Task 3

library(psych)
library(plm)
library(lmtest)
library(sandwich)
library(ggplot2)
library(dplyr)
library(GGally)
library(car)
data <- read.csv('handguns.csv')
df <- pdata.frame(data, index = c("state", "year"))
reg1 <- plm(log(vio) ~ shall, data = df, model = "pooling")
vcov1 <- vcovHC(reg1, method = "arellano", type = "HC1", cluster = "group")
coeftest(reg1, vcov = vcov1)

t test of coefficients:

             Estimate Std. Error t value  Pr(>|t|)    
(Intercept)  6.134919   0.078282  78.370 < 2.2e-16 ***
shall       -0.442965   0.155538  -2.848  0.004477 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
reg2 <- plm(log(vio) ~ shall + incarc_rate + density + avginc + pop + pb1064 + pw1064 + pm1029, data=df, model = "pooling")
vcov2 <- vcovHC(reg2, method = "arellano", type = "HC1", cluster = "group")
coeftest(reg2, vcov = vcov2)

t test of coefficients:

               Estimate  Std. Error t value  Pr(>|t|)    
(Intercept)  2.98173825  2.14608239  1.3894 0.1649809    
shall       -0.36838695  0.11286253 -3.2640 0.0011303 ** 
incarc_rate  0.00161263  0.00059429  2.7135 0.0067551 ** 
density      0.02668847  0.04109968  0.6494 0.5162340    
avginc       0.00120512  0.02385371  0.0505 0.9597156    
pop          0.04270983  0.01161835  3.6761 0.0002477 ***
pb1064       0.08085260  0.07071429  1.1434 0.2531201    
pw1064       0.03120051  0.03376852  0.9240 0.3557025    
pm1029       0.00887088  0.03377483  0.2626 0.7928686    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
  1. The coefficient is \(-0.368\) means that if such parameters as the incarceration rate in the state in previous year, population density, average income, population, percentage of population that is male and aged from 10 to 29, percentage of population that is white and aged from 10 to 64, percentage of population that is black and aged from 10 to 64 are held constant, then having “shall-issue” laws decreases the violence by \(36.8\)%, which is significant in real-life sense.

  2. In the regression (i) the coefficient equals to \(-0.4429\), which means that the estimated decrease is \(44.3\)%. In the regression (ii) the coefficient equals to \(-0.368\), which means that the estimated decrease is \(36.8\)%. Both coefficients are significant at 5% level and thus the difference in the results might be explained by omitted variable biases. In both regressions an estimated decrease of violent crimes due to introduction of “shall-issue” laws is significant. Moreover, the difference between coefficients in these models is \(7.5\) percent points, which is relatively high in real-life sense.

  3. We can think of additional state specific laws that bring more restrictions on having a weapon or on the contrary make it easier to get one. These laws almost don’t vary over years but they are different in each state. An introduction of these additional laws affects crime rate since more or less strict laws affect people’s behavior and at the same time it correlates with shall variable, because it directly affects how many people are able to get a weapon.

Task 4

Table 1

reg3 <- plm(log(vio) ~ shall + incarc_rate + density + avginc + pop + pw1064 + pb1064 + pm1029, data = df, model = "within", effect = "individual")
vcov3 <- vcovHC(reg3, method = "arellano", type = "HC1", cluster = "group")
coeftest(reg3, vcov = vcov3)

t test of coefficients:

               Estimate  Std. Error t value Pr(>|t|)   
shall       -4.6142e-02  4.1350e-02 -1.1159 0.264716   
incarc_rate -7.1008e-05  2.4788e-04 -0.2865 0.774581   
density     -1.7229e-01  1.3626e-01 -1.2645 0.206332   
avginc      -9.2037e-03  1.2837e-02 -0.7170 0.473547   
pop          1.1525e-02  1.4084e-02  0.8183 0.413367   
pw1064       4.0861e-02  1.3326e-02  3.0663 0.002219 **
pb1064       1.0428e-01  3.2363e-02  3.2222 0.001309 **
pm1029      -5.0273e-02  2.0491e-02 -2.4534 0.014303 * 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
pFtest(reg3, reg2)

    F test for individual effects

data:  log(vio) ~ shall + incarc_rate + density + avginc + pop + pw1064 +  ...
F = 142.57, df1 = 50, df2 = 1114, p-value < 2.2e-16
alternative hypothesis: significant effects
reg4 <- plm(log(vio) ~ shall + incarc_rate + density + avginc + pop + pw1064 + pb1064 + pm1029 + factor(year), data = df, model = "within", effect = "individual")
vcov4 <- vcovHC(reg4, method = "arellano", type = "HC1", cluster = "group")
coeftest(reg4, vcov = vcov4)

t test of coefficients:

                  Estimate  Std. Error t value  Pr(>|t|)    
shall          -2.7994e-02  4.0315e-02 -0.6944 0.4876001    
incarc_rate     7.5995e-05  2.0584e-04  0.3692 0.7120521    
density        -9.1555e-02  1.2264e-01 -0.7465 0.4555075    
avginc          9.5865e-04  1.6330e-02  0.0587 0.9531993    
pop            -4.7544e-03  1.5079e-02 -0.3153 0.7525956    
pw1064          9.2501e-03  2.3522e-02  0.3933 0.6942092    
pb1064          2.9186e-02  4.9052e-02  0.5950 0.5519639    
pm1029          7.3325e-02  5.1956e-02  1.4113 0.1584397    
factor(year)78  5.8526e-02  1.5996e-02  3.6588 0.0002656 ***
factor(year)79  1.6395e-01  2.4217e-02  6.7701 2.098e-11 ***
factor(year)80  2.1708e-01  3.3089e-02  6.5604 8.268e-11 ***
factor(year)81  2.1726e-01  3.8809e-02  5.5981 2.741e-08 ***
factor(year)82  1.9463e-01  4.6115e-02  4.2206 2.639e-05 ***
factor(year)83  1.5864e-01  5.8799e-02  2.6981 0.0070812 ** 
factor(year)84  1.9299e-01  7.6243e-02  2.5312 0.0115054 *  
factor(year)85  2.4448e-01  9.1312e-02  2.6774 0.0075314 ** 
factor(year)86  3.2409e-01  1.0784e-01  3.0052 0.0027148 ** 
factor(year)87  3.2437e-01  1.2376e-01  2.6210 0.0088885 ** 
factor(year)88  3.8674e-01  1.3833e-01  2.7958 0.0052679 ** 
factor(year)89  4.4221e-01  1.5202e-01  2.9089 0.0037006 ** 
factor(year)90  5.4305e-01  1.9415e-01  2.7970 0.0052481 ** 
factor(year)91  5.9595e-01  2.0206e-01  2.9494 0.0032516 ** 
factor(year)92  6.2752e-01  2.1489e-01  2.9202 0.0035702 ** 
factor(year)93  6.4974e-01  2.2240e-01  2.9215 0.0035555 ** 
factor(year)94  6.3542e-01  2.3094e-01  2.7514 0.0060321 ** 
factor(year)95  6.2768e-01  2.3997e-01  2.6157 0.0090280 ** 
factor(year)96  5.7134e-01  2.5091e-01  2.2771 0.0229726 *  
factor(year)97  5.5012e-01  2.5877e-01  2.1259 0.0337393 *  
factor(year)98  4.9329e-01  2.7195e-01  1.8139 0.0699627 .  
factor(year)99  4.3288e-01  2.8340e-01  1.5275 0.1269357    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
reg5 <- plm(log(vio) ~ shall + incarc_rate + density + avginc + pop + pw1064 + pb1064 + pm1029 + factor(year), data = df, model = "pooling", effect = "individual")
pFtest(reg4, reg5)

    F test for individual effects

data:  log(vio) ~ shall + incarc_rate + density + avginc + pop + pw1064 +  ...
F = 181.42, df1 = 50, df2 = 1092, p-value < 2.2e-16
alternative hypothesis: significant effects
linearHypothesis(reg4, matchCoefs(reg4, "year"), vcov = vcov4)
Linear hypothesis test

Hypothesis:
factor(year)78 = 0
factor(year)79 = 0
factor(year)80 = 0
factor(year)81 = 0
factor(year)82 = 0
factor(year)83 = 0
factor(year)84 = 0
factor(year)85 = 0
factor(year)86 = 0
factor(year)87 = 0
factor(year)88 = 0
factor(year)89 = 0
factor(year)90 = 0
factor(year)91 = 0
factor(year)92 = 0
factor(year)93 = 0
factor(year)94 = 0
factor(year)95 = 0
factor(year)96 = 0
factor(year)97 = 0
factor(year)98 = 0
factor(year)99 = 0

Model 1: restricted model
Model 2: log(vio) ~ shall + incarc_rate + density + avginc + pop + pw1064 + 
    pb1064 + pm1029 + factor(year)

Note: Coefficient covariance matrix supplied.

  Res.Df Df Chisq Pr(>Chisq)    
1   1114                        
2   1092 22 485.2  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 2

reg6 <- plm(log(rob) ~ shall, data = df, model = "pooling")
vcov6 <- vcovHC(reg6, method = "arellano", type = "HC1", cluster = "group")
coeftest(reg6, vcov = vcov6)

t test of coefficients:

            Estimate Std. Error t value  Pr(>|t|)    
(Intercept)  4.87305    0.11455 42.5393 < 2.2e-16 ***
shall       -0.77332    0.22311 -3.4662 0.0005471 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
reg7 <- plm(log(rob) ~ shall + incarc_rate + density + avginc + pop + pw1064 + pb1064 + pm1029, data = df, model = "pooling")
vcov7 <- vcovHC(reg7, method = "arellano", type = "HC1", cluster = "group")
coeftest(reg7, vcov = vcov7)

t test of coefficients:

               Estimate  Std. Error t value  Pr(>|t|)    
(Intercept)  0.90413831  3.03262931  0.2981 0.7656520    
shall       -0.52882023  0.15935939 -3.3184 0.0009333 ***
incarc_rate  0.00100573  0.00063404  1.5862 0.1129556    
density      0.09050478  0.04554604  1.9871 0.0471448 *  
avginc       0.04073249  0.02789125  1.4604 0.1444489    
pop          0.07781765  0.02230700  3.4885 0.0005039 ***
pw1064       0.02752086  0.04458436  0.6173 0.5371733    
pb1064       0.10218815  0.08856445  1.1538 0.2488075    
pm1029       0.02725647  0.04133195  0.6595 0.5097355    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
reg8 <- plm(log(rob) ~ shall + incarc_rate + density + avginc + pop + pw1064 + pb1064 + pm1029, data = df, model = "within", effect = "individual")
vcov8 <- vcovHC(reg8, method = "arellano", type = "HC1", cluster = "group")
coeftest(reg8, vcov = vcov8)

t test of coefficients:

               Estimate  Std. Error t value Pr(>|t|)  
shall       -7.8190e-03  5.4622e-02 -0.1431  0.88620  
incarc_rate -7.6342e-05  3.1786e-04 -0.2402  0.81024  
density     -1.8609e-01  1.6470e-01 -1.1299  0.25877  
avginc      -1.7519e-02  2.1818e-02 -0.8030  0.42216  
pop          1.6333e-02  2.7316e-02  0.5979  0.55000  
pw1064       2.7181e-02  1.6272e-02  1.6704  0.09513 .
pb1064       1.1154e-01  5.0650e-02  2.2022  0.02786 *
pm1029       1.1182e-02  2.8811e-02  0.3881  0.69801  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
pFtest(reg8, reg7)

    F test for individual effects

data:  log(rob) ~ shall + incarc_rate + density + avginc + pop + pw1064 +  ...
F = 164.06, df1 = 50, df2 = 1114, p-value < 2.2e-16
alternative hypothesis: significant effects
reg9 <- plm(log(rob) ~ shall + incarc_rate + density + avginc + pop + pw1064 + pb1064 + pm1029 + factor(year), data = df, model = "within", effect = "individual")
vcov9 <- vcovHC(reg9, method = "arellano", type = "HC1", cluster = "group")
coeftest(reg9, vcov = vcov9)

t test of coefficients:

                  Estimate  Std. Error t value  Pr(>|t|)    
shall           2.6830e-02  5.1661e-02  0.5193 0.6036242    
incarc_rate     3.1370e-05  3.4425e-04  0.0911 0.9274087    
density        -4.4745e-02  1.9626e-01 -0.2280 0.8196970    
avginc          1.4357e-02  2.4523e-02  0.5854 0.5583737    
pop             1.6388e-05  2.5682e-02  0.0006 0.9994910    
pw1064         -1.2832e-02  3.2439e-02 -0.3956 0.6924960    
pb1064          1.4108e-02  8.3232e-02  0.1695 0.8654348    
pm1029          1.0460e-01  7.2277e-02  1.4473 0.1481059    
factor(year)78  3.2850e-02  2.1476e-02  1.5296 0.1264015    
factor(year)79  1.3759e-01  3.1800e-02  4.3268 1.652e-05 ***
factor(year)80  2.4341e-01  4.5016e-02  5.4072 7.861e-08 ***
factor(year)81  2.7371e-01  5.0377e-02  5.4332 6.824e-08 ***
factor(year)82  2.1599e-01  6.3776e-02  3.3867 0.0007325 ***
factor(year)83  1.2082e-01  8.5851e-02  1.4073 0.1596326    
factor(year)84  7.8831e-02  1.0538e-01  0.7481 0.4545869    
factor(year)85  1.1315e-01  1.2601e-01  0.8980 0.3694062    
factor(year)86  1.8957e-01  1.5064e-01  1.2584 0.2085230    
factor(year)87  1.5722e-01  1.6722e-01  0.9402 0.3473427    
factor(year)88  1.9276e-01  1.8603e-01  1.0362 0.3003544    
factor(year)89  2.4873e-01  2.1195e-01  1.1736 0.2408270    
factor(year)90  3.5098e-01  2.6423e-01  1.3283 0.1843509    
factor(year)91  4.6685e-01  2.7642e-01  1.6889 0.0915220 .  
factor(year)92  4.6332e-01  2.9222e-01  1.5856 0.1131306    
factor(year)93  4.7970e-01  3.0519e-01  1.5718 0.1162908    
factor(year)94  4.9438e-01  3.2022e-01  1.5439 0.1229143    
factor(year)95  4.9402e-01  3.3055e-01  1.4945 0.1353297    
factor(year)96  4.3416e-01  3.4698e-01  1.2513 0.2111054    
factor(year)97  3.6524e-01  3.5464e-01  1.0299 0.3032928    
factor(year)98  2.6771e-01  3.6540e-01  0.7327 0.4639202    
factor(year)99  1.8947e-01  3.8075e-01  0.4976 0.6188516    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
reg10 <- plm(log(rob) ~ shall + incarc_rate + density + avginc + pop + pw1064 + pb1064 + pm1029 + factor(year), data = df, model = "pooling", effect = "individual")
pFtest(reg9, reg10)

    F test for individual effects

data:  log(rob) ~ shall + incarc_rate + density + avginc + pop + pw1064 +  ...
F = 174.38, df1 = 50, df2 = 1092, p-value < 2.2e-16
alternative hypothesis: significant effects
linearHypothesis(reg9, matchCoefs(reg9, "year"), vcov = vcov9)
Linear hypothesis test

Hypothesis:
factor(year)78 = 0
factor(year)79 = 0
factor(year)80 = 0
factor(year)81 = 0
factor(year)82 = 0
factor(year)83 = 0
factor(year)84 = 0
factor(year)85 = 0
factor(year)86 = 0
factor(year)87 = 0
factor(year)88 = 0
factor(year)89 = 0
factor(year)90 = 0
factor(year)91 = 0
factor(year)92 = 0
factor(year)93 = 0
factor(year)94 = 0
factor(year)95 = 0
factor(year)96 = 0
factor(year)97 = 0
factor(year)98 = 0
factor(year)99 = 0

Model 1: restricted model
Model 2: log(rob) ~ shall + incarc_rate + density + avginc + pop + pw1064 + 
    pb1064 + pm1029 + factor(year)

Note: Coefficient covariance matrix supplied.

