Data

rupiah_full <- read.csv("D:/Onedrive/Data Science/Forecasting Financial Market/data/threemusketeers.csv") %>% 
  select(time, USDIDR) %>% 
  rename(close = USDIDR)

rupiah_full$time <- as.Date(rupiah_full$time, "%Y-%m-%d")

rupiah_full <- rupiah_full %>% 
  na.omit()

rupiah <- rupiah_full %>% 
  filter_by_time(.end_date = "2023-10-31")
## .date_var is missing. Using: time
head(rupiah)
##         time close
## 1 2014-09-11 11820
## 2 2014-09-12 11818
## 3 2014-09-15 11925
## 4 2014-09-16 11960
## 5 2014-09-17 11950
## 6 2014-09-18 11975
tail(rupiah, n = 30)
##            time close
## 2267 2023-09-20 15374
## 2268 2023-09-21 15369
## 2269 2023-09-22 15369
## 2270 2023-09-25 15394
## 2271 2023-09-26 15484
## 2272 2023-09-27 15514
## 2273 2023-09-28 15514
## 2274 2023-09-29 15485
## 2275 2023-10-02 15525
## 2276 2023-10-03 15574
## 2277 2023-10-04 15624
## 2278 2023-10-05 15609
## 2279 2023-10-06 15604
## 2280 2023-10-09 15684
## 2281 2023-10-10 15729
## 2282 2023-10-11 15690
## 2283 2023-10-12 15684
## 2284 2023-10-13 15679
## 2285 2023-10-16 15714
## 2286 2023-10-17 15710
## 2287 2023-10-18 15724
## 2288 2023-10-19 15809
## 2289 2023-10-20 15869
## 2290 2023-10-23 15929
## 2291 2023-10-24 15844
## 2292 2023-10-25 15864
## 2293 2023-10-26 15914
## 2294 2023-10-27 15934
## 2295 2023-10-30 15884
## 2296 2023-10-31 15879
dim(rupiah)
## [1] 2296    2
summary(rupiah)
##       time                close      
##  Min.   :2014-09-11   Min.   :11818  
##  1st Qu.:2016-12-15   1st Qu.:13368  
##  Median :2019-03-07   Median :14118  
##  Mean   :2019-03-27   Mean   :14058  
##  3rd Qu.:2021-07-12   3rd Qu.:14570  
##  Max.   :2023-10-31   Max.   :16738

Plot Chart

Basic

rupiah %>% 
  plot_time_series(.date_var = time, .value = close)

Seasonality

rupiah %>% 
 plot_seasonal_diagnostics(.date_var = time, .value = close)
rupiah %>% 
 plot_seasonal_diagnostics(.date_var = time, .value = close, .feature_set = "week")
rupiah %>% 
 plot_seasonal_diagnostics(.date_var = time, .value = close, .feature_set = "wday.lbl")
rupiah %>% 
 plot_seasonal_diagnostics(.date_var = time, .value = close, .feature_set = "month.lbl")
rupiah %>% 
 plot_seasonal_diagnostics(.date_var = time, .value = close, .feature_set = "quarter")
rupiah %>% 
 plot_seasonal_diagnostics(.date_var = time, .value = close, .feature_set = "year")

Anomali Detection

rupiah %>% 
  plot_anomaly_diagnostics(.date_var = time, .value = close)
## frequency = 5 observations per 1 week
## trend = 66 observations per 3 months

ACF Diagnostic

rupiah %>% 
  plot_acf_diagnostics(.date_var = time, .value = close)
rupiah %>% 
  plot_acf_diagnostics(.date_var = time, .value = diff_vec(close), .lags = 60)
## diff_vec(): Initial values: 11820

Augmented ACF

rupiah_lags_tbl <- rupiah %>%
    tk_augment_lags(close, .lags = 60) %>%
    drop_na()

rupiah_lags_tbl %>% glimpse()
## Rows: 2,236
## Columns: 3
## $ time        <date> 2014-12-04, 2014-12-05, 2014-12-08, 2014-12-09, 2014-12-1…
## $ close       <dbl> 12305, 12295, 12347, 12327, 12335, 12347, 12455, 12695, 12…
## $ close_lag60 <dbl> 11820, 11818, 11925, 11960, 11950, 11975, 11965, 11972, 11…
model_formula <- as.formula(
    close ~ time
    + .
    + (as.factor(week2) * wday.lbl))

# rupiah %>% plot_time_series_regression(.date_var = time, .formula = model_formula)

STL Diagnostic

rupiah %>% 
  plot_stl_diagnostics(.date_var = time, 
                       .value = close)
## frequency = 5 observations per 1 week
## trend = 66 observations per 3 months
rupiah %>% 
  plot_stl_diagnostics(.date_var = time, 
                       .value = close, .feature_set = c("season", "trend"))
## frequency = 5 observations per 1 week
## trend = 66 observations per 3 months
rupiah %>% 
  filter_by_time(.start_date = "2021-12-29") %>% 
  plot_stl_diagnostics(.date_var = time, 
                       .value = close, .feature_set = c("season", "trend"))
## .date_var is missing. Using: time
## frequency = 5 observations per 1 week
## trend = 65 observations per 3 months
rupiah %>% 
  plot_stl_diagnostics(.date_var = time, 
                       .value = close, .feature_set = c("trend", "remainder"))
## frequency = 5 observations per 1 week
## trend = 66 observations per 3 months

Basic Preparation

Splits

splits <- time_series_split(rupiah, assess = "3 year", cumulative = T)
## Using date_var: time
splits %>%
    tk_time_series_cv_plan() %>%
    plot_time_series_cv_plan(time, close)

Recipe (Fourier and No Fourier)

recipe_spec_fourier <- recipe(close ~ ., data = training(splits)) %>%
  step_timeseries_signature(time) %>%
  step_rm(matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")) %>% 
  step_rm(c("time_month.lbl","time_wday.lbl")) %>%
  step_fourier(time, period = c(9, 24, 48), K = 2)
  
recipe_spec <- recipe(close ~ ., data = training(splits)) %>%
  step_timeseries_signature(time) %>%
  step_rm(matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")) %>% 
  step_rm(c("time_month.lbl","time_wday.lbl"))

