1*b + imm*(familism.mean)
    indirect.SDabove := a1*b + imm*(familism.mean + sqrt(familism.var))

    #direct effect is also moderated so calculate with c_p1 + c_p3
    direct.SDbelow := c_p1 + c_p3*(familism.mean - sqrt(familism.var)) 
    direct.Smean := c_p1 + c_p3*(familism.mean)
    direct.SDabove := c_p1 + c_p3*(familism.mean + sqrt(familism.var))

 '
set.seed(230925) #required for reproducible results because lavaan introduces randomness into the calculations
Combined_fit <- lavaan::sem(Combined, data = d, se = "bootstrap", missing = 'fiml', bootstrap = 1000)
## Warning in lav_partable_vnames(FLAT, "ov.x", warn = TRUE): lavaan WARNING:
##     model syntax contains variance/covariance/intercept formulas
##     involving (an) exogenous variable(s): [familism]; These variables
##     will now be treated as random introducing additional free
##     parameters. If you wish to treat those variables as fixed, remove
##     these formulas from the model syntax. Otherwise, consider adding
##     the fixed.x = FALSE option.
cFITsum <- lavaan::summary(Combined_fit, standardized = TRUE, rsq=T, ci=TRUE)    
cParamEsts <- lavaan::parameterEstimates(Combined_fit, boot.ci.type = "bca.simple", standardized=TRUE)
cFITsum
## lavaan 0.6.16 ended normally after 17 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        13
## 
##   Number of observations                           251
##   Number of missing patterns                         1
## 
## Model Test User Model:
##                                                       
##   Test statistic                               946.622
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                           Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   trauma_symptoms ~                                                            
##     strss__   (a1)          -0.031    0.089   -0.354    0.724   -0.205    0.150
##     familsm   (a2)          -0.830    0.389   -2.132    0.033   -1.585   -0.082
##     strs__:   (a3)           0.029    0.023    1.292    0.196   -0.014    0.074
##   central_sensitization ~                                                      
##     strss__ (c_p1)           0.092    0.049    1.854    0.064   -0.006    0.193
##     familsm (c_p2)           0.214    0.235    0.910    0.363   -0.254    0.694
##     strs__: (c_p3)          -0.016    0.013   -1.211    0.226   -0.043    0.010
##     trm_sym    (b)           0.461    0.042   10.986    0.000    0.382    0.544
##    Std.lv  Std.all
##                   
##    -0.031   -0.070
##    -0.830   -0.622
##     0.029    0.410
##                   
##     0.092    0.371
##     0.214    0.293
##    -0.016   -0.413
##     0.461    0.843
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .trm_sym (tr_.)    3.290    1.536    2.142    0.032    0.274    6.210
##    .cntrl_s (cn_.)   -0.395    0.886   -0.446    0.655   -2.205    1.364
##     familsm (fml.)    3.673    0.060   60.861    0.000    3.555    3.785
##    Std.lv  Std.all
##     3.290    2.562
##    -0.395   -0.563
##     3.673    3.820
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     familsm (fml.)    0.924    0.081   11.469    0.000    0.769    1.075
##    .trm_sym           0.763    0.060   12.821    0.000    0.628    0.863
##    .cntrl_s           0.262    0.022   11.981    0.000    0.217    0.300
##    Std.lv  Std.all
##     0.924    1.000
##     0.763    0.463
##     0.262    0.532
## 
## R-Square:
##                    Estimate
##     trauma_symptms    0.537
##     centrl_snstztn    0.468
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     imm               0.014    0.011    1.278    0.201   -0.007    0.035
##     indirect.SDblw    0.022    0.015    1.494    0.135   -0.006    0.053
##     indirect.mean     0.035    0.010    3.423    0.001    0.016    0.056
##     indirect.SDabv    0.048    0.014    3.452    0.001    0.022    0.077
##     direct.SDbelow    0.048    0.017    2.807    0.005    0.016    0.084
##     direct.Smean      0.032    0.013    2.556    0.011    0.007    0.058
##     direct.SDabove    0.016    0.019    0.873    0.383   -0.021    0.053
##    Std.lv  Std.all
##     0.014    0.346
##     0.022    0.917
##     0.035    1.263
##     0.048    1.608
##     0.048   -0.792
##     0.032   -1.205
##     0.016   -1.618
cParamEsts
