Varijable čine podaci dobiveni s pomoću intervalne ili omjerne mjerne ljestvice (npr. tjelesna visina, tjelesna težina, skok u dalj s mjesta, taping rukom i sl.).
Podaci su dobiveni na slučajno odabranim i relativno velikim uzorcima entiteta (5 od 10 puta više entiteta od broja varijabli).
Podaci u varijablama ne bi trebali imati značajne outliere, odnosno ekstremno visoke ili niske rezultate.
Varijable su u linearnom odnosu.
Varijable imaju normalnu ili Gaussovu distribuciju.
library(rstatpackage)
library(dplyr)
library(knitr)
data <- read.table(file.choose(),
header = TRUE,
dec = ",",
sep = ";",
stringsAsFactors = TRUE,
row.names = 1)
kable(data)
| Groups | ONT | OUZ | NEB | SKL | TRB | CUC | SDM | BML | T20m | |
|---|---|---|---|---|---|---|---|---|---|---|
| Marko | I | 25.4 | 5.4 | 4 | 7 | 16 | 98 | 160 | 510 | 5.14 |
| Mate | I | 14.7 | 4.9 | 14 | 12 | 20 | 132 | 135 | 330 | 5.38 |
| Sime | I | 16.4 | 3.9 | 10 | 13 | 52 | 150 | 175 | 550 | 4.21 |
| Mile | I | 15.3 | 4.2 | 11 | 14 | 30 | 164 | 170 | 650 | 3.72 |
| Jure | I | 17.4 | 4.1 | 3 | 10 | 13 | 107 | 155 | 520 | 3.79 |
| Ante | I | 15.0 | 3.7 | 10 | 20 | 35 | 128 | 170 | 500 | 4.11 |
| Ive | I | 15.0 | 4.0 | 4 | 13 | 32 | 110 | 165 | 390 | 4.32 |
| Stipe | I | 19.4 | 4.7 | 8 | 3 | 17 | 165 | 150 | 580 | 4.09 |
| Tin | I | 17.5 | 4.0 | 9 | 20 | 36 | 156 | 155 | 370 | 4.87 |
| Dino | I | 14.7 | 4.5 | 7 | 11 | 25 | 123 | 195 | 520 | 4.26 |
| Darko | I | 18.0 | 4.7 | 15 | 8 | 26 | 189 | 175 | 630 | 3.53 |
| Stanko | I | 15.2 | 4.3 | 8 | 12 | 28 | 190 | 150 | 620 | 4.31 |
| Branko | I | 16.0 | 4.1 | 2 | 23 | 37 | 207 | 180 | 500 | 4.09 |
| Zarko | II | 13.7 | 3.8 | 12 | 30 | 63 | 310 | 210 | 690 | 2.78 |
| Sanimir | I | 18.2 | 4.7 | 10 | 3 | 25 | 107 | 180 | 590 | 3.48 |
| Toni | II | 15.9 | 4.0 | 10 | 13 | 34 | 200 | 205 | 540 | 3.03 |
| 17 | I | 14.7 | 3.6 | 7 | 7 | 28 | 130 | 180 | 540 | 3.58 |
| 18 | I | 13.3 | 4.0 | 12 | 20 | 47 | 221 | 160 | 470 | 4.36 |
| 19 | I | 15.1 | 3.6 | 10 | 13 | 55 | 210 | 170 | 420 | 3.91 |
| 20 | I | 17.6 | 4.2 | 11 | 10 | 35 | 232 | 185 | 440 | 4.42 |
| 21 | I | 16.1 | 4.4 | 10 | 26 | 49 | 300 | 160 | 520 | 4.49 |
| 22 | II | 12.9 | 3.4 | 17 | 33 | 57 | 220 | 195 | 620 | 3.57 |
| 23 | II | 12.2 | 3.3 | 11 | 20 | 37 | 240 | 190 | 530 | 3.70 |
| 24 | II | 12.7 | 3.4 | 9 | 15 | 37 | 150 | 205 | 670 | 2.78 |
| 25 | I | 16.2 | 3.8 | 8 | 6 | 17 | 130 | 160 | 610 | 3.75 |
| 26 | II | 13.5 | 3.4 | 13 | 18 | 46 | 238 | 185 | 480 | 3.26 |
| 27 | II | 11.8 | 3.1 | 18 | 15 | 51 | 120 | 180 | 740 | 3.42 |
| 28 | II | 11.7 | 3.2 | 9 | 22 | 44 | 101 | 205 | 730 | 2.98 |
| 29 | II | 13.4 | 3.7 | 11 | 14 | 27 | 77 | 195 | 580 | 3.42 |
| 30 | I | 17.0 | 3.5 | 9 | 13 | 29 | 204 | 180 | 520 | 4.02 |
| 31 | I | 17.1 | 4.2 | 12 | 9 | 27 | 180 | 160 | 560 | 3.68 |
| 32 | II | 13.8 | 3.7 | 8 | 25 | 46 | 190 | 170 | 580 | 3.84 |
| 33 | I | 15.5 | 4.8 | 10 | 1 | 17 | 89 | 155 | 430 | 5.14 |