recipe_spec_fourier %>% prep() %>% juice() %>% glimpse()
## Rows: 1,535
## Columns: 30
## $ time           <date> 2014-09-11, 2014-09-12, 2014-09-15, 2014-09-16, 2014-0…
## $ close          <dbl> 11820, 11818, 11925, 11960, 11950, 11975, 11965, 11972,…
## $ time_index.num <dbl> 1410393600, 1410480000, 1410739200, 1410825600, 1410912…
## $ time_year      <int> 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2…
## $ time_half      <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2…
## $ time_quarter   <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4…
## $ time_month     <int> 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 1…
## $ time_day       <int> 11, 12, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 29, 30,…
## $ time_wday      <int> 5, 6, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 2, 3…
## $ time_mday      <int> 11, 12, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 29, 30,…
## $ time_qday      <int> 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 91, 92,…
## $ time_yday      <int> 254, 255, 258, 259, 260, 261, 262, 265, 266, 267, 268, …
## $ time_mweek     <int> 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 1, 1, 1, 2, 2…
## $ time_week      <int> 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39,…
## $ time_week2     <int> 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0…
## $ time_week3     <int> 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1…
## $ time_week4     <int> 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0…
## $ time_mday7     <int> 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 1, 1, 1, 1, 2…
## $ time_sin9_K1   <dbl> -0.9848077530122429923, -0.6427876096867919387, 0.98480…
## $ time_cos9_K1   <dbl> 0.1736482, 0.7660444, 0.1736482, -0.5000000, -0.9396926…
## $ time_sin9_K2   <dbl> -0.3420201433252908485, -0.9848077530123225953, 0.34202…
## $ time_cos9_K2   <dbl> -0.9396926, 0.1736482, -0.9396926, -0.5000000, 0.766044…
## $ time_sin24_K1  <dbl> 0.86602540378428727319, 0.96592582628903622677, 0.86602…
## $ time_cos24_K1  <dbl> 0.5000000000002622347, 0.2588190451026401995, -0.499999…
## $ time_sin24_K2  <dbl> 0.86602540378474146543, 0.50000000000021416202, -0.8660…
## $ time_cos24_K2  <dbl> -0.4999999999994755862, -0.8660254037843150288, -0.5000…
## $ time_sin48_K1  <dbl> 0.499999999999868883, 0.608761429008671584, 0.866025403…
## $ time_cos48_K1  <dbl> 0.86602540378451431380, 0.79335334029127280164, 0.50000…
## $ time_sin48_K2  <dbl> 0.86602540378428727319, 0.96592582628903622677, 0.86602…
## $ time_cos48_K2  <dbl> 0.5000000000002622347, 0.2588190451026401995, -0.499999…
recipe_spec %>% prep() %>% juice() %>% glimpse()
## Rows: 1,535
## Columns: 18
## $ time           <date> 2014-09-11, 2014-09-12, 2014-09-15, 2014-09-16, 2014-0…
## $ close          <dbl> 11820, 11818, 11925, 11960, 11950, 11975, 11965, 11972,…
## $ time_index.num <dbl> 1410393600, 1410480000, 1410739200, 1410825600, 1410912…
## $ time_year      <int> 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2…
## $ time_half      <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2…
## $ time_quarter   <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4…
## $ time_month     <int> 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 1…
## $ time_day       <int> 11, 12, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 29, 30,…
## $ time_wday      <int> 5, 6, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 2, 3…
## $ time_mday      <int> 11, 12, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 29, 30,…
## $ time_qday      <int> 73, 74, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 91, 92,…
## $ time_yday      <int> 254, 255, 258, 259, 260, 261, 262, 265, 266, 267, 268, …
## $ time_mweek     <int> 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 1, 1, 1, 2, 2…
## $ time_week      <int> 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39,…
## $ time_week2     <int> 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0…
## $ time_week3     <int> 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1…
## $ time_week4     <int> 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0…
## $ time_mday7     <int> 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 1, 1, 1, 1, 2…

Resampling

resamples_tscv_no_acum <- time_series_cv(
    data = training(splits),
    cumulative  = F,
    initial     = "1 year", # train
    assess      = "3 month", # test
    skip        = "1 year",
    slice_limit = 5,
    date_var = time
)

resamples_tscv_no_acum %>%
    tk_time_series_cv_plan() %>%
    plot_time_series_cv_plan(time, close)

Timetk

Index Date Signature

rupiah %>% 
  tk_index() %>% 
  tk_get_timeseries_signature()
## # A tibble: 2,296 × 29
##    index       index.num   diff  year year.iso  half quarter month month.xts
##    <date>          <dbl>  <dbl> <int>    <int> <int>   <int> <int>     <int>
##  1 2014-09-11 1410393600     NA  2014     2014     2       3     9         8
##  2 2014-09-12 1410480000  86400  2014     2014     2       3     9         8
##  3 2014-09-15 1410739200 259200  2014     2014     2       3     9         8
##  4 2014-09-16 1410825600  86400  2014     2014     2       3     9         8
##  5 2014-09-17 1410912000  86400  2014     2014     2       3     9         8
##  6 2014-09-18 1410998400  86400  2014     2014     2       3     9         8
##  7 2014-09-19 1411084800  86400  2014     2014     2       3     9         8
##  8 2014-09-22 1411344000 259200  2014     2014     2       3     9         8
##  9 2014-09-23 1411430400  86400  2014     2014     2       3     9         8
## 10 2014-09-24 1411516800  86400  2014     2014     2       3     9         8
## # ℹ 2,286 more rows
## # ℹ 20 more variables: month.lbl <ord>, day <int>, hour <int>, minute <int>,
## #   second <int>, hour12 <int>, am.pm <int>, wday <int>, wday.xts <int>,
## #   wday.lbl <ord>, mday <int>, qday <int>, yday <int>, mweek <int>,
## #   week <int>, week.iso <int>, week2 <int>, week3 <int>, week4 <int>,
## #   mday7 <int>

Augment Time Series Signature

rupiah_vol_date_signature <- rupiah %>% 
  tk_augment_timeseries_signature(.date_var = time)

lm(close ~ month.lbl + wday.lbl, data = rupiah_vol_date_signature) %>% summary()
## 
## Call:
## lm(formula = close ~ month.lbl + wday.lbl, data = rupiah_vol_date_signature)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2364.36  -625.96    68.87   497.78  2643.49 
## 
## Coefficients:
##                Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)  14053.7344    16.8698 833.072 < 0.0000000000000002 ***
## month.lbl.L    187.6337    58.2511   3.221              0.00129 ** 
## month.lbl.Q   -302.0614    58.5686  -5.157          0.000000272 ***
## month.lbl.C    -67.1699    58.0102  -1.158              0.24703    
## month.lbl^4    -32.4325    58.0986  -0.558              0.57674    
## month.lbl^5     50.9155    58.9465   0.864              0.38781    
## month.lbl^6    191.6207    58.9658   3.250              0.00117 ** 
## month.lbl^7    -77.3240    58.2321  -1.328              0.18436    
## month.lbl^8     41.8150    57.8417   0.723              0.46980    
## month.lbl^9     49.8484    58.1545   0.857              0.39144    
## month.lbl^10    52.2102    58.7053   0.889              0.37390    
## month.lbl^11   -20.2846    59.0221  -0.344              0.73112    
## wday.lbl.L     -12.8774    37.7156  -0.341              0.73281    
## wday.lbl.Q       0.7651    37.6739   0.020              0.98380    
## wday.lbl.C       4.4055    37.6366   0.117              0.90683    
## wday.lbl^4      -1.8909    37.5899  -0.050              0.95988    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 806.7 on 2280 degrees of freedom
## Multiple R-squared:  0.02327,    Adjusted R-squared:  0.01684 
## F-statistic: 3.621 on 15 and 2280 DF,  p-value: 0.000002808

