# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062312735 -0.0029353763  0.0366065391  0.052133049  4.992337e-02
## 2013-02-28  0.0058907812 -0.0231055176 -0.0129694909  0.016175220  1.267788e-02
## 2013-03-28  0.0009854119 -0.0102349254  0.0129694909  0.040258353  3.726848e-02
## 2013-04-30  0.0096391593  0.0120847586  0.0489675653  0.001222415  1.903006e-02
## 2013-05-31 -0.0202134933 -0.0494834727 -0.0306554910  0.041976528  2.333494e-02
## 2013-06-28 -0.0157788157 -0.0547281830 -0.0271443834 -0.001402985 -1.343417e-02
## 2013-07-31  0.0026876436  0.0131596671  0.0518602788  0.063541191  5.038606e-02
## 2013-08-30 -0.0082982009 -0.0257054565 -0.0197464131 -0.034743351 -3.045128e-02
## 2013-09-30  0.0111438611  0.0695886777  0.0753386770  0.063873735  3.115566e-02
## 2013-10-31  0.0082924297  0.0408611570  0.0320816681  0.034234128  4.526648e-02
## 2013-11-29 -0.0025098862 -0.0025938766  0.0054496043  0.041661092  2.920734e-02
## 2013-12-31 -0.0055828015 -0.0040747246  0.0215278748  0.012892093  2.559607e-02
## 2014-01-31  0.0152912566 -0.0903222937 -0.0534130865 -0.035775366 -3.588472e-02
## 2014-02-28  0.0037564620  0.0332205063  0.0595048209  0.045257593  4.451045e-02
## 2014-03-31 -0.0014813479  0.0380215122 -0.0046024341  0.013315169  8.261378e-03
## 2014-04-30  0.0081831575  0.0077729821  0.0165293020 -0.023184190  6.927395e-03
## 2014-05-30  0.0117221889  0.0290910772  0.0158287428  0.006205175  2.294163e-02
## 2014-06-30 -0.0005760663  0.0237337591  0.0091651609  0.037718818  2.043398e-02
## 2014-07-31 -0.0025119898  0.0135559112 -0.0263798044 -0.052009490 -1.352847e-02
## 2014-08-29  0.0114305404  0.0279043981  0.0018004841  0.043657941  3.870483e-02
## 2014-09-30 -0.0061672476 -0.0808565497 -0.0395984640 -0.061260360 -1.389240e-02
## 2014-10-31  0.0105848216  0.0140964715 -0.0026547526  0.068874579  2.327776e-02
## 2014-11-28  0.0065487321 -0.0155414192  0.0006253047  0.004773810  2.710157e-02
## 2014-12-31  0.0014749044 -0.0404421914 -0.0407468108  0.025296152 -2.539968e-03
## 2015-01-30  0.0203152625 -0.0068955068  0.0062265285 -0.054627936 -3.007685e-02
## 2015-02-27 -0.0089887403  0.0431359184  0.0614505640  0.056914160  5.468184e-02
## 2015-03-31  0.0037407952 -0.0150863480 -0.0143887049  0.010156715 -1.583047e-02
## 2015-04-30 -0.0032332190  0.0662816421  0.0358165244 -0.018417983  9.786266e-03
## 2015-05-29 -0.0043838757 -0.0419110934  0.0019528496  0.007509799  1.277413e-02
## 2015-06-30 -0.0108257937 -0.0297467198 -0.0316788122  0.004171549 -2.052125e-02
## 2015-07-31  0.0085856074 -0.0651779413  0.0201144482 -0.027375561  2.233777e-02
## 2015-08-31 -0.0033640090 -0.0925122874 -0.0771525733 -0.047268521 -6.288673e-02
## 2015-09-30  0.0080814781 -0.0318251679 -0.0451947566 -0.038464443 -2.584712e-02
## 2015-10-30  0.0006853730  0.0618083383  0.0640256953  0.063589762  8.163506e-02
## 2015-11-30 -0.0038988043 -0.0255604791 -0.0075557112  0.024415234  3.648189e-03
## 2015-12-31 -0.0019186143 -0.0389470315 -0.0235952734 -0.052156971 -1.743325e-02
## 2016-01-29  0.0123297409 -0.0516368651 -0.0567578185 -0.060307020 -5.106900e-02
## 2016-02-29  0.0088315931 -0.0082114400 -0.0339138230  0.020605318 -8.261215e-04
## 2016-03-31  0.0087089249  0.1218790760  0.0637458677  0.089910366  6.510028e-02
## 2016-04-29  0.0025462471  0.0040792259  0.0219749858  0.021044190  3.933665e-03
## 2016-05-31  0.0001357085 -0.0376285571 -0.0008560276  0.004397177  1.686812e-02
## 2016-06-30  0.0191667009  0.0445823534 -0.0244915750  0.008292207  3.469884e-03
## 2016-07-29  0.0054293851  0.0524423020  0.0390001722  0.049348568  3.582176e-02
## 2016-08-31 -0.0021560021  0.0087983415  0.0053269936  0.011260866  1.197111e-03
## 2016-09-30  0.0005163619  0.0248729273  0.0132790411  0.008614676  5.783828e-05
## 2016-10-31 -0.0082058736 -0.0083119022 -0.0224036697 -0.038134756 -1.748868e-02
## 2016-11-30 -0.0259892951 -0.0451619084 -0.0179745375  0.125246602  3.617576e-02
## 2016-12-30  0.0025377652 -0.0025303202  0.0267029082  0.031491450  2.006893e-02
## 2017-01-31  0.0021263934  0.0644315990  0.0323819073 -0.012143607  1.773681e-02
## 2017-02-28  0.0064378615  0.0172579629  0.0118366069  0.013428500  3.853926e-02
## 2017-03-31 -0.0005528840  0.0361887280  0.0318055250 -0.006532869  1.248711e-03
## 2017-04-28  0.0090289695  0.0168666612  0.0239523250  0.005107842  9.877422e-03
## 2017-05-31  0.0068472512  0.0280597349  0.0348102548 -0.022862536  1.401435e-02
## 2017-06-30 -0.0001822202  0.0092237253  0.0029559201  0.029151516  6.354760e-03
## 2017-07-31  0.0033342728  0.0565945276  0.0261877950  0.007481576  2.034581e-02
## 2017-08-31  0.0093691804  0.0232439074 -0.0004482411 -0.027564995  2.913450e-03
## 2017-09-29 -0.0057324614 -0.0004464664  0.0233427009  0.082322097  1.994902e-02
## 2017-10-31  0.0009782064  0.0322788034  0.0166536351  0.005916019  2.329065e-02
## 2017-11-30 -0.0014838855 -0.0038970433  0.0068700624  0.036913166  3.010819e-02
## 2017-12-29  0.0047401547  0.0369252818  0.0133982941 -0.003731369  1.205500e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398413e-05 0.0001042099 4.178279e-05 -7.811976e-05 -9.030138e-06
## EEM  1.042099e-04 0.0017547093 1.039016e-03  6.437704e-04  6.795438e-04
## EFA  4.178279e-05 0.0010390159 1.064236e-03  6.490291e-04  6.975415e-04
## IJS -7.811976e-05 0.0006437704 6.490291e-04  1.565450e-03  8.290231e-04
## SPY -9.030138e-06 0.0006795438 6.975415e-04  8.290231e-04  7.408297e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##           [,1]
## [1,] 0.0234749
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874148 0.009257137 0.005815633 0.005684462 0.002330252
rowSums(component_contribution)
## [1] 0.0234749
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062312735 -0.0029353763  0.0366065391  0.052133049  4.992337e-02
## 2013-02-28  0.0058907812 -0.0231055176 -0.0129694909  0.016175220  1.267788e-02
## 2013-03-28  0.0009854119 -0.0102349254  0.0129694909  0.040258353  3.726848e-02
## 2013-04-30  0.0096391593  0.0120847586  0.0489675653  0.001222415  1.903006e-02
## 2013-05-31 -0.0202134933 -0.0494834727 -0.0306554910  0.041976528  2.333494e-02
## 2013-06-28 -0.0157788157 -0.0547281830 -0.0271443834 -0.001402985 -1.343417e-02
## 2013-07-31  0.0026876436  0.0131596671  0.0518602788  0.063541191  5.038606e-02
## 2013-08-30 -0.0082982009 -0.0257054565 -0.0197464131 -0.034743351 -3.045128e-02
## 2013-09-30  0.0111438611  0.0695886777  0.0753386770  0.063873735  3.115566e-02
## 2013-10-31  0.0082924297  0.0408611570  0.0320816681  0.034234128  4.526648e-02
## 2013-11-29 -0.0025098862 -0.0025938766  0.0054496043  0.041661092  2.920734e-02
## 2013-12-31 -0.0055828015 -0.0040747246  0.0215278748  0.012892093  2.559607e-02
## 2014-01-31  0.0152912566 -0.0903222937 -0.0534130865 -0.035775366 -3.588472e-02
## 2014-02-28  0.0037564620  0.0332205063  0.0595048209  0.045257593  4.451045e-02
## 2014-03-31 -0.0014813479  0.0380215122 -0.0046024341  0.013315169  8.261378e-03
## 2014-04-30  0.0081831575  0.0077729821  0.0165293020 -0.023184190  6.927395e-03
## 2014-05-30  0.0117221889  0.0290910772  0.0158287428  0.006205175  2.294163e-02
## 2014-06-30 -0.0005760663  0.0237337591  0.0091651609  0.037718818  2.043398e-02
## 2014-07-31 -0.0025119898  0.0135559112 -0.0263798044 -0.052009490 -1.352847e-02
## 2014-08-29  0.0114305404  0.0279043981  0.0018004841  0.043657941  3.870483e-02
## 2014-09-30 -0.0061672476 -0.0808565497 -0.0395984640 -0.061260360 -1.389240e-02
## 2014-10-31  0.0105848216  0.0140964715 -0.0026547526  0.068874579  2.327776e-02
## 2014-11-28  0.0065487321 -0.0155414192  0.0006253047  0.004773810  2.710157e-02
## 2014-12-31  0.0014749044 -0.0404421914 -0.0407468108  0.025296152 -2.539968e-03
## 2015-01-30  0.0203152625 -0.0068955068  0.0062265285 -0.054627936 -3.007685e-02
## 2015-02-27 -0.0089887403  0.0431359184  0.0614505640  0.056914160  5.468184e-02
## 2015-03-31  0.0037407952 -0.0150863480 -0.0143887049  0.010156715 -1.583047e-02
## 2015-04-30 -0.0032332190  0.0662816421  0.0358165244 -0.018417983  9.786266e-03
## 2015-05-29 -0.0043838757 -0.0419110934  0.0019528496  0.007509799  1.277413e-02
## 2015-06-30 -0.0108257937 -0.0297467198 -0.0316788122  0.004171549 -2.052125e-02
## 2015-07-31  0.0085856074 -0.0651779413  0.0201144482 -0.027375561  2.233777e-02
## 2015-08-31 -0.0033640090 -0.0925122874 -0.0771525733 -0.047268521 -6.288673e-02
## 2015-09-30  0.0080814781 -0.0318251679 -0.0451947566 -0.038464443 -2.584712e-02
## 2015-10-30  0.0006853730  0.0618083383  0.0640256953  0.063589762  8.163506e-02
## 2015-11-30 -0.0038988043 -0.0255604791 -0.0075557112  0.024415234  3.648189e-03
## 2015-12-31 -0.0019186143 -0.0389470315 -0.0235952734 -0.052156971 -1.743325e-02
## 2016-01-29  0.0123297409 -0.0516368651 -0.0567578185 -0.060307020 -5.106900e-02
## 2016-02-29  0.0088315931 -0.0082114400 -0.0339138230  0.020605318 -8.261215e-04
## 2016-03-31  0.0087089249  0.1218790760  0.0637458677  0.089910366  6.510028e-02
## 2016-04-29  0.0025462471  0.0040792259  0.0219749858  0.021044190  3.933665e-03
## 2016-05-31  0.0001357085 -0.0376285571 -0.0008560276  0.004397177  1.686812e-02
## 2016-06-30  0.0191667009  0.0445823534 -0.0244915750  0.008292207  3.469884e-03
## 2016-07-29  0.0054293851  0.0524423020  0.0390001722  0.049348568  3.582176e-02
## 2016-08-31 -0.0021560021  0.0087983415  0.0053269936  0.011260866  1.197111e-03
## 2016-09-30  0.0005163619  0.0248729273  0.0132790411  0.008614676  5.783828e-05
## 2016-10-31 -0.0082058736 -0.0083119022 -0.0224036697 -0.038134756 -1.748868e-02
## 2016-11-30 -0.0259892951 -0.0451619084 -0.0179745375  0.125246602  3.617576e-02
## 2016-12-30  0.0025377652 -0.0025303202  0.0267029082  0.031491450  2.006893e-02
## 2017-01-31  0.0021263934  0.0644315990  0.0323819073 -0.012143607  1.773681e-02
## 2017-02-28  0.0064378615  0.0172579629  0.0118366069  0.013428500  3.853926e-02
## 2017-03-31 -0.0005528840  0.0361887280  0.0318055250 -0.006532869  1.248711e-03
## 2017-04-28  0.0090289695  0.0168666612  0.0239523250  0.005107842  9.877422e-03
## 2017-05-31  0.0068472512  0.0280597349  0.0348102548 -0.022862536  1.401435e-02
## 2017-06-30 -0.0001822202  0.0092237253  0.0029559201  0.029151516  6.354760e-03
## 2017-07-31  0.0033342728  0.0565945276  0.0261877950  0.007481576  2.034581e-02
## 2017-08-31  0.0093691804  0.0232439074 -0.0004482411 -0.027564995  2.913450e-03
## 2017-09-29 -0.0057324614 -0.0004464664  0.0233427009  0.082322097  1.994902e-02
## 2017-10-31  0.0009782064  0.0322788034  0.0166536351  0.005916019  2.329065e-02
## 2017-11-30 -0.0014838855 -0.0038970433  0.0068700624  0.036913166  3.010819e-02
## 2017-12-29  0.0047401547  0.0369252818  0.0133982941 -0.003731369  1.205500e-02
cal_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
   
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}

asset_returns_wide_tbl %>% cal_component_contribution(w = c(.25, .25, .2, .2, .1 ))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>%
    
    cal_component_contribution(w = c(.25, .25, .2, .2, .1 )) %>%
    
    # Transform to long from
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") 

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Component Contribution and Weight

plot_data <- asset_returns_wide_tbl %>%
    
    cal_component_contribution(w = c(.25, .25, .2, .2, .1 )) %>%
    
    # Transform to long from
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
    # Add Weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() +
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight",
         y = "percent",
         x = NULL)

## 6 Rolling Component Contribution