Se realiza un estudio para evaluar si la edad promedio de los estudiantes de dos universidades diferentes es la misma.
Hipotesis Nula
Ho = no hay diferencia en la edad promedio entre los estudiantes de ambas universidades.
Hipotesis alternativa
H1 = hay una diferencia en la edad promedio.
set.seed(123)
ua <- rnorm(100, mean = 23, sd = 5)
set.seed(123)
ub <- rnorm(100, mean = 23, sd = 3)
# Q-Q Plot
qqnorm(ua)
qqline(ua, col = 2)
qqnorm(ub)
qqline(ub, col = 2)
par(mfrow = c(1, 2))
qqnorm(ua); qqline(ua)
qqnorm(ub); qqline(ub)
# histograma
set.seed(123)
datos1 <- ua <- rnorm(100, mean = 23, sd = 5)
# Histograma
hist(datos1, main = "Histograma de Datos", col = "lightblue", border = "black")
# histograma ub
set.seed(123)
datos2 <- ub <- rnorm(100, mean = 23, sd = 3)
# Histograma ub
hist(datos2, main = "Histograma de Datos", col = "lightblue", border = "black")
# shapiro wilk
shapiro.test(ua)
##
## Shapiro-Wilk normality test
##
## data: ua
## W = 0.99388, p-value = 0.9349
shapiro.test(ub)
##
## Shapiro-Wilk normality test
##
## data: ub
## W = 0.99388, p-value = 0.9349
t.test(ua, ub)
##
## Welch Two Sample t-test
##
## data: ua and ub
## t = 0.33971, df = 162.1, p-value = 0.7345
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8702426 1.2318662
## sample estimates:
## mean of x mean of y
## 23.45203 23.27122
##verificacion de nomarlidad a Ua
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.