Modelling

Prophet Complete Season

model_fit_prophet_seasonality <- prophet_reg(seasonality_yearly = TRUE, 
                                 seasonality_weekly = TRUE, 
                                 seasonality_daily = TRUE) %>% 
  set_engine("prophet") %>%
  fit(close ~ time, data = training(splits))

model_fit_prophet_seasonality %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_forecast(new_data = testing(splits), actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

Elastic Net Regression

model_spec_glmnet <- linear_reg(mode = "regression", 
           penalty = 0.01, 
           mixture = 0) %>% 
  set_engine("glmnet")

model_spec_glmnet <- linear_reg(penalty = 0, mixture = 0) %>% 
  set_mode("regression") %>% 
  set_engine("glmnet")

model_fit_glmnet <- workflow() %>% 
  add_model(model_spec_glmnet) %>% 
  add_recipe(recipe_spec %>%
               step_mutate(time = as.numeric(time))) %>%
  fit(training(splits))

model_fit_glmnet %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_forecast(new_data = testing(splits), actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

SVM Polynominal

model_spec_svm_poly <- svm_poly(mode = "regression", 
                                cost = 10, 
                                degree = 1, 
                                scale_factor = 1, 
                                margin = 0.1) %>% 
  set_engine("kernlab")

set.seed(123)
model_fit_svm_poly <- workflow() %>% 
  add_model(model_spec_svm_poly) %>% 
  add_recipe(recipe_spec) %>% 
  fit(training(splits))

set.seed(123)
model_fit_svm_poly %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_forecast(new_data = testing(splits), actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

SVM Radial Basis

model_spec_svm_rbf <- svm_rbf(mode = "regression", 
                              cost = 1, 
                              rbf_sigma = 0.01, 
                              margin = 0.1) %>% 
  set_engine("kernlab")

set.seed(123)
model_fit_svm_rbf <- workflow() %>% 
  add_model(model_spec_svm_rbf) %>% 
  add_recipe(recipe_spec) %>% 
  fit(training(splits))

set.seed(123)
model_fit_svm_rbf %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_forecast(new_data = testing(splits), actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

KNN

model_spec_knn <- nearest_neighbor(mode = "regression", 
                                   neighbors = 50, 
                                   dist_power = 10, 
                                   weight_func = "optimal") %>% 
  set_engine("kknn")

set.seed(123)
model_fit_knn <- workflow() %>% 
  add_model(model_spec_knn) %>% 
  add_recipe(recipe_spec %>% 
               step_mutate(time = as.numeric(time))) %>% 
  fit(training(splits))

set.seed(123)
model_fit_knn %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_forecast(new_data = testing(splits), actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

Random Forest

model_spect_rf <- rand_forest(mode = "regression", 
                              mtry = 25, 
                              trees = 1000, 
                              min_n = 25) %>% 
  set_engine("randomForest")

set.seed(123)
model_fit_spect_rf <- workflow() %>% 
  add_model(model_spect_rf) %>% 
  add_recipe(recipe_spec %>% 
               step_mutate(time = as.numeric(time))) %>% 
  fit(training(splits))
## Warning: 25 columns were requested but there were 17 predictors in the data. 17
## will be used.
set.seed(123)
model_fit_spect_rf %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_forecast(new_data = testing(splits), actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

XGBoost

model_spec_boost <- boost_tree(mode = "regression", 
                               mtry = 25, 
                               trees = 1000, 
                               min_n = 2, 
                               tree_depth = 12, 
                               learn_rate = 0.3, 
                               loss_reduction = 0) %>% 
  set_engine("xgboost")

set.seed(123)
model_fit_boost <- workflow() %>% 
  add_model(model_spec_boost) %>% 
  add_recipe(recipe_spec %>% 
               step_mutate(time = as.numeric(time))) %>% 
  fit(training(splits))

set.seed(123)
model_fit_boost %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_forecast(new_data = testing(splits), actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

Cubist

model_spec_cubist <- cubist_rules(committees = 100, 
                                  neighbors = 20, 
                                  max_rules = 1000) %>% 
  set_engine("Cubist")

set.seed(123)
model_fit_cubist <- workflow() %>% 
  add_model(model_spec_cubist) %>% 
  add_recipe(recipe_spec %>% 
               step_mutate(time = as.numeric(time))) %>% 
  fit(training(splits))
## Warning: The number of neighbors should be >= 0 and <= 9. Truncating the value.
set.seed(123)
model_fit_cubist %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_forecast(new_data = testing(splits), actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

NNETAR

model_spec_nnetar <- nnetar_reg(
    non_seasonal_ar = 2,
    seasonal_ar     = 1, 
    hidden_units    = 10,
    penalty         = 10,
    num_networks    = 10,
    epochs          = 50
) %>%
    set_engine("nnetar")

set.seed(123)
model_fit_nnetar <- workflow() %>% 
  add_model(model_spec_nnetar) %>% 
  add_recipe(recipe_spec) %>% # harus ada data Date
  fit(training(splits) %>% drop_na())
## frequency = 5 observations per 1 week
set.seed(123)
model_fit_nnetar %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_forecast(new_data = testing(splits), actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

Prophet Boost

model_spec_prophet_boost <- prophet_boost(
  
  # Prophet Params
  changepoint_num = 25, 
  changepoint_range = 0.8,
  seasonality_daily = F, 
  seasonality_weekly = F, 
  seasonality_yearly = F,
  
  # XGBoost
  mtry = 0.75, 
  min_n = 20,
  tree_depth = 3, 
  learn_rate = 0.35, 
  loss_reduction = 0.15, 
  trees = 300) %>% 
  
  set_engine("prophet_xgboost", counts = F)
                
