library(readxl)
library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
P_G <- read_excel("C:/Users/JuanSebH2/Downloads/Archivos/Datos_repro.xlsx", 
    sheet = "R (P.Germinacion) ");P_G=data.frame(P_G);P_G #Listo
##   Cultivo Repeticion No.germinadas Germinadas Taza.de.germinacion
## 1    Maiz          1             2         23                  92
## 2    Maiz          2             2         23                  92
## 3    Maiz          3             2         23                  92
## 4    Maiz          4             2         23                  92
## 5  Pepino          1             9         16                  64
## 6  Pepino          2             1         24                  96
## 7  Pepino          3             9         16                  64
## 8  Pepino          4             1         24                  96
CE<- read_excel("C:/Users/JuanSebH2/Downloads/Archivos/Datos_repro.xlsx", 
    sheet = "R (CE)");CE=data.frame(CE);CE #Listo
##                Cultivo   CE_cm  CE_g
## 1  Frijol Cargamanto_1  378.17 18.91
## 2  Frijol Cargamanto_1  276.17 13.81
## 3  Frijol Cargamanto_2   45.47  2.24
## 4  Frijol Cargamanto_2   40.37  1.98
## 5          Arveja 2416  642.17 32.11
## 6          Arveja 2416  278.17 13.91
## 7          Arveja 2416  642.17 32.11
## 8          Arveja 2416  278.17 13.91
## 9           Garbanzo_1  800.00 40.00
## 10          Garbanzo_1 1070.00 53.50
## 11          Garbanzo_2 1060.00 53.00
## 12          Garbanzo_2  680.00 34.00
G_PL<- read_excel("C:/Users/JuanSebH2/Downloads/Archivos/Datos_repro.xlsx", 
    sheet = "R (Germinacion PL)");G_PL=data.frame(G_PL);G_PL #Listo
##    Cultivo                    Tratamiento Germinacion Taza.de.germinacion
## 1   Acacia                        Control           0                   0
## 2   Acacia                        Control           0                   0
## 3   Acacia                        Control           0                   0
## 4   Acacia                        Control           0                   0
## 5   Acacia          Escarificadas Control           0                   0
## 6   Acacia          Escarificadas Control           0                   0
## 7   Acacia          Escarificadas Control           0                   0
## 8   Acacia          Escarificadas Control           0                   0
## 9   Acacia Escarificadas Acido giberelico           7                  28
## 10  Acacia Escarificadas Acido giberelico           7                  28
## 11  Acacia Escarificadas Acido giberelico           7                  28
## 12  Acacia Escarificadas Acido giberelico           7                  28
##    Problemas.fitosanitarios
## 1                         0
## 2                         0
## 3                         0
## 4                         0
## 5                         3
## 6                         3
## 7                         3
## 8                         3
## 9                         3
## 10                        3
## 11                        3
## 12                        3
C_PL <- read_excel("C:/Users/JuanSebH2/Downloads/Archivos/Datos_repro.xlsx", 
    sheet = "R (Crecimiento PL)");C_PL=data.frame(C_PL);C_PL#Listo
##    Cultivo                    Tratamiento Replica Lonitud_parte_aerea
## 1   Acacia                        Control       1                 0.0
## 2   Acacia                        Control       2                 0.0
## 3   Acacia                        Control       3                 0.0
## 4   Acacia                        Control       4                 0.0
## 5   Acacia                        Control       5                 0.0
## 6   Acacia                        Control       6                 0.0
## 7   Acacia                        Control       7                 0.0
## 8   Acacia                        Control       8                 0.0
## 9   Acacia                        Control       9                 0.0
## 10  Acacia                        Control      10                 0.0
## 11  Acacia                        Control      11                 0.0
## 12  Acacia                        Control      12                 0.0
## 13  Acacia                        Control      13                 0.0
## 14  Acacia                        Control      14                 0.0
## 15  Acacia                        Control      15                 0.0
## 16  Acacia                        Control      16                 0.0
## 17  Acacia                        Control      17                 0.0
## 18  Acacia                        Control      18                 0.0
## 19  Acacia                        Control      19                 0.0
## 20  Acacia                        Control      20                 0.0
## 21  Acacia                        Control      21                 0.0
## 22  Acacia                        Control      22                 0.0
## 23  Acacia                        Control      23                 0.0
## 24  Acacia                        Control      24                 0.0
## 25  Acacia                        Control      25                 0.0
## 26  Acacia          Escarificadas Control       1                 0.0
## 27  Acacia          Escarificadas Control       2                 0.0
## 28  Acacia          Escarificadas Control       3                 0.0
## 29  Acacia          Escarificadas Control       4                 0.0
## 30  Acacia          Escarificadas Control       5                 0.0
## 31  Acacia          Escarificadas Control       6                 0.0
## 32  Acacia          Escarificadas Control       7                 0.0
## 33  Acacia          Escarificadas Control       8                 0.0
## 34  Acacia          Escarificadas Control       9                 0.0
## 35  Acacia          Escarificadas Control      10                 0.0
## 36  Acacia          Escarificadas Control      11                 0.0
## 37  