##                               lhs op
## 1                 trauma_symptoms  ~
## 2                 trauma_symptoms  ~
## 3                 trauma_symptoms  ~
## 4           central_sensitization  ~
## 5           central_sensitization  ~
## 6           central_sensitization  ~
## 7           central_sensitization  ~
## 8                 trauma_symptoms ~1
## 9           central_sensitization ~1
## 10                       familism ~1
## 11                       familism ~~
## 12                trauma_symptoms ~~
## 13          central_sensitization ~~
## 14          stressful_life_events ~~
## 15          stressful_life_events ~~
## 16 stressful_life_events:familism ~~
## 17          stressful_life_events ~1
## 18 stressful_life_events:familism ~1
## 19                            imm :=
## 20               indirect.SDbelow :=
## 21                  indirect.mean :=
## 22               indirect.SDabove :=
## 23                 direct.SDbelow :=
## 24                   direct.Smean :=
## 25                 direct.SDabove :=
##                                             rhs                      label
## 1                         stressful_life_events                         a1
## 2                                      familism                         a2
## 3                stressful_life_events:familism                         a3
## 4                         stressful_life_events                       c_p1
## 5                                      familism                       c_p2
## 6                stressful_life_events:familism                       c_p3
## 7                               trauma_symptoms                          b
## 8                                                     trauma_symptoms.mean
## 9                                               central_sensitization.mean
## 10                                                           familism.mean
## 11                                     familism               familism.var
## 12                              trauma_symptoms                           
## 13                        central_sensitization                           
## 14                        stressful_life_events                           
## 15               stressful_life_events:familism                           
## 16               stressful_life_events:familism                           
## 17                                                                        
## 18                                                                        
## 19                                         a3*b                        imm
## 20  a1*b+imm*(familism.mean-sqrt(familism.var))           indirect.SDbelow
## 21                     a1*b+imm*(familism.mean)              indirect.mean
## 22  a1*b+imm*(familism.mean+sqrt(familism.var))           indirect.SDabove
## 23 c_p1+c_p3*(familism.mean-sqrt(familism.var))             direct.SDbelow
## 24                    c_p1+c_p3*(familism.mean)               direct.Smean
## 25 c_p1+c_p3*(familism.mean+sqrt(familism.var))             direct.SDabove
##        est    se      z pvalue ci.lower ci.upper  std.lv std.all std.nox
## 1   -0.031 0.089 -0.354  0.724   -0.210    0.137  -0.031  -0.070  -0.024
## 2   -0.830 0.389 -2.132  0.033   -1.589   -0.083  -0.830  -0.622  -1.839
## 3    0.029 0.023  1.292  0.196   -0.013    0.075   0.029   0.410   0.023
## 4    0.092 0.049  1.854  0.064   -0.006    0.193   0.092   0.371   0.131
## 5    0.214 0.235  0.910  0.363   -0.259    0.686   0.214   0.293   0.865
## 6   -0.016 0.013 -1.211  0.226   -0.043    0.010  -0.016  -0.413  -0.023
## 7    0.461 0.042 10.986  0.000    0.384    0.546   0.461   0.843   0.843
## 8    3.290 1.536  2.142  0.032    0.275    6.211   3.290   2.562   2.562
## 9   -0.395 0.886 -0.446  0.655   -2.222    1.342  -0.395  -0.563  -0.563
## 10   3.673 0.060 60.861  0.000    3.553    3.784   3.673   3.820   3.820
## 11   0.924 0.081 11.469  0.000    0.785    1.101   0.924   1.000   1.000
## 12   0.763 0.060 12.821  0.000    0.656    0.889   0.763   0.463   0.463
## 13   0.262 0.022 11.981  0.000    0.227    0.321   0.262   0.532   0.532
## 14   8.083 0.000     NA     NA    8.083    8.083   8.083   1.000   8.083
## 15  20.272 0.000     NA     NA   20.272   20.272  20.272   0.399  20.272
## 16 319.186 0.000     NA     NA  319.186  319.186 319.186   1.000 319.186
## 17  16.717 0.000     NA     NA   16.717   16.717  16.717   5.880  16.717
## 18  60.825 0.000     NA     NA   60.825   60.825  60.825   3.405  60.825
## 19   0.014 0.011  1.278  0.201   -0.006    0.035   0.014   0.346   0.019
## 20   0.022 0.015  1.494  0.135   -0.007    0.052   0.022   0.917   0.034
## 21   0.035 0.010  3.423  0.001    0.016    0.056   0.035   1.263   0.053
## 22   0.048 0.014  3.452  0.001    0.022    0.077   0.048   1.608   0.073
## 23   0.048 0.017  2.807  0.005    0.016    0.084   0.048  -0.792   0.065
## 24   0.032 0.013  2.556  0.011    0.007    0.058   0.032  -1.205   0.042
## 25   0.016 0.019  0.873  0.383   -0.019    0.053   0.016  -1.618   0.019