# Workflow

set.seed(123)
model_fit_prophet_boost <- workflow() %>% 
  add_model(model_spec_prophet_boost) %>% 
  # add_recipe(recipe_spec_base_ihsg %>% step_mutate(date = as.numeric(date))) %>% 
  add_recipe(recipe_spec) %>% 
  fit(training(splits))

set.seed(123)
model_fit_prophet_boost %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  # modeltime_forecast(new_data = testing(splits), actual_data = yield) %>% 
  modeltime_forecast(h = "1 year", actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

BART

# library(dbarts)
# 
# bt_reg_spec <- 
#   bart(trees = 15) %>% 
#   # This model can be used for classification or regression, so set mode
#   set_mode("regression") %>% 
#   set_engine("dbarts")
# 
# set.seed(123)
# bt_reg_fit <- bt_reg_spec %>% 
#   fit(close ~ time, data = training(splits))
# 
# model_fit_bart <- workflow() %>% 
#   add_model(bt_reg_spec) %>% 
#   add_recipe(recipe_spec %>%
#                step_mutate(time = as.numeric(time))) %>%
#   fit(training(splits))
# 
# model_fit_bart %>% 
#   modeltime_calibrate(new_data = testing(splits)) %>%
#   modeltime_forecast(new_data = testing(splits), actual_data = rupiah) %>% 
#   plot_modeltime_forecast(.conf_interval_show = F)

Combine Models

all_model_fit <- modeltime_table(model_fit_prophet_seasonality, 
model_fit_glmnet, 
model_fit_svm_poly,
model_fit_svm_rbf,
model_fit_knn,
model_fit_spect_rf,
model_fit_boost,
model_fit_cubist,
model_fit_nnetar,
model_fit_prophet_boost)
# model_fit_bart)

all_model_fit_calibrate <- all_model_fit %>% 
  modeltime_calibrate(new_data = testing(splits))

all_model_fit_calibrate %>% 
  modeltime_accuracy(new_data = testing(splits))
## # A tibble: 10 × 9
##    .model_id .model_desc              .type   mae  mape  mase smape  rmse    rsq
##        <int> <chr>                    <chr> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
##  1         1 PROPHET                  Test  1174.  7.98  34.8  7.64 1240. 0.585 
##  2         2 GLMNET                   Test   474.  3.26  14.0  3.20  529. 0.655 
##  3         3 KERNLAB                  Test   427.  2.93  12.7  2.89  475. 0.562 
##  4         4 KERNLAB                  Test   374.  2.54  11.1  2.53  424. 0.395 
##  5         5 KKNN                     Test   357.  2.36  10.6  2.41  483. 0.326 
##  6         6 RANDOMFOREST             Test   521.  3.56  15.4  3.51  612. 0.0212
##  7         7 XGBOOST                  Test   436.  2.96  12.9  2.95  500. 0.0249
##  8         8 CUBIST                   Test   540.  3.71  16.0  3.64  626. 0.0646
##  9         9 NNAR(2,1,10)[5]          Test   652.  4.33  19.3  4.46  840. 0.423 
## 10        10 PROPHET W/ XGBOOST ERRO… Test  1290.  8.77  38.2  8.37 1351. 0.591
all_model_fit_refit <- all_model_fit_calibrate %>% 
  modeltime_refit(data = rupiah) 
## frequency = 5 observations per 1 week
## Warning: There were 2 warnings in `dplyr::mutate()`.
## The first warning was:
## ℹ In argument: `.model = purrr::map2(...)`.
## Caused by warning:
## ! 25 columns were requested but there were 17 predictors in the data. 17 will be used.
## ℹ Run ]8;;ide:run:dplyr::last_dplyr_warnings()dplyr::last_dplyr_warnings()]8;; to see the 1 remaining warning.
all_model_fit_refit %>% write_rds("all_model_fit_refit")

all_model_fit_refit %>% 
  modeltime_forecast(h = "1 year", actual_data = rupiah_full) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
all_model_fit_calibrate %>% 
  modeltime_residuals() %>% 
  plot_modeltime_residuals()

Tune

tune Random Forest

model_spect_rf_tune <- rand_forest(mode = "regression", 
                              mtry = tune(),
                              trees = tune(), 
                              min_n = tune()) %>% 
  set_engine("randomForest")

grid_spec_rf <- grid_latin_hypercube(
  # extract_parameter_dials(model_spec_prophet_boost_tune),
  parameters(model_spect_rf_tune) %>%
        update(mtry = mtry(range = c(1, 65))),
  size = 15
)
## Warning: `parameters.model_spec()` was deprecated in tune 0.1.6.9003.
## ℹ Please use `hardhat::extract_parameter_set_dials()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
model_fit_spect_rf_tune <- model_fit_spect_rf %>% 
  update_model(model_spect_rf_tune)