Acacia          Escarificadas Control      12                 0.0
## 38  Acacia          Escarificadas Control      13                 0.0
## 39  Acacia          Escarificadas Control      14                 0.0
## 40  Acacia          Escarificadas Control      15                 0.0
## 41  Acacia          Escarificadas Control      16                 0.0
## 42  Acacia          Escarificadas Control      17                 0.0
## 43  Acacia          Escarificadas Control      18                 0.0
## 44  Acacia          Escarificadas Control      19                 0.0
## 45  Acacia          Escarificadas Control      20                 0.0
## 46  Acacia          Escarificadas Control      21                 0.0
## 47  Acacia          Escarificadas Control      22                 0.0
## 48  Acacia          Escarificadas Control      23                 0.0
## 49  Acacia          Escarificadas Control      24                 0.0
## 50  Acacia          Escarificadas Control      25                 0.0
## 51  Acacia Escarificadas Acido giberelico       1                 8.0
## 52  Acacia Escarificadas Acido giberelico       2                 8.0
## 53  Acacia Escarificadas Acido giberelico       3                20.7
## 54  Acacia Escarificadas Acido giberelico       4                14.5
## 55  Acacia Escarificadas Acido giberelico       5                 1.7
## 56  Acacia Escarificadas Acido giberelico       6                 8.0
## 57  Acacia Escarificadas Acido giberelico       7                 6.0
## 58  Acacia Escarificadas Acido giberelico       8                 0.0
## 59  Acacia Escarificadas Acido giberelico       9                 0.0
## 60  Acacia Escarificadas Acido giberelico      10                 0.0
## 61  Acacia Escarificadas Acido giberelico      11                 0.0
## 62  Acacia Escarificadas Acido giberelico      12                 0.0
## 63  Acacia Escarificadas Acido giberelico      13                 0.0
## 64  Acacia Escarificadas Acido giberelico      14                 0.0
## 65  Acacia Escarificadas Acido giberelico      15                 0.0
## 66  Acacia Escarificadas Acido giberelico      16                 0.0
## 67  Acacia Escarificadas Acido giberelico      17                 0.0
## 68  Acacia Escarificadas Acido giberelico      18                 0.0
## 69  Acacia Escarificadas Acido giberelico      19                 0.0
## 70  Acacia Escarificadas Acido giberelico      20                 0.0
## 71  Acacia Escarificadas Acido giberelico      21                 0.0
## 72  Acacia Escarificadas Acido giberelico      22                 0.0
## 73  Acacia Escarificadas Acido giberelico      23                 0.0
## 74  Acacia Escarificadas Acido giberelico      24                 0.0
## 75  Acacia Escarificadas Acido giberelico      25                 0.0
##    Longitud_raiz Longitu_total
## 1            0.0           0.0
## 2            0.0           0.0
## 3            0.0           0.0
## 4            0.0           0.0
## 5            0.0           0.0
## 6            0.0           0.0
## 7            0.0           0.0
## 8            0.0           0.0
## 9            0.0           0.0
## 10           0.0           0.0
## 11           0.0           0.0
## 12           0.0           0.0
## 13           0.0           0.0
## 14           0.0           0.0
## 15           0.0           0.0
## 16           0.0           0.0
## 17           0.0           0.0
## 18           0.0           0.0
## 19           0.0           0.0
## 20           0.0           0.0
## 21           0.0           0.0
## 22           0.0           0.0
## 23           0.0           0.0
## 24           0.0           0.0
## 25           0.0           0.0
## 26           0.0           0.0
## 27           0.0           0.0
## 28           0.0           0.0
## 29           0.0           0.0
## 30           0.0           0.0
## 31           0.0           0.0
## 32           0.0           0.0
## 33           0.0           0.0
## 34           0.0           0.0
## 35           0.0           0.0
## 36           0.0           0.0
## 37           0.0           0.0
## 38           0.0           0.0
## 39           0.0           0.0
## 40           0.0           0.0
## 41           0.0           0.0
## 42           0.0           0.0
## 43           0.0           0.0
## 44           0.0           0.0
## 45           0.0           0.0
## 46           0.0           0.0
## 47           0.0           0.0
## 48           0.0           0.0
## 49           0.0           0.0
## 50           0.0           0.0
## 51           4.0          12.0
## 52           4.5          12.5
## 53           8.5          29.2
## 54           0.5          15.0
## 55           0.0           1.7
## 56           3.5          11.5
## 57           5.7          11.7
## 58           0.0           0.0
## 59           0.0           0.0
## 60           0.0           0.0
## 61           0.0           0.0
## 62           0.0           0.0
## 63           0.0           0.0
## 64           0.0           0.0
## 65           0.0           0.0
## 66           0.0           0.0
## 67           0.0           0.0
## 68           0.0           0.0
## 69           0.0           0.0
## 70           0.0           0.0
## 71           0.0           0.0
## 72           0.0           0.0
## 73           0.0           0.0
## 74           0.0           0.0
## 75           0.0           0.0
P_Via <- read_excel("C:/Users/JuanSebH2/Downloads/Archivos/Datos_repro.xlsx", 
    sheet = "Prueba de viavilidad (tetrazoli");P_Via=data.frame(P_Via);P_Via #
##   Cultivo N..Semillas Viables
## 1  Frijol           5       0
## 2  Frijol           5       0
## 3  Frijol           5       0
## 4  Frijol           5       0
## 5    Maiz           5       4
## 6    Maiz           5       4
## 7    Maiz           5       4
## 8    Maiz           5       4
###PG

