\[ \int { 4{ e }^{ -7x }dx } \] Selecting \(u\) to be the \(g(x)\) inside \(f(g(x))\)
\[ u=-7x\\ du=-7dx\\ -\frac{du}{7}=dx \]
Substitute \(dx\) with \(du\) (reverse chain rule)
\[ \frac{-4}{7} \int { { e }^{ u }du } \\ = \frac{-4}{7}e^{u}+C\\ = \frac{-4}{7}e^{-7x}+C \]
Answer: \(\frac{-4}{7}e^{-7x}+C\)
\[ \frac{dN}{dt}=\frac{-3150}{t^{4}}-220 \]
\[ \int {(\frac{-3150}{t^{4}}-220)dt}\\ \int {(-3150{t^{-4}}-220)dt}\\ \int-3150t^{-4}dt - \int -220dt\\ -3150\int t^{-4}dt - 220\int dt\\ -3150 \frac{-1}{3} t^{-3} - 220t\\ N(t)= \frac{1050}{t^{3}}-220t+c \]
\[ \frac{dN}{dt} = N'(t) = \frac{-3150}{t^4}-220 \\ \int{(\frac{-3150}{t^4}-220) dt} = \frac{1050}{t^3}-220t+C = N(t) \]
\[ \begin{split} N(t) &= \frac{1050}{t^3}-220t+C \\ N(1) &= 6530 \\ \frac{1050}{1^3}-220\times 1 +C &= 6530 \\ C &= 6530 - 1050 + 220 \\ C &= 5700 \\ &N(t) = \frac{1050}{t^3}-220t+5700 \end{split} \]
Answer: \(N(t) = \frac{1050}{t^3}-220t+5700\)
\[ f(x)=2x-9 \]
knitr::include_graphics("/Users/mohamedhassan/Downloads/hw13_image.png")
When looking at the figure, the red rectangles on the x-axis begin at 4.5 and end at 8.5.
\(Area = \int_{4.5}^{8.5}{(2x-9)dx} = 16\)
\[ \begin{split} \int_{4.5}^{8.5}{(2x-9)dx} \\ = x^2 - 9x|_{4.5}^{8.5} \\ Area = (8.5^2−9(8.5))−(4.5^2−9(4.5)) \\ A = (72.25−76.5)−(20.25−40.5) \\ A = (−4.25)−(−20.25) \\ A = 16 \end{split} \]
\[y = x^2 - 2x - 2, y = x + 2\]
equation1 <- function(x) x^2-2*x-2
equation2 <- function(x) x+2
min <- -2
max <- 5
x1 <- seq(min, max, 0.05)
plot(x1, equation1(x1), type='l', col="red",
xlab="", ylab="")
lines(x1, equation2(x1), col="blue")
abline(h=0)
Roots of quadratic function \(f_1(x)\):
root <- polyroot(c(-2, -2, 1))
root
## [1] -0.7320508+0i 2.7320508-0i
Finding intersection between each function where \(f_1(x)-f_2(x)=0\):
\[ (x^2-2x-2)-(x+2)=0 \\ x^2-3x-4=0 \] Finding root of \(x^2-3x-4\):
intersection <- polyroot(c(-4, -3, 1))
intersection
## [1] -1+0i 4-0i
The intersection occurs where \(x =-1\) and \(x = 4\)
Plotting the four points we calculated using the polyroot function:
four_points <- c(intersection[1], root, intersection[2])
four_points
## [1] -1.0000000+0i -0.7320508+0i 2.7320508-0i 4.0000000-0i
plot(x1, equation1(x1), type='l', col="red",
xlab="", ylab="")
lines(x1, equation2(x1), col="blue")
points(four_points, equation1(four_points))
text(four_points, equation1(four_points), labels = c("a","b","c","d"), pos = 3)
abline(h=0)
a1 <- integrate(equation2, lower=four_points[1], upper=four_points[4])
a2 <- integrate(equation1, lower=four_points[1], upper=four_points[2])
a3 <- integrate(equation1, lower=four_points[3], upper=four_points[4])
a4 <- integrate(equation1, lower=four_points[2], upper=four_points[3])
a1
## 17.5 with absolute error < 1.9e-13
a2
## 0.1307683 with absolute error < 1.5e-15
a3
## 3.464102 with absolute error < 3.8e-14
a4
## -6.928203 with absolute error < 7.7e-14
# Combining the results
area <- a1$value-a2$value-a3$value-a4$value
area
## [1] 20.83333
Area of the region bounded by the graphs of the given equations: 20.83333
\[ \begin{split} f'(x) &= 1.875-\frac{907.5}{x^2} \\ f'(x) &= 0 \\ 1.875-\frac{907.5}{x^2} &= 0 \\ 1.875&= \frac{907.5}{x^2} \\ 1.875x^2&= 907.5 \\ x^2&= \frac{907.5}{1.875} \\ x&= \sqrt{\frac{907.5}{1.875}} \\ x&=\sqrt{484} \\ x&=22 \\ &110/22 = 5 \end{split} \]
To sell 110 flat irons during the next year, the lot size is 22 and the number of orders per year is 5.
\[\int{ln(9x) \times x^6 dx}\]
\[ uv-\int vdu \\ u=ln(9x)\\ du=\frac{1}{x}dx\\ dv=x^{6}\\ v=\frac{1}{7}x^{7} \]
\[ \frac{x^{7}ln(9x)}{7}-\int \frac{1}{7}x^{7}\frac{1}{x}dx\\ = \frac{x^{7}ln(9x)}{7}-\frac{1}{7} \int \frac{x^{7}}{x}dx\\ = \frac{x^{7}ln(9x)}{7}-\frac{1}{7}\int x^{6}dx\\ = \frac{x^{7}ln(9x)}{7}-\frac{1}{7}(\frac{x^{7}}{7})+C\\ = \frac{x^{7}ln(9x)}{7}-\frac{x^{7}}{49}+C \]
Answer: \(\frac{x^{7}ln(9x)}{7}-\frac{x^{7}}{49}+C\)
\[f(x) = \frac{1}{6x}\]
\[ \begin{split} \int_1^{e^6}\frac{1}{6x} dx &= \frac{1}{6} ln(x)|_1^{e^6} \\ &= \frac{1}{6} ln(e^6) - \frac{1}{6} ln(1) \\ &= \frac{1}{6} \times 6 - \frac{1}{6} \times 0 \\ &= 1 \end{split} \]
\(f(x)\) is a probability density function on the interval \([1,e^6]\)