tic()
tune_result_rf <- model_fit_spect_rf_tune %>%
  tune_grid(
    resamples = resamples_tscv_no_acum,
    grid      = grid_spec_rf,
    metrics   = default_forecast_accuracy_metric_set(),
    control   = control_grid(verbose = TRUE, save_pred = TRUE)
  )
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/15
## ✓ Slice1: preprocessor 1/1, model 1/15
## i Slice1: preprocessor 1/1, model 1/15 (predictions)
## i Slice1: preprocessor 1/1, model 2/15
## ! Slice1: preprocessor 1/1, model 2/15: 56 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice1: preprocessor 1/1, model 2/15
## i Slice1: preprocessor 1/1, model 2/15 (predictions)
## i Slice1: preprocessor 1/1, model 3/15
## ! Slice1: preprocessor 1/1, model 3/15: 33 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice1: preprocessor 1/1, model 3/15
## i Slice1: preprocessor 1/1, model 3/15 (predictions)
## i Slice1: preprocessor 1/1, model 4/15
## ✓ Slice1: preprocessor 1/1, model 4/15
## i Slice1: preprocessor 1/1, model 4/15 (predictions)
## i Slice1: preprocessor 1/1, model 5/15
## ! Slice1: preprocessor 1/1, model 5/15: 48 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice1: preprocessor 1/1, model 5/15
## i Slice1: preprocessor 1/1, model 5/15 (predictions)
## i Slice1: preprocessor 1/1, model 6/15
## ✓ Slice1: preprocessor 1/1, model 6/15
## i Slice1: preprocessor 1/1, model 6/15 (predictions)
## i Slice1: preprocessor 1/1, model 7/15
## ! Slice1: preprocessor 1/1, model 7/15: 26 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice1: preprocessor 1/1, model 7/15
## i Slice1: preprocessor 1/1, model 7/15 (predictions)
## i Slice1: preprocessor 1/1, model 8/15
## ✓ Slice1: preprocessor 1/1, model 8/15
## i Slice1: preprocessor 1/1, model 8/15 (predictions)
## i Slice1: preprocessor 1/1, model 9/15
## ! Slice1: preprocessor 1/1, model 9/15: 38 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice1: preprocessor 1/1, model 9/15
## i Slice1: preprocessor 1/1, model 9/15 (predictions)
## i Slice1: preprocessor 1/1, model 10/15
## ! Slice1: preprocessor 1/1, model 10/15: 48 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice1: preprocessor 1/1, model 10/15
## i Slice1: preprocessor 1/1, model 10/15 (predictions)
## i Slice1: preprocessor 1/1, model 11/15
## ! Slice1: preprocessor 1/1, model 11/15: 60 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice1: preprocessor 1/1, model 11/15
## i Slice1: preprocessor 1/1, model 11/15 (predictions)
## i Slice1: preprocessor 1/1, model 12/15
## ! Slice1: preprocessor 1/1, model 12/15: 30 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice1: preprocessor 1/1, model 12/15
## i Slice1: preprocessor 1/1, model 12/15 (predictions)
## i Slice1: preprocessor 1/1, model 13/15
## ! Slice1: preprocessor 1/1, model 13/15: 22 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice1: preprocessor 1/1, model 13/15
## i Slice1: preprocessor 1/1, model 13/15 (predictions)
## i Slice1: preprocessor 1/1, model 14/15
## ! Slice1: preprocessor 1/1, model 14/15: 62 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice1: preprocessor 1/1, model 14/15
## i Slice1: preprocessor 1/1, model 14/15 (predictions)
## i Slice1: preprocessor 1/1, model 15/15
## ! Slice1: preprocessor 1/1, model 15/15: 41 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice1: preprocessor 1/1, model 15/15
## i Slice1: preprocessor 1/1, model 15/15 (predictions)
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/15
## ✓ Slice2: preprocessor 1/1, model 1/15
## i Slice2: preprocessor 1/1, model 1/15 (predictions)
## i Slice2: preprocessor 1/1, model 2/15
## ! Slice2: preprocessor 1/1, model 2/15: 56 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice2: preprocessor 1/1, model 2/15
## i Slice2: preprocessor 1/1, model 2/15 (predictions)
## i Slice2: preprocessor 1/1, model 3/15
## ! Slice2: preprocessor 1/1, model 3/15: 33 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice2: preprocessor 1/1, model 3/15
## i Slice2: preprocessor 1/1, model 3/15 (predictions)
## i Slice2: preprocessor 1/1, model 4/15
## ✓ Slice2: preprocessor 1/1, model 4/15
## i Slice2: preprocessor 1/1, model 4/15 (predictions)
## i Slice2: preprocessor 1/1, model 5/15
## ! Slice2: preprocessor 1/1, model 5/15: 48 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice2: preprocessor 1/1, model 5/15
## i Slice2: preprocessor 1/1, model 5/15 (predictions)
## i Slice2: preprocessor 1/1, model 6/15
## ✓ Slice2: preprocessor 1/1, model 6/15
## i Slice2: preprocessor 1/1, model 6/15 (predictions)
## i Slice2: preprocessor 1/1, model 7/15
## ! Slice2: preprocessor 1/1, model 7/15: 26 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice2: preprocessor 1/1, model 7/15
## i Slice2: preprocessor 1/1, model 7/15 (predictions)
## i Slice2: preprocessor 1/1, model 8/15
## ✓ Slice2: preprocessor 1/1, model 8/15
## i Slice2: preprocessor 1/1, model 8/15 (predictions)
## i Slice2: preprocessor 1/1, model 9/15
## ! Slice2: preprocessor 1/1, model 9/15: 38 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice2: preprocessor 1/1, model 9/15
## i Slice2: preprocessor 1/1, model 9/15 (predictions)
## i Slice2: preprocessor 1/1, model 10/15
## ! Slice2: preprocessor 1/1, model 10/15: 48 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice2: preprocessor 1/1, model 10/15
## i Slice2: preprocessor 1/1, model 10/15 (predictions)
## i Slice2: preprocessor 1/1, model 11/15
## ! Slice2: preprocessor 1/1, model 11/15: 60 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice2: preprocessor 1/1, model 11/15
## i Slice2: preprocessor 1/1, model 11/15 (predictions)
## i Slice2: preprocessor 1/1, model 12/15
## ! Slice2: preprocessor 1/1, model 12/15: 30 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice2: preprocessor 1/1, model 12/15
## i Slice2: preprocessor 1/1, model 12/15 (predictions)
## i Slice2: preprocessor 1/1, model 13/15
## ! Slice2: preprocessor 1/1, model 13/15: 22 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice2: preprocessor 1/1, model 13/15
## i Slice2: preprocessor 1/1, model 13/15 (predictions)
## i Slice2: preprocessor 1/1, model 14/15
## ! Slice2: preprocessor 1/1, model 14/15: 62 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice2: preprocessor 1/1, model 14/15
## i Slice2: preprocessor 1/1, model 14/15 (predictions)
## i Slice2: preprocessor 1/1, model 15/15
## ! Slice2: preprocessor 1/1, model 15/15: 41 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice2: preprocessor 1/1, model 15/15
## i Slice2: preprocessor 1/1, model 15/15 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/15
## ✓ Slice3: preprocessor 1/1, model 1/15
## i Slice3: preprocessor 1/1, model 1/15 (predictions)
## i Slice3: preprocessor 1/1, model 2/15
## ! Slice3: preprocessor 1/1, model 2/15: 56 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice3: preprocessor 1/1, model 2/15
## i Slice3: preprocessor 1/1, model 2/15 (predictions)
## i Slice3: preprocessor 1/1, model 3/15
## ! Slice3: preprocessor 1/1, model 3/15: 33 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice3: preprocessor 1/1, model 3/15
## i Slice3: preprocessor 1/1, model 3/15 (predictions)
## i Slice3: preprocessor 1/1, model 4/15
## ✓ Slice3: preprocessor 1/1, model 4/15
## i Slice3: preprocessor 1/1, model 4/15 (predictions)
## i Slice3: preprocessor 1/1, model 5/15
## ! Slice3: preprocessor 1/1, model 5/15: 48 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice3: preprocessor 1/1, model 5/15
## i Slice3: preprocessor 1/1, model 5/15 (predictions)
## i Slice3: preprocessor 1/1, model 6/15
## ✓ Slice3: preprocessor 1/1, model 6/15
## i Slice3: preprocessor 1/1, model 6/15 (predictions)
## i Slice3: preprocessor 1/1, model 7/15
## ! Slice3: preprocessor 1/1, model 7/15: 26 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice3: preprocessor 1/1, model 7/15
## i Slice3: preprocessor 1/1, model 7/15 (predictions)
## i Slice3: preprocessor 1/1, model 8/15
## ✓ Slice3: preprocessor 1/1, model 8/15
## i Slice3: preprocessor 1/1, model 8/15 (predictions)
## i Slice3: preprocessor 1/1, model 9/15
## ! Slice3: preprocessor 1/1, model 9/15: 38 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice3: preprocessor 1/1, model 9/15
## i Slice3: preprocessor 1/1, model 9/15 (predictions)
## i Slice3: preprocessor 1/1, model 10/15
## ! Slice3: preprocessor 1/1, model 10/15: 48 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice3: preprocessor 1/1, model 10/15
## i Slice3: preprocessor 1/1, model 10/15 (predictions)
## i Slice3: preprocessor 1/1, model 11/15
## ! Slice3: preprocessor 1/1, model 11/15: 60 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice3: preprocessor 1/1, model 11/15
## i Slice3: preprocessor 1/1, model 11/15 (predictions)
## i Slice3: preprocessor 1/1, model 12/15
## ! Slice3: preprocessor 1/1, model 12/15: 30 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice3: preprocessor 1/1, model 12/15
## i Slice3: preprocessor 1/1, model 12/15 (predictions)
## i Slice3: preprocessor 1/1, model 13/15
## ! Slice3: preprocessor 1/1, model 13/15: 22 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice3: preprocessor 1/1, model 13/15
## i Slice3: preprocessor 1/1, model 13/15 (predictions)
## i Slice3: preprocessor 1/1, model 14/15
## ! Slice3: preprocessor 1/1, model 14/15: 62 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice3: preprocessor 1/1, model 14/15
## i Slice3: preprocessor 1/1, model 14/15 (predictions)
## i Slice3: preprocessor 1/1, model 15/15
## ! Slice3: preprocessor 1/1, model 15/15: 41 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice3: preprocessor 1/1, model 15/15
## i Slice3: preprocessor 1/1, model 15/15 (predictions)
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/15