NoGer= aov(No.germinadas~Cultivo, P_G)
anova(NoGer)
## Analysis of Variance Table
## 
## Response: No.germinadas
##           Df Sum Sq Mean Sq F value Pr(>F)
## Cultivo    1     18  18.000  1.6875 0.2416
## Residuals  6     64  10.667
TukeyHSD(NoGer)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = No.germinadas ~ Cultivo, data = P_G)
## 
## $Cultivo
##             diff     lwr    upr     p adj
## Pepino-Maiz    3 -2.6509 8.6509 0.2416143
library(TukeyC)
## Warning: package 'TukeyC' was built under R version 4.3.2
tc=TukeyC(NoGer,'Cultivo')
plot(tc, title ="No Germinadas")

Ger= aov(Germinadas~Cultivo, P_G)
anova(Ger)
## Analysis of Variance Table
## 
## Response: Germinadas
##           Df Sum Sq Mean Sq F value Pr(>F)
## Cultivo    1     18  18.000  1.6875 0.2416
## Residuals  6     64  10.667
TukeyHSD(Ger)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Germinadas ~ Cultivo, data = P_G)
## 
## $Cultivo
##             diff     lwr    upr     p adj
## Pepino-Maiz   -3 -8.6509 2.6509 0.2416143
library(TukeyC)
tc=TukeyC(Ger,'Cultivo')
plot(tc, title="Germinadas")

