Cargar librería y dataset

library(ggplot2)
library(MASS)
library(openxlsx)

dbFish <- read.csv("C:\\Users\\alfon\\Downloads\\Fish.csv")
#View(dbFish)

LDA

dis=lda(Weight~Length1+Height+Width, data=dbFish)
dis
## Call:
## lda(Weight ~ Length1 + Height + Width, data = dbFish)
## 
## Prior probabilities of groups:
##           0         5.9         6.7           7         7.5         8.7 
## 0.006289308 0.006289308 0.006289308 0.006289308 0.006289308 0.006289308 
##         9.7         9.8         9.9          10        12.2        13.4 
## 0.006289308 0.012578616 0.006289308 0.006289308 0.012578616 0.006289308 
##        19.7        19.9          32          40        51.5          55 
## 0.006289308 0.006289308 0.006289308 0.012578616 0.006289308 0.006289308 
##          60          69          70          78          80          85 
## 0.006289308 0.006289308 0.006289308 0.012578616 0.006289308 0.012578616 
##          87          90         100         110         115         120 
## 0.006289308 0.006289308 0.006289308 0.018867925 0.006289308 0.031446541 
##         125         130         135         140         145         150 
## 0.006289308 0.018867925 0.006289308 0.012578616 0.025157233 0.025157233 
##         160         161         169         170         180         188 
## 0.012578616 0.006289308 0.006289308 0.012578616 0.012578616 0.006289308 
##         197         200         218         225         242         250 
## 0.006289308 0.018867925 0.006289308 0.006289308 0.006289308 0.012578616 
##         260         265         270         272         273         290 
## 0.006289308 0.006289308 0.012578616 0.006289308 0.006289308 0.012578616 
##         300         306         320         340         345         363 
## 0.037735849 0.006289308 0.006289308 0.012578616 0.006289308 0.006289308 
##         390         430         450         456         475         500 
## 0.012578616 0.012578616 0.012578616 0.006289308 0.006289308 0.031446541 
##         510         514         540         556         567         575 
## 0.006289308 0.006289308 0.012578616 0.006289308 0.006289308 0.006289308 
##         600         610         620         650         680         685 
## 0.012578616 0.006289308 0.006289308 0.012578616 0.006289308 0.012578616 
##         690         700         714         720         725         770 
## 0.006289308 0.031446541 0.006289308 0.006289308 0.006289308 0.006289308 
##         800         820         840         850         900         920 
## 0.006289308 0.012578616 0.006289308 0.012578616 0.012578616 0.006289308 
##         925         950         955         975        1000        1015 
## 0.006289308 0.012578616 0.006289308 0.006289308 0.031446541 0.006289308 
##        1100        1250        1550        1600        1650 
## 0.012578616 0.006289308 0.006289308 0.006289308 0.006289308 
## 
## Group means:
##       Length1    Height    Width
## 0    19.00000  6.475200 3.351600
## 5.9   7.50000  2.112000 1.408000
## 6.7   9.30000  1.738800 1.047600
## 7    10.10000  1.728400 1.148400
## 7.5  10.00000  1.972000 1.160000
## 8.7  10.80000  1.978200 1.285200
## 9.7  10.40000  2.196000 1.380000
## 9.8  11.05000  2.143800 1.212800
## 9.9  11.30000  2.213900 1.165900
## 10   11.30000  2.213900 1.283800
## 12.2 11.80000  2.183700 1.324700
## 13.4 11.70000  2.430000 1.269000
## 19.7 13.20000  2.872800 2.067200
## 19.9 13.80000  2.932200 1.879200
## 32   