## ✓ Slice4: preprocessor 1/1, model 1/15
## i Slice4: preprocessor 1/1, model 1/15 (predictions)
## i Slice4: preprocessor 1/1, model 2/15
## ! Slice4: preprocessor 1/1, model 2/15: 56 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice4: preprocessor 1/1, model 2/15
## i Slice4: preprocessor 1/1, model 2/15 (predictions)
## i Slice4: preprocessor 1/1, model 3/15
## ! Slice4: preprocessor 1/1, model 3/15: 33 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice4: preprocessor 1/1, model 3/15
## i Slice4: preprocessor 1/1, model 3/15 (predictions)
## i Slice4: preprocessor 1/1, model 4/15
## ✓ Slice4: preprocessor 1/1, model 4/15
## i Slice4: preprocessor 1/1, model 4/15 (predictions)
## i Slice4: preprocessor 1/1, model 5/15
## ! Slice4: preprocessor 1/1, model 5/15: 48 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice4: preprocessor 1/1, model 5/15
## i Slice4: preprocessor 1/1, model 5/15 (predictions)
## i Slice4: preprocessor 1/1, model 6/15
## ✓ Slice4: preprocessor 1/1, model 6/15
## i Slice4: preprocessor 1/1, model 6/15 (predictions)
## i Slice4: preprocessor 1/1, model 7/15
## ! Slice4: preprocessor 1/1, model 7/15: 26 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice4: preprocessor 1/1, model 7/15
## i Slice4: preprocessor 1/1, model 7/15 (predictions)
## i Slice4: preprocessor 1/1, model 8/15
## ✓ Slice4: preprocessor 1/1, model 8/15
## i Slice4: preprocessor 1/1, model 8/15 (predictions)
## i Slice4: preprocessor 1/1, model 9/15
## ! Slice4: preprocessor 1/1, model 9/15: 38 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice4: preprocessor 1/1, model 9/15
## i Slice4: preprocessor 1/1, model 9/15 (predictions)
## i Slice4: preprocessor 1/1, model 10/15
## ! Slice4: preprocessor 1/1, model 10/15: 48 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice4: preprocessor 1/1, model 10/15
## i Slice4: preprocessor 1/1, model 10/15 (predictions)
## i Slice4: preprocessor 1/1, model 11/15
## ! Slice4: preprocessor 1/1, model 11/15: 60 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice4: preprocessor 1/1, model 11/15
## i Slice4: preprocessor 1/1, model 11/15 (predictions)
## i Slice4: preprocessor 1/1, model 12/15
## ! Slice4: preprocessor 1/1, model 12/15: 30 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice4: preprocessor 1/1, model 12/15
## i Slice4: preprocessor 1/1, model 12/15 (predictions)
## i Slice4: preprocessor 1/1, model 13/15
## ! Slice4: preprocessor 1/1, model 13/15: 22 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice4: preprocessor 1/1, model 13/15
## i Slice4: preprocessor 1/1, model 13/15 (predictions)
## i Slice4: preprocessor 1/1, model 14/15
## ! Slice4: preprocessor 1/1, model 14/15: 62 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice4: preprocessor 1/1, model 14/15
## i Slice4: preprocessor 1/1, model 14/15 (predictions)
## i Slice4: preprocessor 1/1, model 15/15
## ! Slice4: preprocessor 1/1, model 15/15: 41 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice4: preprocessor 1/1, model 15/15
## i Slice4: preprocessor 1/1, model 15/15 (predictions)
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/15
## ✓ Slice5: preprocessor 1/1, model 1/15
## i Slice5: preprocessor 1/1, model 1/15 (predictions)
## i Slice5: preprocessor 1/1, model 2/15
## ! Slice5: preprocessor 1/1, model 2/15: 56 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice5: preprocessor 1/1, model 2/15
## i Slice5: preprocessor 1/1, model 2/15 (predictions)
## i Slice5: preprocessor 1/1, model 3/15
## ! Slice5: preprocessor 1/1, model 3/15: 33 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice5: preprocessor 1/1, model 3/15
## i Slice5: preprocessor 1/1, model 3/15 (predictions)
## i Slice5: preprocessor 1/1, model 4/15
## ✓ Slice5: preprocessor 1/1, model 4/15
## i Slice5: preprocessor 1/1, model 4/15 (predictions)
## i Slice5: preprocessor 1/1, model 5/15
## ! Slice5: preprocessor 1/1, model 5/15: 48 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice5: preprocessor 1/1, model 5/15
## i Slice5: preprocessor 1/1, model 5/15 (predictions)
## i Slice5: preprocessor 1/1, model 6/15
## ✓ Slice5: preprocessor 1/1, model 6/15
## i Slice5: preprocessor 1/1, model 6/15 (predictions)
## i Slice5: preprocessor 1/1, model 7/15
## ! Slice5: preprocessor 1/1, model 7/15: 26 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice5: preprocessor 1/1, model 7/15
## i Slice5: preprocessor 1/1, model 7/15 (predictions)
## i Slice5: preprocessor 1/1, model 8/15
## ✓ Slice5: preprocessor 1/1, model 8/15
## i Slice5: preprocessor 1/1, model 8/15 (predictions)
## i Slice5: preprocessor 1/1, model 9/15
## ! Slice5: preprocessor 1/1, model 9/15: 38 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice5: preprocessor 1/1, model 9/15
## i Slice5: preprocessor 1/1, model 9/15 (predictions)
## i Slice5: preprocessor 1/1, model 10/15
## ! Slice5: preprocessor 1/1, model 10/15: 48 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice5: preprocessor 1/1, model 10/15
## i Slice5: preprocessor 1/1, model 10/15 (predictions)
## i Slice5: preprocessor 1/1, model 11/15
## ! Slice5: preprocessor 1/1, model 11/15: 60 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice5: preprocessor 1/1, model 11/15
## i Slice5: preprocessor 1/1, model 11/15 (predictions)
## i Slice5: preprocessor 1/1, model 12/15
## ! Slice5: preprocessor 1/1, model 12/15: 30 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice5: preprocessor 1/1, model 12/15
## i Slice5: preprocessor 1/1, model 12/15 (predictions)
## i Slice5: preprocessor 1/1, model 13/15
## ! Slice5: preprocessor 1/1, model 13/15: 22 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice5: preprocessor 1/1, model 13/15
## i Slice5: preprocessor 1/1, model 13/15 (predictions)
## i Slice5: preprocessor 1/1, model 14/15
## ! Slice5: preprocessor 1/1, model 14/15: 62 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice5: preprocessor 1/1, model 14/15
## i Slice5: preprocessor 1/1, model 14/15 (predictions)
## i Slice5: preprocessor 1/1, model 15/15
## ! Slice5: preprocessor 1/1, model 15/15: 41 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice5: preprocessor 1/1, model 15/15
## i Slice5: preprocessor 1/1, model 15/15 (predictions)
toc()
## 59.16 sec elapsed
tune_result_rf %>% 
  show_best(metric = "rmse", n = Inf)
## # A tibble: 15 × 9
##     mtry trees min_n .metric .estimator  mean     n std_err .config             
##    <int> <int> <int> <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
##  1    14  1027    34 rmse    standard    335.     5    86.7 Preprocessor1_Model…
##  2    26   792    32 rmse    standard    350.     5    85.6 Preprocessor1_Model…
##  3    41  1289    11 rmse    standard    355.     5    87.2 Preprocessor1_Model…
##  4    56   261     8 rmse    standard    356.     5    87.3 Preprocessor1_Model…
##  5    22  1421     4 rmse    standard    357.     5    87.1 Preprocessor1_Model…
##  6    62  1504    15 rmse    standard    358.     5    87.7 Preprocessor1_Model…
##  7    30   613    29 rmse    standard    360.     5    87.5 Preprocessor1_Model…
##  8    48    16     5 rmse    standard    361.     5    86.0 Preprocessor1_Model…
##  9    33  1979    17 rmse    standard    361.     5    88.6 Preprocessor1_Model…
## 10    38  1854    26 rmse    standard    364.     5    89.0 Preprocessor1_Model…
## 11    48   329    23 rmse    standard    364.     5    88.5 Preprocessor1_Model…
## 12    60  1709    21 rmse    standard    365.     5    90.5 Preprocessor1_Model…
## 13    11   802    19 rmse    standard    366.     5    99.2 Preprocessor1_Model…
## 14     5   432    37 rmse    standard    419.     5   120.  Preprocessor1_Model…
## 15     2  1100    38 rmse    standard    441.     5   138.  Preprocessor1_Model…
tune_result_rf %>% write_rds("tune_result_rf")