T_G= aov(Taza.de.germinacion~Cultivo, P_G)
anova(T_G)
## Analysis of Variance Table
## 
## Response: Taza.de.germinacion
##           Df Sum Sq Mean Sq F value Pr(>F)
## Cultivo    1    288  288.00  1.6875 0.2416
## Residuals  6   1024  170.67
TukeyHSD(T_G)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Taza.de.germinacion ~ Cultivo, data = P_G)
## 
## $Cultivo
##             diff      lwr     upr     p adj
## Pepino-Maiz  -12 -34.6036 10.6036 0.2416143
library(TukeyC)
tc=TukeyC(T_G,'Cultivo')
plot(tc, title="Tasa de germinación")

datos_resumen= P_G |> 
  group_by(Cultivo) |> 
  summarise(media= mean(No.germinadas), 
            desviacion=sd(No.germinadas), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Cultivo, y=media, fill=Cultivo)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Cultivo", y = "No germinadas")+
  geom_text(aes(label=c("a","a"), y= media+0.2), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

datos_resumen= P_G |> 
  group_by(Cultivo) |> 
  summarise(media= mean(Germinadas), 
            desviacion=sd(Germinadas), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Cultivo, y=media, fill=Cultivo)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Cultivo", y = "Germinadas")+
  geom_text(aes(label=c("a","a"), y= media+2), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

datos_resumen= P_G |> 
  group_by(Cultivo) |> 
  summarise(media= mean(Taza.de.germinacion), 
            desviacion=sd(Taza.de.germinacion), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Cultivo, y=media, fill=Cultivo)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Cultivo", y = "Tasa de germinación")+
  geom_text(aes(label=c("a","a"), y= media+4), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

###CE

CE_cm= aov(CE_cm~Cultivo, CE)
anova(CE_cm)
## Analysis of Variance Table
## 
## Response: CE_cm
##           Df  Sum Sq Mean Sq F value   Pr(>F)   
## Cultivo    4 1133145  283286  8.0492 0.009327 **
## Residuals  7  246361   35194                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(CE_cm)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = CE_cm ~ Cultivo, data = CE)
## 
## $Cultivo
##                                            diff        lwr       upr     p adj
## Frijol Cargamanto_1-Arveja 2416         -133.00 -714.31226  448.3123 0.9167278
## Frijol Cargamanto_2-Arveja 2416         -417.25 -998.56226  164.0623 0.1784751
## Garbanzo_1-Arveja 2416                   474.83 -106.48226 1056.1423 0.1141040
## Garbanzo_2-Arveja 2416                   409.83 -171.48226  991.1423 0.1889503
## Frijol Cargamanto_2-Frijol Cargamanto_1 -284.25 -955.49158  386.9916 0.5846092
## Garbanzo_1-Frijol Cargamanto_1           607.83  -63.41158 1279.0716 0.0763405
## Garbanzo_2-Frijol Cargamanto_1           542.83 -128.41158 1214.0716 0.1183908
## Garbanzo_1-Frijol Cargamanto_2           892.08  220.83842 1563.3216 0.0124443
## Garbanzo_2-Frijol Cargamanto_2           827.08  155.83842 1498.3216 0.0184451
## Garbanzo_2-Garbanzo_1                    -65.00 -736.24158  606.2416 0.9961505
library(TukeyC)
tc=TukeyC(CE_cm,'Cultivo')
plot(tc, title ="Conductividad eléctrica (µS/cm)")