  Res.Df Df  Chisq Pr(>Chisq)    
1   1114                         
2   1092 22 580.35  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 3

reg11 <- plm(log(mur) ~ shall, data = df, model = "pooling")
vcov11 <- vcovHC(reg11, method = "arellano", type = "HC1", cluster = "group")
coeftest(reg11, vcov = vcov11)

t test of coefficients:

             Estimate Std. Error t value  Pr(>|t|)    
(Intercept)  1.897556   0.092263 20.5669 < 2.2e-16 ***
shall       -0.473372   0.147464 -3.2101  0.001363 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
reg12 <- plm(log(mur) ~ shall + incarc_rate + density + avginc + pop + pw1064 + pb1064 + pm1029, data = df, model = "pooling")
vcov12 <- vcovHC(reg12, method = "arellano", type = "HC1", cluster = "group")
coeftest(reg12, vcov = vcov12)

t test of coefficients:

             Estimate Std. Error t value  Pr(>|t|)    
(Intercept) -2.485593   1.973297 -1.2596 0.2080610    
shall       -0.313174   0.098108 -3.1921 0.0014500 ** 
incarc_rate  0.002097   0.000456  4.5986 4.718e-06 ***
density      0.039667   0.039517  1.0038 0.3156848    
avginc      -0.077258   0.026789 -2.8839 0.0039997 ** 
pop          0.041617   0.011814  3.5229 0.0004435 ***
pw1064       0.047080   0.028322  1.6623 0.0967198 .  
pb1064       0.130764   0.060614  2.1573 0.0311859 *  
pm1029       0.065531   0.035823  1.8293 0.0676121 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
reg13 <- plm(log(mur) ~ shall + incarc_rate + density + avginc + pop + pw1064 + pb1064 + pm1029, data = df, model = "within", effect = "individual")
vcov13 <- vcovHC(reg13, method = "arellano", type = "HC1", cluster = "group")
coeftest(reg13, vcov = vcov13)

t test of coefficients:

               Estimate  Std. Error t value Pr(>|t|)  
shall       -0.06080998  0.03659889 -1.6615  0.09689 .
incarc_rate -0.00036000  0.00041898 -0.8592  0.39040  
density     -0.67071318  0.39187400 -1.7116  0.08726 .
avginc       0.02431136  0.01552339  1.5661  0.11761  
pop         -0.02570538  0.02014519 -1.2760  0.20222  
pw1064       0.01033127  0.01275067  0.8103  0.41797  
pb1064       0.03070086  0.07735459  0.3969  0.69153  
pm1029       0.03923836  0.02138361  1.8350  0.06678 .
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
pFtest(reg13, reg12)

    F test for individual effects

data:  log(mur) ~ shall + incarc_rate + density + avginc + pop + pw1064 +  ...
F = 62.003, df1 = 72, df2 = 1092, p-value < 2.2e-16
alternative hypothesis: significant effects
vcov14 <- vcovHC(reg14, method = "arellano", type = "HC1", cluster = "group")
coeftest(reg14, vcov = vcov14)

t test of coefficients:

                  Estimate  Std. Error t value  Pr(>|t|)    
shall          -0.01495237  0.03786313 -0.3949 0.6929895    
incarc_rate    -0.00011640  0.00035950 -0.3238 0.7461542    
density        -0.54426353  0.31607167 -1.7220 0.0853595 .  
avginc          0.05664917  0.01639211  3.4559 0.0005696 ***
pop            -0.03207693  0.02077490 -1.5440 0.1228724    
pw1064         -0.00048933  0.01990607 -0.0246 0.9803929    
pb1064          0.02198327  0.07506729  0.2928 0.7696943    
pm1029          0.06919411  0.04138223  1.6721 0.0947964 .  
factor(year)78 -0.00071950  0.03195386 -0.0225 0.9820399    
factor(year)79  0.05924812  0.03080724  1.9232 0.0547162 .  
factor(year)80  0.09018140  0.04065306  2.2183 0.0267383 *  
factor(year)81  0.10215430  0.05055996  2.0205 0.0435796 *  
factor(year)82  0.02240978  0.05761214  0.3890 0.6973693    
factor(year)83 -0.03143848  0.06343026 -0.4956 0.6202492    
factor(year)84 -0.13591915  0.07095514 -1.9156 0.0556815 .  
factor(year)85 -0.08661433  0.08485126 -1.0208 0.3075856    
factor(year)86 -0.01227518  0.09181401 -0.1337 0.8936675    
factor(year)87 -0.02903376  0.09895500 -0.2934 0.7692694    
factor(year)88 -0.01745941  0.11850879 -0.1473 0.8829020    
factor(year)89 -0.01456168  0.13080044 -0.1113 0.9113771    
factor(year)90  0.05999806  0.16334464  0.3673 0.7134593    
factor(year)91  0.10530717  0.17375992  0.6060 0.5446076    
factor(year)92  0.06810019  0.18103181  0.3762 0.7068576    
factor(year)93  0.15442971  0.18793912  0.8217 0.4114266    
factor(year)94  0.04426479  0.19524584  0.2267 0.8206893    
factor(year)95  0.05566014  0.19694628  0.2826 0.7775249    
factor(year)96 -0.01570898  0.21044014 -0.0746 0.9405083    
factor(year)97 -0.12218236  0.21651375 -0.5643 0.5726544    
factor(year)98 -0.18633807  0.23099549 -0.8067 0.4200299    
factor(year)99 -0.25542854  0.23965595 -1.0658 0.2867436    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
reg15 <- plm(log(mur) ~ shall + incarc_rate + density + avginc + pop + pw1064 + pb1064 + pm1029 + factor(year), data = df, model = "pooling")
pFtest(reg14, reg15)