model_fit_spect_rf_tune %>% 
  # update_model(model_spec_prophet) %>% 
  finalize_workflow(
    tune_result_rf %>% 
      show_best(metric = "rmse") %>%
      dplyr::slice(1)
  ) %>% 
  fit(training(splits)) %>% 
  modeltime_calibrate(new_data = testing(splits)) %>%
  # modeltime_forecast(new_data = test_data, actual_data = ihsg_tbl) %>%
  # plot_modeltime_forecast()
  modeltime_refit(data = rupiah) %>%
  # modeltime_forecast(new_data = ihsg_future_tbl, actual_data = ihsg_tbl) %>%
  modeltime_forecast(h = "1 year", actual_data = rupiah) %>%
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.
model_fit_spect_rf_tune <- model_fit_spect_rf %>% 
  # update_model(model_spec_prophet) %>% 
  finalize_workflow(
    tune_result_rf %>% 
      show_best(metric = "rmse") %>%
      dplyr::slice(1)
  )

tune XGBoost

model_spec_xgboost_tune <- boost_tree(
  mtry = tune(),
  trees = tune(), 
  min_n = tune(), 
  tree_depth = tune(),
  learn_rate = tune(), 
  loss_reduction = tune(), 
  sample_size = tune(),
  stop_iter = tune(), mode = "regression"
) %>%
  set_engine("xgboost")

grid_spec_xgboost <- grid_latin_hypercube(
  # extract_parameter_dials(model_spec_prophet_boost_tune),
  parameters(model_spec_xgboost_tune) %>%
        update(mtry = mtry(range = c(1, 65))),
  size = 15
)

set.seed(123)
model_fit_xgboost <- workflow() %>% 
  add_model(model_spec_boost) %>% 
  add_recipe(recipe_spec %>% 
               step_mutate(time = as.numeric(time))) %>% 
  fit(training(splits))

model_fit_xgboost_tune <- model_fit_boost %>% 
  update_model(model_spec_xgboost_tune)