CE_g= aov(CE_g~Cultivo, CE)
anova(CE_g)
## Analysis of Variance Table
## 
## Response: CE_g
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## Cultivo    4 2836.2  709.04  8.0586 0.009297 **
## Residuals  7  615.9   87.99                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(CE_g)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = CE_g ~ Cultivo, data = CE)
## 
## $Cultivo
##                                           diff        lwr       upr     p adj
## Frijol Cargamanto_1-Arveja 2416          -6.65 -35.715643 22.415643 0.9167281
## Frijol Cargamanto_2-Arveja 2416         -20.90 -49.965643  8.165643 0.1774477
## Garbanzo_1-Arveja 2416                   23.74  -5.325643 52.805643 0.1141312
## Garbanzo_2-Arveja 2416                   20.49  -8.575643 49.555643 0.1889944
## Frijol Cargamanto_2-Frijol Cargamanto_1 -14.25 -47.812114 19.312114 0.5824866
## Garbanzo_1-Frijol Cargamanto_1           30.39  -3.172114 63.952114 0.0763562
## Garbanzo_2-Frijol Cargamanto_1           27.14  -6.422114 60.702114 0.1184152
## Garbanzo_1-Frijol Cargamanto_2           44.64  11.077886 78.202114 0.0123912
## Garbanzo_2-Frijol Cargamanto_2           41.39   7.827886 74.952114 0.0183635
## Garbanzo_2-Garbanzo_1                    -3.25 -36.812114 30.312114 0.9961505
library(TukeyC)
tc=TukeyC(CE_g,'Cultivo')
plot(tc, title="Conductividad eléctrica (µS/cm*g)")

orden_cultivos <- c("Garbanzo_1", "Garbanzo_2", "Arveja 2416", "Frijol Cargamanto_1", "Frijol Cargamanto_2")

CE$Cultivo <- factor(CE$Cultivo, levels = orden_cultivos)

datos_resumen= CE |> 
  group_by(Cultivo) |> 
  summarise(media= mean(CE_cm), 
            desviacion=sd(CE_cm), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Cultivo, y=media, fill=Cultivo)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Cultivo", y = "Conductividad eléctrica (µS/cm)")+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))+
  geom_text(aes(label=c("a","a","ab", "ab", "b"), y= media+100), color= "black", size=6)
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

datos_resumen= CE |> 
  group_by(Cultivo) |> 
  summarise(media= mean(CE_g), 
            desviacion=sd(CE_g), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Cultivo, y=media, fill=Cultivo)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Cultivo", y = "Conductividad eléctrica (µS/cm*g)")+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))+
  geom_text(aes(label=c("a","a","ab", "ab", "b"), y= media+4), color= "black", size=6)
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

#####G_PL


G_PL_Ger= aov(Germinacion~Tratamiento, G_PL)
anova(G_PL_Ger)
## Warning in anova.lm(G_PL_Ger): ANOVA F-tests on an essentially perfect fit are
## unreliable
## Analysis of Variance Table
## 
## Response: Germinacion
##             Df Sum Sq Mean Sq    F value    Pr(>F)    
## Tratamiento  2 130.67  65.333 2.9672e+33 < 2.2e-16 ***
## Residuals    9   0.00   0.000                         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(G_PL_Ger)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Germinacion ~ Tratamiento, data = G_PL)
## 
## $Tratamiento
##                                                               diff
## Escarificadas Acido giberelico-Control                7.000000e+00
## Escarificadas Control-Control                        -5.551115e-16
## Escarificadas Control-Escarificadas Acido giberelico -7.000000e+00
##                                                                lwr
## Escarificadas Acido giberelico-Control                7.000000e+00
## Escarificadas Control-Control                        -8.480609e-16
## Escarificadas Control-Escarificadas Acido giberelico -7.000000e+00
##                                                                upr     p adj
## Escarificadas Acido giberelico-Control                7.000000e+00 0.0000000
## Escarificadas Control-Control                        -2.621621e-16 0.0012994
## Escarificadas Control-Escarificadas Acido giberelico -7.000000e+00 0.0000000
library(TukeyC)
tc=TukeyC(G_PL_Ger,'Tratamiento')
## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced
## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced

## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced

## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced
plot(tc, title ="Germinación")