    F test for individual effects

data:  log(mur) ~ shall + incarc_rate + density + avginc + pop + pw1064 +  ...
F = 76.862, df1 = 50, df2 = 1092, p-value < 2.2e-16
alternative hypothesis: significant effects
linearHypothesis(reg14, matchCoefs(reg14, "year"), vcov = vcov14)
Linear hypothesis test

Hypothesis:
factor(year)78 = 0
factor(year)79 = 0
factor(year)80 = 0
factor(year)81 = 0
factor(year)82 = 0
factor(year)83 = 0
factor(year)84 = 0
factor(year)85 = 0
factor(year)86 = 0
factor(year)87 = 0
factor(year)88 = 0
factor(year)89 = 0
factor(year)90 = 0
factor(year)91 = 0
factor(year)92 = 0
factor(year)93 = 0
factor(year)94 = 0
factor(year)95 = 0
factor(year)96 = 0
factor(year)97 = 0
factor(year)98 = 0
factor(year)99 = 0

Model 1: restricted model
Model 2: log(mur) ~ shall + incarc_rate + density + avginc + pop + pw1064 + 
    pb1064 + pm1029 + factor(year)

Note: Coefficient covariance matrix supplied.

  Res.Df Df  Chisq Pr(>Chisq)    
1   1114                         
2   1092 22 440.06  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
LS0tCnRpdGxlOiAiSG9tZSBBc3NpZ25tZW50IDUiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCiMjIyBUYXNrIDMKCmBgYHtyfQpsaWJyYXJ5KHBzeWNoKQpgYGAKCmBgYHtyfQpsaWJyYXJ5KHBsbSkKYGBgCgpgYGB7cn0KbGlicmFyeShsbXRlc3QpCmBgYAoKYGBge3J9CmxpYnJhcnkoc2FuZHdpY2gpCmBgYAoKYGBge3J9CmxpYnJhcnkoZ2dwbG90MikKYGBgCgpgYGB7cn0KbGlicmFyeShkcGx5cikKYGBgCgpgYGB7cn0KbGlicmFyeShHR2FsbHkpCmBgYAoKYGBge3J9CmxpYnJhcnkoY2FyKQpgYGAKCmBgYHtyfQpkYXRhIDwtIHJlYWQuY3N2KCdoYW5kZ3Vucy5jc3YnKQpgYGAKCmBgYHtyfQpkZiA8LSBwZGF0YS5mcmFtZShkYXRhLCBpbmRleCA9IGMoInN0YXRlIiwgInllYXIiKSkKYGBgCgpgYGB7cn0KcmVnMSA8LSBwbG0obG9nKHZpbykgfiBzaGFsbCwgZGF0YSA9IGRmLCBtb2RlbCA9ICJwb29saW5nIikKYGBgCgpgYGB7cn0KdmNvdjEgPC0gdmNvdkhDKHJlZzEsIG1ldGhvZCA9ICJhcmVsbGFubyIsIHR5cGUgPSAiSEMxIiwgY2x1c3RlciA9ICJncm91cCIpCmBgYAoKYGBge3J9CmNvZWZ0ZXN0KHJlZzEsIHZjb3YgPSB2Y292MSkKYGBgCgpgYGB7cn0KcmVnMiA8LSBwbG0obG9nKHZpbykgfiBzaGFsbCArIGluY2FyY19yYXRlICsgZGVuc2l0eSArIGF2Z2luYyArIHBvcCArIHBiMTA2NCArIHB3MTA2NCArIHBtMTAyOSwgZGF0YT1kZiwgbW9kZWwgPSAicG9vbGluZyIpCmBgYAoKYGBge3J9CnZjb3YyIDwtIHZjb3ZIQyhyZWcyLCBtZXRob2QgPSAiYXJlbGxhbm8iLCB0eXBlID0gIkhDMSIsIGNsdXN0ZXIgPSAiZ3JvdXAiKQpgYGAKCmBgYHtyfQpjb2VmdGVzdChyZWcyLCB2Y292ID0gdmNvdjIpCmBgYAoKYSkgVGhlIGNvZWZmaWNpZW50IGlzICQtMC4zNjgkIG1lYW5zIHRoYXQgaWYgc3VjaCBwYXJhbWV0ZXJzIGFzIHRoZSBpbmNhcmNlcmF0aW9uIHJhdGUgaW4gdGhlIHN0YXRlIGluIHByZXZpb3VzIHllYXIsIHBvcHVsYXRpb24gZGVuc2l0eSwgYXZlcmFnZSBpbmNvbWUsIHBvcHVsYXRpb24sIHBlcmNlbnRhZ2Ugb2YgcG9wdWxhdGlvbiB0aGF0IGlzIG1hbGUgYW5kIGFnZWQgZnJvbSAxMCB0byAyOSwgcGVyY2VudGFnZSBvZiBwb3B1bGF0aW9uIHRoYXQgaXMgd2hpdGUgYW5kIGFnZWQgZnJvbSAxMCB0byA2NCwgcGVyY2VudGFnZSBvZiBwb3B1bGF0aW9uIHRoYXQgaXMgYmxhY2sgYW5kIGFnZWQgZnJvbSAxMCB0byA2NCBhcmUgaGVsZCBjb25zdGFudCwgdGhlbiBoYXZpbmcgInNoYWxsLWlzc3VlIiBsYXdzIGRlY3JlYXNlcyB0aGUgdmlvbGVuY2UgYnkgJDM2LjgkJSwgd2hpY2ggaXMgc2lnbmlmaWNhbnQgaW4gcmVhbC1saWZlIHNlbnNlLgoKYikgSW4gdGhlIHJlZ3Jlc3Npb24gKGkpIHRoZSBjb2VmZmljaWVudCBlcXVhbHMgdG8gJC0wLjQ0MjkkLCB3aGljaCBtZWFucyB0aGF0IHRoZSBlc3RpbWF0ZWQgZGVjcmVhc2UgaXMgJDQ0LjMkJS4KSW4gdGhlIHJlZ3Jlc3Npb24gKGlpKSB0aGUgY29lZmZpY2llbnQgZXF1YWxzIHRvICQtMC4zNjgkLCB3aGljaCBtZWFucyB0aGF0IHRoZSBlc3RpbWF0ZWQgZGVjcmVhc2UgaXMgJDM2LjgkJS4KQm90aCBjb2VmZmljaWVudHMgYXJlIHNpZ25pZmljYW50IGF0IDUlIGxldmVsIGFuZCB0aHVzIHRoZSBkaWZmZXJlbmNlIGluIHRoZSByZXN1bHRzIG1pZ2h0IGJlIGV4cGxhaW5lZCBieSBvbWl0dGVkIHZhcmlhYmxlIGJpYXNlcy4KSW4gYm90aCByZWdyZXNzaW9ucyBhbiBlc3RpbWF0ZWQgZGVjcmVhc2Ugb2YgdmlvbGVudCBjcmltZXMgZHVlIHRvIGludHJvZHVjdGlvbiBvZiAic2hhbGwtaXNzdWUiIGxhd3MgaXMgc2lnbmlmaWNhbnQuIE1vcmVvdmVyLCB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIGNvZWZmaWNpZW50cyBpbiB0aGVzZSBtb2RlbHMgaXMgJDcuNSQgcGVyY2VudCBwb2ludHMsIHdoaWNoIGlzIHJlbGF0aXZlbHkgaGlnaCBpbiByZWFsLWxpZmUgc2Vuc2UuCgpjKSBXZSBjYW4gdGhpbmsgb2YgYWRkaXRpb25hbCBzdGF0ZSBzcGVjaWZpYyBsYXdzIHRoYXQgYnJpbmcgbW9yZSByZXN0cmljdGlvbnMgb24gaGF2aW5nIGEgd2VhcG9uIG9yIG9uIHRoZSBjb250cmFyeSBtYWtlIGl0IGVhc2llciB0byBnZXQgb25lLiBUaGVzZSBsYXdzIGFsbW9zdCBkb24ndCB2YXJ5IG92ZXIgeWVhcnMgYnV0IHRoZXkgYXJlIGRpZmZlcmVudCBpbiBlYWNoIHN0YXRlLgpBbiBpbnRyb2R1Y3Rpb24gb2YgdGhlc2UgYWRkaXRpb25hbCBsYXdzIGFmZmVjdHMgY3JpbWUgcmF0ZSBzaW5jZSBtb3JlIG9yIGxlc3Mgc3RyaWN0IGxhd3MgYWZmZWN0IHBlb3BsZSdzIGJlaGF2aW9yIGFuZCBhdCB0aGUgc2FtZSB0aW1lIGl0IGNvcnJlbGF0ZXMgd2l0aCBzaGFsbCB2YXJpYWJsZSwgYmVjYXVzZSBpdCBkaXJlY3RseSBhZmZlY3RzIGhvdyBtYW55IHBlb3BsZSBhcmUgYWJsZSB0byBnZXQgYSB3ZWFwb24uCgojIyMgVGFzayA0CgoqKlRhYmxlIDEqKgoKYGBge3J9CnJlZzMgPC0gcGxtKGxvZyh2aW8pIH4gc2hhbGwgKyBpbmNhcmNfcmF0ZSArIGRlbnNpdHkgKyBhdmdpbmMgKyBwb3AgKyBwdzEwNjQgKyBwYjEwNjQgKyBwbTEwMjksIGRhdGEgPSBkZiwgbW9kZWwgPSAid