12.50000  3.528000 1.999200
## 40   13.35000  3.985600 2.350000
## 51.5 15.00000  4.592400 2.631600
## 55   13.50000  6.847500 2.326500
## 60   14.30000  6.577200 2.314200
## 69   16.50000  5.298300 2.821700
## 70   15.70000  4.588000 2.941500
## 78   17.15000  5.387400 3.013900
## 80   17.20000  5.635800 3.050200
## 85   18.00000  5.109800 2.904400
## 87   18.20000  5.616600 3.174600
## 90   16.30000  7.405200 2.673000
## 100  16.20000  5.222400 3.321600
## 110  19.36667  5.794233 3.648567
## 115  19.00000  5.917500 3.307500
## 120  19.10000  6.494560 3.343820
## 125  19.00000  5.692500 3.667500
## 130  19.93333  6.116667 3.561000
## 135  20.00000  5.875000 3.525000
## 140  20.00000  7.543800 3.309700
## 145  20.75000  7.174625 3.539975
## 150  20.07500  6.676950 3.574300
## 160  20.80000  6.716700 3.810150
## 161  22.00000  6.915300 3.631200
## 169  22.00000  7.534400 3.835200
## 170  20.25000  7.835500 3.567700
## 180  23.30000  6.763050 3.794750
## 188  22.60000  6.733400 4.165800
## 197  23.50000  6.561000 4.239000
## 200  24.43333  7.770200 3.722133
## 218  25.00000  7.168000 4.144000
## 225  22.00000  7.293000 3.723000
## 242  23.20000 11.520000 4.020000
## 250  25.65000  7.551600 4.385200
## 260  25.40000  7.167200 4.335000
## 265  25.40000  7.051600 4.335000
## 270  23.85000  8.262900 4.248050
## 272  25.00000  8.568000 4.773600
## 273  23.00000 11.088000 4.144000
## 290  24.00000 10.678400 4.401200
## 300  29.21667  7.534800 4.428150
## 306  25.60000  8.778000 4.681600
## 320  27.80000  7.615600 4.771600
## 340  26.70000 13.145350 4.884450
## 345  36.00000  6.396000 3.977000
## 363  26.30000 12.730000 4.455500
## 390  28.55000 11.077500 5.022500
## 430  31.00000  9.867000 4.855250
## 450  27.20000 13.803650 4.885600
## 456  40.00000  7.280000 4.322500
## 475  28.40000 14.262800 5.104200
## 500  31.02000 12.699340 4.863300
## 510  40.00000  6.825000 4.459000
## 514  30.50000 10.030000 6.018000
## 540  34.30000  9.265000 5.845800
## 556  32.00000 10.256500 6.387500
## 567  43.20000  7.792000 4.870000
## 575  31.30000 15.128500 5.569500
## 600  29.40000 15.196200 5.375400
## 610  30.90000 15.633000 5.133800
## 620  31.50000 15.522700 5.280100
## 650  33.75000 12.805200 5.865300
## 680  31.80000 15.468600 6.130600
## 685  32.70000 13.437300 6.117200
## 690  34.60000 10.571700 6.366600
## 700  32.24000 13.496600 5.815460
## 714  32.70000 16.517000 5.851500
## 720  32.00000 16.361800 6.090000
## 725  31.80000 16.360000 6.053200
## 770  44.80000  7.680000 5.376000
## 800  33.70000 11.761200 6.573600
## 820  36.85000 11.783150 6.990700
## 840  32.50000 11.488400 7.795700
## 850  34.85000 14.409100 6.652400
## 900  36.75000 11.433300 7.359200
## 920  35.00000 18.036900 6.306300
## 925  36.20000 18.754200 6.749700
## 950  43.15000 13.274850 6.270850
## 955  35.00000 18.084000 6.292000
## 975  37.40000 18.635400 6.747300
## 1000 38.38000 13.667320 7.228600
## 1015 37.00000 12.380800 7.462400
## 1100 39.55000 12.656350 7.142450
## 1250 52.00000 10.686300 6.984900
## 1550 56.00000  9.600000 6.144000
## 1600 56.00000  9.600000 6.144000
## 1650 59.00000 10.812000 7.480000
## 
## Coefficients of linear discriminants:
##               LD1         LD2        LD3
## Length1 0.5384087 -0.25657455 -0.0186646
## Height  0.8308561 -0.03914415 -0.3911215
## Width   2.1490208  1.55954891  0.9839690
## 
## Proportion of trace:
##    LD1    LD2    LD3 
## 0.9854 0.0096 0.0050
Nueva observación