C_PL_TG= aov(Taza.de.germinacion~Tratamiento, G_PL)
anova(C_PL_TG)
## Warning in anova.lm(C_PL_TG): ANOVA F-tests on an essentially perfect fit are
## unreliable
## Analysis of Variance Table
## 
## Response: Taza.de.germinacion
##             Df Sum Sq Mean Sq    F value    Pr(>F)    
## Tratamiento  2 2090.7  1045.3 2.9672e+33 < 2.2e-16 ***
## Residuals    9    0.0     0.0                         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(C_PL_TG)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Taza.de.germinacion ~ Tratamiento, data = G_PL)
## 
## $Tratamiento
##                                                               diff
## Escarificadas Acido giberelico-Control                2.800000e+01
## Escarificadas Control-Control                        -2.220446e-15
## Escarificadas Control-Escarificadas Acido giberelico -2.800000e+01
##                                                                lwr
## Escarificadas Acido giberelico-Control                2.800000e+01
## Escarificadas Control-Control                        -3.392244e-15
## Escarificadas Control-Escarificadas Acido giberelico -2.800000e+01
##                                                                upr     p adj
## Escarificadas Acido giberelico-Control                2.800000e+01 0.0000000
## Escarificadas Control-Control                        -1.048648e-15 0.0012994
## Escarificadas Control-Escarificadas Acido giberelico -2.800000e+01 0.0000000
library(TukeyC)
tc=TukeyC(C_PL_TG,'Tratamiento')
## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced

## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced

## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced

## Warning in qt(sig.level, aux_mt$coef[, 3]): NaNs produced
plot(tc, title="Tasa de germinacion")

datos_resumen= G_PL |> 
  group_by(Tratamiento) |> 
  summarise(media= mean(Germinacion), 
            desviacion=sd(Germinacion), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  geom_text(aes(label=c("b","a","b"), y= media+2), color= "black", size=6)
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

datos_resumen= G_PL |> 
  group_by(Tratamiento) |> 
  summarise(media= mean(Taza.de.germinacion), 
            desviacion=sd(Taza.de.germinacion), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  geom_text(aes(label=c("b","a", "b"), y= media+2), color= "black", size=6)
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

####C_PL

L_PA= aov(Lonitud_parte_aerea~Tratamiento, C_PL)
anova(L_PA)
## Analysis of Variance Table
## 
## Response: Lonitud_parte_aerea
##             Df Sum Sq Mean Sq F value   Pr(>F)   
## Tratamiento  2 119.35  59.675  6.2215 0.003219 **
## Residuals   72 690.61   9.592                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(L_PA)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Lonitud_parte_aerea ~ Tratamiento, data = C_PL)
## 
## $Tratamiento
##                                                               diff        lwr
## Escarificadas Acido giberelico-Control                2.676000e+00  0.5796733
## Escarificadas Control-Control                        -5.062617e-16 -2.0963267
## Escarificadas Control-Escarificadas Acido giberelico -2.676000e+00 -4.7723267
##                                                             upr     p adj
## Escarificadas Acido giberelico-Control                4.7723267 0.0087571
## Escarificadas Control-Control                         2.0963267 1.0000000
## Escarificadas Control-Escarificadas Acido giberelico -0.5796733 0.0087571
library(TukeyC)
tc=TukeyC(L_PA,'Tratamiento')
plot(tc, title ="Lonitud_parte_aerea")

L_R= aov(Longitud_raiz~Tratamiento, C_PL)
anova(L_R)
## Analysis of Variance Table
## 
## Response: Longitud_raiz
##             Df Sum Sq Mean Sq F value   Pr(>F)   
## Tratamiento  2  19.01  9.5052  5.4761 0.006112 **
## Residuals   72 124.97  1.7358                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(L_R)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Longitud_raiz ~ Tratamiento, data = C_PL)
## 
## $Tratamiento
##                                                               diff        lwr
## Escarificadas Acido giberelico-Control                1.068000e+00  0.1762267
## Escarificadas Control-Control                        -1.554312e-16 -0.8917733
## Escarificadas Control-Escarificadas Acido giberelico -1.068000e+00 -1.9597733
##                                                             upr     p adj
## Escarificadas Acido giberelico-Control                1.9597733 0.0148744
## Escarificadas Control-Control                         0.8917733 1.0000000
## Escarificadas Control-Escarificadas Acido giberelico -0.1762267 0.0148744
library(TukeyC)
tc=TukeyC(L_R,'Tratamiento')
plot(tc, title="Longitud_raiz")