| 34 | I | 19.3 | 4.8 | 15 | 1 | 21 | 76 | 150 | 340 | 5.14 |
| 35 | II | 16.2 | 3.4 | 11 | 20 | 49 | 320 | 195 | 610 | 3.11 |
| 36 | I | 16.9 | 4.0 | 8 | 19 | 19 | 130 | 175 | 560 | 4.25 |
| 37 | II | 12.1 | 3.2 | 9 | 20 | 32 | 200 | 175 | 510 | 3.48 |
| 38 | II | 16.8 | 3.4 | 10 | 22 | 46 | 240 | 190 | 600 | 3.24 |
| 39 | II | 11.6 | 3.7 | 17 | 20 | 36 | 170 | 185 | 460 | 4.06 |
| 40 | II | 13.0 | 3.3 | 10 | 20 | 59 | 500 | 180 | 500 | 4.10 |
| 41 | II | 12.9 | 3.4 | 12 | 18 | 64 | 190 | 180 | 560 | 3.90 |
| 42 | II | 10.5 | 3.0 | 14 | 26 | 71 | 500 | 190 | 490 | 3.83 |
| 43 | II | 11.3 | 2.9 | 12 | 34 | 72 | 380 | 195 | 510 | 3.14 |
| 44 | I | 14.3 | 3.9 | 9 | 12 | 22 | 150 | 175 | 520 | 4.30 |
| 45 | I | 19.5 | 4.2 | 7 | 18 | 54 | 400 | 175 | 430 | 3.72 |
| 46 | I | 18.6 | 4.7 | 11 | 4 | 29 | 300 | 175 | 650 | 4.06 |
| 47 | I | 18.6 | 4.0 | 7 | 14 | 56 | 394 | 175 | 380 | 4.07 |
| 48 | I | 22.9 | 4.8 | 11 | 6 | 23 | 160 | 150 | 340 | 5.00 |
| 49 | I | 19.8 | 4.2 | 8 | 11 | 41 | 170 | 165 | 570 | 4.39 |
| 50 | II | 13.4 | 3.9 | 13 | 20 | 75 | 450 | 180 | 460 | 3.48 |
| 51 | I | 18.2 | 4.2 | 11 | 9 | 50 | 350 | 165 | 460 | 4.19 |
| 52 | II | 14.5 | 3.7 | 14 | 22 | 57 | 302 | 195 | 510 | 3.62 |
| 53 | I | 24.0 | 4.1 | 6 | 25 | 69 | 460 | 200 | 570 | 3.50 |
| 54 | II | 16.5 | 3.9 | 11 | 34 | 70 | 450 | 190 | 460 | 3.98 |
| 55 | II | 16.4 | 3.4 | 13 | 31 | 56 | 206 | 190 | 460 | 3.86 |
| 56 | I | 28.9 | 4.3 | 9 | 13 | 30 | 122 | 165 | 650 | 3.79 |
| 57 | II | 13.5 | 3.4 | 9 | 31 | 41 | 100 | 170 | 470 | 4.28 |
| 58 | II | 13.6 | 3.3 | 9 | 32 | 47 | 110 | 205 | 620 | 3.09 |
| 59 | II | 11.9 | 3.4 | 9 | 3 | 15 | 100 | 200 | 610 | 3.02 |
| 60 | II | 18.2 | 3.3 | 9 | 30 | 49 | 127 | 180 | 580 | 3.05 |
X <- data %>% select(ONT, OUZ, NEB, SKL, TRB, CUC)
Y <- data %>% select(SDM, BML, T20m)
cat('Manifestne varijable 1. skupa:', names(X))
## Manifestne varijable 1. skupa: ONT OUZ NEB SKL TRB CUC
cat('Manifestne varijable 2. skupa:', names(Y))
## Manifestne varijable 2. skupa: SDM BML T20m
can_cor <- round(can_cor(X, Y), digits = 3)
kable(can_cor)
| Rc | Chi.sq. | df | p.level | |
|---|---|---|---|---|
| CF1 | 0.719 | 49.843 | 18 | 0.000 |
| CF2 | 0.375 | 10.563 | 10 | 0.393 |
| CF3 | 0.208 | 2.378 | 4 | 0.667 |
cat('Matrica strukture 1. skupa')
## Matrica strukture 1. skupa
can_str1 <- round(can_structure1(X, Y), digits = 3)
kable(can_str1)
| CF1 | CF2 | CF3 | |
|---|---|---|---|
| ONT | 0.560 | -0.140 | -0.264 |
| OUZ | 0.960 | 0.175 | -0.173 |
| NEB | -0.163 | 0.107 | 0.293 |
| SKL | -0.660 | 0.428 | 0.500 |
| TRB | -0.701 | 0.560 | 0.041 |
| CUC | -0.458 | 0.672 | -0.491 |
cat('Matrica strukture 2. skupa')
## Matrica strukture 2. skupa
can_str2 <- round(can_structure2(X, Y), digits = 3)
kable(can_str2)
| CF1 | CF2 | CF3 | |
|---|---|---|---|
| SDM | -0.871 | 0.131 | 0.474 |
| BML | -0.304 | -0.733 | 0.609 |
| T20m | 0.892 | 0.436 | -0.119 |