Siguientes datos: Weight = 234 Length1 = 25.4 Length2 = 26.7 Length3 = 28.9 Height = 13.6040 Width = 4.043

Creamos la nueva observación:

nueva.observacion=rbind(c(234,25.4,26.7,28.9,13.6040,4.043))
colnames(nueva.observacion)=colnames(dbFish[,2:7])
nueva.observacion=data.frame(nueva.observacion)

Predecimos la nueva observación

predict(dis,newdata=nueva.observacion)
## $class
## [1] 363
## 101 Levels: 0 5.9 6.7 7 7.5 8.7 9.7 9.8 9.9 10 12.2 13.4 19.7 19.9 32 ... 1650
## 
## $posterior
##              0           5.9           6.7            7           7.5
## 1 1.882319e-27 5.503103e-136 7.983469e-137 4.54998e-130 3.618113e-128
##             8.7           9.7           9.8           9.9            10
## 1 5.620822e-121 2.826575e-119 2.209593e-119 1.042604e-118 3.088126e-116
##            12.2          13.4         19.7         19.9          32
## 1 1.086186e-112 1.438769e-112 1.484597e-86 1.493032e-86 4.54455e-86
##             40         51.5           55           60           69           70
## 1 6.244602e-73 2.189574e-58 1.295147e-54 2.185098e-53 2.561622e-46 8.651573e-52
##             78           80           85           87           90          100
## 1 3.782771e-41 1.344806e-39 4.469194e-41 2.625386e-35 1.116529e-37 3.507054e-42
##            110          115          120          125          130          135
## 1 1.695649e-26 2.611905e-30 1.795279e-26 3.010842e-28 2.311675e-24 5.770374e-26
##            140          145         150          160          161          169
## 1 1.009644e-20 2.149599e-18 1.52115e-21 1.948081e-18 1.131787e-16 1.733211e-13
##            170          180          188          197          200          218
## 1 2.939319e-17 2.015087e-13 3.294444e-13 7.368304e-12 5.582573e-09 2.156744e-08
##            225         242          250          260          265          270
## 1 7.216262e-15 0.008913682 8.837925e-06 2.725704e-07 1.512355e-07 9.297327e-07
##            272         273        290        300      306         320       340
## 1 0.0002112139 0.002977722 0.02461228 0.01952502 0.001128 0.001049191 0.0964333
##           345      363        390        430        450         456
## 1 0.001705241 0.694525 0.06915003 0.06127045 0.01743509 3.09031e-06
##            475        500         510          514          540         556
## 1 3.374597e-05 0.00101287 3.50529e-06 3.158402e-07 2.253797e-08 1.43945e-11
##            567          575          600          610          620          650
## 1 1.441549e-13 7.214832e-14 2.344302e-09 2.893202e-11 5.137265e-13 2.598034e-14
##            680          685          690          700          714          720
## 1 5.493094e-21 2.321498e-16 2.146273e-15 1.177359e-12 1.343954e-23 5.508574e-24
##            725          770          800          820          840         850
## 1 3.850365e-23 8.966812e-20 1.132511e-18 1.053505e-29 9.027014e-31 7.01217e-30
##            900        920          925          950          955          975
## 1 3.210172e-33 1.1139e-41 5.480154e-56 1.959502e-44 1.023816e-41 1.174618e-59
##           1000         1015         1100         1250         1550         1600
## 1 3.524249e-44 4.250051e-39 2.330139e-42 2.037379e-76 1.164192e-74 1.164192e-74
##           1650
## 1 1.89356e-122
## 
## $x
##        LD1        LD2       LD3
## 1 2.588461 -0.5480214 -2.164739