L_t= aov(Longitu_total~Tratamiento, C_PL)
anova(L_t)
## Analysis of Variance Table
## 
## Response: Longitu_total
##             Df  Sum Sq Mean Sq F value   Pr(>F)   
## Tratamiento  2  233.63 116.813  6.4722 0.002601 **
## Residuals   72 1299.48  18.048                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(L_t)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Longitu_total ~ Tratamiento, data = C_PL)
## 
## $Tratamiento
##                                                               diff        lwr
## Escarificadas Acido giberelico-Control                3.744000e+00  0.8683966
## Escarificadas Control-Control                         2.930989e-16 -2.8756034
## Escarificadas Control-Escarificadas Acido giberelico -3.744000e+00 -6.6196034
##                                                             upr     p adj
## Escarificadas Acido giberelico-Control                6.6196034 0.0073423
## Escarificadas Control-Control                         2.8756034 1.0000000
## Escarificadas Control-Escarificadas Acido giberelico -0.8683966 0.0073423
library(TukeyC)
tc=TukeyC(L_t,'Tratamiento')
plot(tc, title="Longitud total")

orden_cultivos <- c("Escarificadas Acido giberelico", "Escarificadas Control", "Control")
C_PL$Tratamiento <- factor(C_PL$Tratamiento, levels = orden_cultivos)


datos_resumen= C_PL|> 
  group_by(Tratamiento) |> 
  summarise(media= mean(Lonitud_parte_aerea), 
            desviacion=sd(Lonitud_parte_aerea), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tratamiento", y = "Lonitud parte aerea")+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))+
  geom_text(aes(label=c("a","b","b"), y= media+0.2), color= "black", size=6)
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

datos_resumen= C_PL |> 
  group_by(Tratamiento) |> 
  summarise(media= mean(Longitud_raiz), 
            desviacion=sd(Longitud_raiz), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tratamiento", y = "Longitud_raiz")+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))+
  geom_text(aes(label=c("a","b","b"), y= media+2), color= "black", size=6)
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

datos_resumen= C_PL |> 
  group_by(Tratamiento) |> 
  summarise(media= mean(Longitu_total), 
            desviacion=sd(Longitu_total), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Tratamiento, y=media, fill=Tratamiento)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Tratamiento", y = "Longitud total")+
   theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1, size = 7))+
  geom_text(aes(label=c("a","b","b"), y= media+4), color= "black", size=6)
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`

####Via

Via= aov(Viables~Cultivo, P_Via)
anova(Via)
## Warning in anova.lm(Via): ANOVA F-tests on an essentially perfect fit are
## unreliable
## Analysis of Variance Table
## 
## Response: Viables
##           Df Sum Sq Mean Sq    F value    Pr(>F)    
## Cultivo    1     32      32 1.9471e+33 < 2.2e-16 ***
## Residuals  6      0       0                         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(Via)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Viables ~ Cultivo, data = P_Via)
## 
## $Cultivo
##             diff lwr upr p adj
## Maiz-Frijol    4   4   4     0
library(TukeyC)
tc=TukeyC(Via,'Cultivo')
plot(tc, title="Viabilidad")

datos_resumen= P_Via |> 
  group_by(Cultivo) |> 
  summarise(media= mean(Viables), 
            desviacion=sd(Viables), n=n()) |> 
  mutate(error=1.96*desviacion/sqrt(n))


ggplot(datos_resumen)+
  aes(x=Cultivo, y=media, fill=Cultivo)+
  geom_col(strat= 'identity', position = 'dodge', color = 'black')+
  labs(x = "Cultivo", y = "Viabilidad")+
  geom_text(aes(label=c("b","a"), y= media+0.2), color= "black", size=6)+
  theme_bw()
## Warning in geom_col(strat = "identity", position = "dodge", color = "black"):
## Ignoring unknown parameters: `strat`