2l0aGluIiwgZWZmZWN0ID0gImluZGl2aWR1YWwiKQpgYGAKCmBgYHtyfQp2Y292MyA8LSB2Y292SEMocmVnMywgbWV0aG9kID0gImFyZWxsYW5vIiwgdHlwZSA9ICJIQzEiLCBjbHVzdGVyID0gImdyb3VwIikKYGBgCgpgYGB7cn0KY29lZnRlc3QocmVnMywgdmNvdiA9IHZjb3YzKQpgYGAKCmBgYHtyfQpwRnRlc3QocmVnMywgcmVnMikKYGBgCgpgYGB7cn0KcmVnNCA8LSBwbG0obG9nKHZpbykgfiBzaGFsbCArIGluY2FyY19yYXRlICsgZGVuc2l0eSArIGF2Z2luYyArIHBvcCArIHB3MTA2NCArIHBiMTA2NCArIHBtMTAyOSArIGZhY3Rvcih5ZWFyKSwgZGF0YSA9IGRmLCBtb2RlbCA9ICJ3aXRoaW4iLCBlZmZlY3QgPSAiaW5kaXZpZHVhbCIpCmBgYAoKYGBge3J9CnZjb3Y0IDwtIHZjb3ZIQyhyZWc0LCBtZXRob2QgPSAiYXJlbGxhbm8iLCB0eXBlID0gIkhDMSIsIGNsdXN0ZXIgPSAiZ3JvdXAiKQpgYGAKCmBgYHtyfQpjb2VmdGVzdChyZWc0LCB2Y292ID0gdmNvdjQpCmBgYAoKYGBge3J9CnJlZzUgPC0gcGxtKGxvZyh2aW8pIH4gc2hhbGwgKyBpbmNhcmNfcmF0ZSArIGRlbnNpdHkgKyBhdmdpbmMgKyBwb3AgKyBwdzEwNjQgKyBwYjEwNjQgKyBwbTEwMjkgKyBmYWN0b3IoeWVhciksIGRhdGEgPSBkZiwgbW9kZWwgPSAicG9vbGluZyIsIGVmZmVjdCA9ICJpbmRpdmlkdWFsIikKYGBgCgpgYGB7cn0KcEZ0ZXN0KHJlZzQsIHJlZzUpCmBgYAoKYGBge3J9CmxpbmVhckh5cG90aGVzaXMocmVnNCwgbWF0Y2hDb2VmcyhyZWc0LCAieWVhciIpLCB2Y292ID0gdmNvdjQpCmBgYAoKKipUYWJsZSAyKioKCmBgYHtyfQpyZWc2IDwtIHBsbShsb2cocm9iKSB+IHNoYWxsLCBkYXRhID0gZGYsIG1vZGVsID0gInBvb2xpbmciKQpgYGAKCmBgYHtyfQp2Y292NiA8LSB2Y292SEMocmVnNiwgbWV0aG9kID0gImFyZWxsYW5vIiwgdHlwZSA9ICJIQzEiLCBjbHVzdGVyID0gImdyb3VwIikKYGBgCgpgYGB7cn0KY29lZnRlc3QocmVnNiwgdmNvdiA9IHZjb3Y2KQpgYGAKCmBgYHtyfQpyZWc3IDwtIHBsbShsb2cocm9iKSB+IHNoYWxsICsgaW5jYXJjX3JhdGUgKyBkZW5zaXR5ICsgYXZnaW5jICsgcG9wICsgcHcxMDY0ICsgcGIxMDY0ICsgcG0xMDI5LCBkYXRhID0gZGYsIG1vZGVsID0gInBvb2xpbmciKQpgYGAKCmBgYHtyfQp2Y292NyA8LSB2Y292SEMocmVnNywgbWV0aG9kID0gImFyZWxsYW5vIiwgdHlwZSA9ICJIQzEiLCBjbHVzdGVyID0gImdyb3VwIikKYGBgCgpgYGB7cn0KY29lZnRlc3QocmVnNywgdmNvdiA9IHZjb3Y3KQpgYGAKCmBgYHtyfQpyZWc4IDwtIHBsbShsb2cocm9iKSB+IHNoYWxsICsgaW5jYXJjX3JhdGUgKyBkZW5zaXR5ICsgYXZnaW5jICsgcG9wICsgcHcxMDY0ICsgcGIxMDY0ICsgcG0xMDI5LCBkYXRhID0gZGYsIG1vZGVsID0gIndpdGhpbiIsIGVmZmVjdCA9ICJpbmRpdmlkdWFsIikKYGBgCgpgYGB7cn0KdmNvdjggPC0gdmNvdkhDKHJlZzgsIG1ldGhvZCA9ICJhcmVsbGFubyIsIHR5cGUgPSAiSEMxIiwgY2x1c3RlciA9ICJncm91cCIpCmBgYAoKYGBge3J9CmNvZWZ0ZXN0KHJlZzgsIHZjb3YgPSB2Y292OCkKYGBgCgpgYGB7cn0KcEZ0ZXN0KHJlZzgsIHJlZzcpCmBgYAoKYGBge3J9CnJlZzkgPC0gcGxtKGxvZyhyb2IpIH4gc2hhbGwgKyBpbmNhcmNfcmF0ZSArIGRlbnNpdHkgKyBhdmdpbmMgKyBwb3AgKyBwdzEwNjQgKyBwYjEwNjQgKyBwbTEwMjkgKyBmYWN0b3IoeWVhciksIGRhdGEgPSBkZiwgbW9kZWwgPSAid2l0aGluIiwgZWZmZWN0ID0gImluZGl2aWR1YWwiKQpgYGAKCmBgYHtyfQp2Y292OSA8LSB2Y292SEMocmVnOSwgbWV0aG9kID0gImFyZWxsYW5vIiwgdHlwZSA9ICJIQzEiLCBjbHVzdGVyID0gImdyb3VwIikKYGBgCgpgYGB7cn0KY29lZnRlc3QocmVnOSwgdmNvdiA9IHZjb3Y5KQpgYGAKCmBgYHtyfQpyZWcxMCA8LSBwbG0obG9nKHJvYikgfiBzaGFsbCArIGluY2FyY19yYXRlICsgZGVuc2l0eSArIGF2Z2luYyArIHBvcCArIHB3MTA2NCArIHBiMTA2NCArIHBtMTAyOSArIGZhY3Rvcih5ZWFyKSwgZGF0YSA9IGRmLCBtb2RlbCA9ICJwb29saW5nIiwgZWZmZWN0ID0gImluZGl2aWR1YWwiKQpgYGAKCmBgYHtyfQpwRnRlc3QocmVnOSwgcmVnMTApCmBgYAoKYGBge3J9CmxpbmVhckh5cG90aGVzaXMocmVnOSwgbWF0Y2hDb2VmcyhyZWc5LCAieWVhciIpLCB2Y292ID0gdmNvdjkpCmBgYAoKKipUYWJsZSAzKioKCmBgYHtyfQpyZWcxMSA8LSBwbG0obG9nKG11cikgfiBzaGFsbCwgZGF0YSA9IGRmLCBtb2RlbCA9ICJwb29saW5nIikKYGBgCgpgYGB7cn0KdmNvdjExIDwtIHZjb3ZIQyhyZWcxMSwgbWV0aG9kID0gImFyZWxsYW5vIiwgdHlwZSA9ICJIQzEiLCBjbHVzdGVyID0gImdyb3VwIikKYGBgCgpgYGB7cn0KY29lZnRlc3QocmVnMTEsIHZjb3YgPSB2Y292MTEpCmBgYAoKYGBge3J9CnJlZzEyIDwtIHBsbShsb2cobXVyKSB+IHNoYWxsICsgaW5jYXJjX3JhdGUgKyBkZW5zaXR5ICsgYXZnaW5jICsgcG9wICsgcHcxMDY0ICsgcGIxMDY0ICsgcG0xMDI5LCBkYXRhID0gZGYsIG1vZGVsID0gInBvb2xpbmciKQpgYGAKCmBgYHtyfQp2Y292MTIgPC0gdmNvdkhDKHJlZzEyLCBtZXRob2QgPSAiYXJlbGxhbm8iLCB0eXBlID0gIkhDMSIsIGNsdXN0ZXIgPSAiZ3JvdXAiKQpgYGAKCmBgYHtyfQpjb2VmdGVzdChyZWcxMiwgdmNvdiA9IHZjb3YxMikKYGBgCgpgYGB7cn0KcmVnMTMgPC0gcGxtKGxvZyhtdXIpIH4gc2hhbGwgKyBpbmNhcmNfcmF0ZSArIGRlbnNpdHkgKyBhdmdpbmMgKyBwb3AgKyBwdzEwNjQgKyBwYjEwNjQgKyBwbTEwMjksIGRhdGEgPSBkZiwgbW9kZWwgPSAid2l0aGluIiwgZWZmZWN0ID0gImluZGl2aWR1YWwiKQpgYGAKCmBgYHtyfQp2Y292MTMgPC0gdmNvdkhDKHJlZzEzLCBtZXRob2QgPSAiYXJlbGxhbm8iLCB0eXBlID0gIkhDMSIsIGNsdXN0ZXIgPSAiZ3JvdXAiKQpgYGAKCmBgYHtyfQpjb2VmdGVzdChyZWcxMywgdmNvdiA9IHZjb3YxMykKYGBgCgpgYGB7cn0KcEZ0ZXN0KHJlZzEzLCByZWcxMikKYGBgCgoKYGBge3J9CnZjb3YxNCA8LSB2Y292SEMocmVnMTQsIG1ldGhvZCA9ICJhcmVsbGFubyIsIHR5cGUgPSAiSEMxIiwgY2x1c3RlciA9ICJncm91cCIpCmBgYAoKYGBge3J9CmNvZWZ0ZXN0KHJlZzE0LCB2Y292ID0gdmNvdjE0KQpgYGAKCmBgYHtyfQpyZWcxNSA8LSBwbG0obG9nKG11cikgfiBzaGFsbCArIGluY2FyY19yYXRlICsgZGVuc2l0eSArIGF2Z2luYyArIHBvcCArIHB3MTA2NCArIHBiMTA2NCArIHBtMTAyOSArIGZhY3Rvcih5ZWFyKSwgZGF0YSA9IGRmLCBtb2RlbCA9ICJwb29saW5nIikKYGBgCgpgYGB7cn0KcEZ0ZXN0KHJlZzE0LCByZWcxNSkKYGBgCgpgYGB7cn0KbGluZWFySHlwb3RoZXNpcyhyZWcxNCwgbWF0Y2hDb2VmcyhyZWcxNCwgInllYXIiKSwgdmNvdiA9IHZjb3YxNCkKYGBgCgoK