tic()
tune_result_xgboost <- model_fit_xgboost_tune %>%
  tune_grid(
    resamples = resamples_tscv_no_acum,
    grid      = grid_spec_xgboost,
    metrics   = default_forecast_accuracy_metric_set(),
    control   = control_grid(verbose = TRUE, save_pred = TRUE)
  )
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/15
## ✓ Slice1: preprocessor 1/1, model 1/15
## i Slice1: preprocessor 1/1, model 1/15 (predictions)
## i Slice1: preprocessor 1/1, model 2/15
## ✓ Slice1: preprocessor 1/1, model 2/15
## i Slice1: preprocessor 1/1, model 2/15 (predictions)
## i Slice1: preprocessor 1/1, model 3/15
## ✓ Slice1: preprocessor 1/1, model 3/15
## i Slice1: preprocessor 1/1, model 3/15 (predictions)
## i Slice1: preprocessor 1/1, model 4/15
## ✓ Slice1: preprocessor 1/1, model 4/15
## i Slice1: preprocessor 1/1, model 4/15 (predictions)
## i Slice1: preprocessor 1/1, model 5/15
## ✓ Slice1: preprocessor 1/1, model 5/15
## i Slice1: preprocessor 1/1, model 5/15 (predictions)
## i Slice1: preprocessor 1/1, model 6/15
## ✓ Slice1: preprocessor 1/1, model 6/15
## i Slice1: preprocessor 1/1, model 6/15 (predictions)
## i Slice1: preprocessor 1/1, model 7/15
## ✓ Slice1: preprocessor 1/1, model 7/15
## i Slice1: preprocessor 1/1, model 7/15 (predictions)
## i Slice1: preprocessor 1/1, model 8/15
## ✓ Slice1: preprocessor 1/1, model 8/15
## i Slice1: preprocessor 1/1, model 8/15 (predictions)
## i Slice1: preprocessor 1/1, model 9/15
## ✓ Slice1: preprocessor 1/1, model 9/15
## i Slice1: preprocessor 1/1, model 9/15 (predictions)
## i Slice1: preprocessor 1/1, model 10/15
## ✓ Slice1: preprocessor 1/1, model 10/15
## i Slice1: preprocessor 1/1, model 10/15 (predictions)
## i Slice1: preprocessor 1/1, model 11/15
## ✓ Slice1: preprocessor 1/1, model 11/15
## i Slice1: preprocessor 1/1, model 11/15 (predictions)
## i Slice1: preprocessor 1/1, model 12/15
## ✓ Slice1: preprocessor 1/1, model 12/15
## i Slice1: preprocessor 1/1, model 12/15 (predictions)
## i Slice1: preprocessor 1/1, model 13/15
## ✓ Slice1: preprocessor 1/1, model 13/15
## i Slice1: preprocessor 1/1, model 13/15 (predictions)
## i Slice1: preprocessor 1/1, model 14/15
## ✓ Slice1: preprocessor 1/1, model 14/15
## i Slice1: preprocessor 1/1, model 14/15 (predictions)
## i Slice1: preprocessor 1/1, model 15/15
## ✓ Slice1: preprocessor 1/1, model 15/15
## i Slice1: preprocessor 1/1, model 15/15 (predictions)
## ! Slice1: internal:
##   There was 1 warning in `dplyr::summarise()`.
##   ℹ In argument: `.estimate = metric_fn(truth = close, estimate = .pred,...
##     na_rm)`.
##   ℹ In group 1: `mtry = 47`, `trees = 977`, `min_n = 9`, `tree_depth = 2`,
##     `learn_rate = 0.002810093`, `loss_reduction = 0.00000005056225`, `sa...
##     = 0.9607917`, `stop_iter = 15`.
##   Caused by warning:
##   ! A correlation computation is required, but `estimate` is constant an...
##   ℹ In argument: `.estimate = metric_fn(truth = close, estimate = .pred,...
##     na_rm)`.
##   ℹ In group 1: `mtry = 64`, `trees = 1289`, `min_n = 19`, `tree_depth =...
##     `learn_rate = 0.001168409`, `loss_reduction = 0.004976309`, `sample_...
##     0.5437508`, `stop_iter = 4`.
##   Caused by warning:
##   ! A correlation computation is required, but `estimate` is constant an...
## ✓ Slice1: internal
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/15
## ✓ Slice2: preprocessor 1/1, model 1/15
## i Slice2: preprocessor 1/1, model 1/15 (predictions)
## i Slice2: preprocessor 1/1, model 2/15
## ✓ Slice2: preprocessor 1/1, model 2/15
## i Slice2: preprocessor 1/1, model 2/15 (predictions)
## i Slice2: preprocessor 1/1, model 3/15
## ✓ Slice2: preprocessor 1/1, model 3/15
## i Slice2: preprocessor 1/1, model 3/15 (predictions)
## i Slice2: preprocessor 1/1, model 4/15
## ✓ Slice2: preprocessor 1/1, model 4/15
## i Slice2: preprocessor 1/1, model 4/15 (predictions)
## i Slice2: preprocessor 1/1, model 5/15
## ✓ Slice2: preprocessor 1/1, model 5/15
## i Slice2: preprocessor 1/1, model 5/15 (predictions)
## i Slice2: preprocessor 1/1, model 6/15
## ✓ Slice2: preprocessor 1/1, model 6/15
## i Slice2: preprocessor 1/1, model 6/15 (predictions)
## i Slice2: preprocessor 1/1, model 7/15
## ✓ Slice2: preprocessor 1/1, model 7/15
## i Slice2: preprocessor 1/1, model 7/15 (predictions)
## i Slice2: preprocessor 1/1, model 8/15
## ✓ Slice2: preprocessor 1/1, model 8/15
## i Slice2: preprocessor 1/1, model 8/15 (predictions)
## i Slice2: preprocessor 1/1, model 9/15
## ✓ Slice2: preprocessor 1/1, model 9/15
## i Slice2: preprocessor 1/1, model 9/15 (predictions)
## i Slice2: preprocessor 1/1, model 10/15
## ✓ Slice2: preprocessor 1/1, model 10/15
## i Slice2: preprocessor 1/1, model 10/15 (predictions)
## i Slice2: preprocessor 1/1, model 11/15
## ✓ Slice2: preprocessor 1/1, model 11/15
## i Slice2: preprocessor 1/1, model 11/15 (predictions)
## i Slice2: preprocessor 1/1, model 12/15
## ✓ Slice2: preprocessor 1/1, model 12/15
## i Slice2: preprocessor 1/1, model 12/15 (predictions)
## i Slice2: preprocessor 1/1, model 13/15
## ✓ Slice2: preprocessor 1/1, model 13/15
## i Slice2: preprocessor 1/1, model 13/15 (predictions)
## i Slice2: preprocessor 1/1, model 14/15
## ✓ Slice2: preprocessor 1/1, model 14/15
## i Slice2: preprocessor 1/1, model 14/15 (predictions)
## i Slice2: preprocessor 1/1, model 15/15
## ✓ Slice2: preprocessor 1/1, model 15/15
## i Slice2: preprocessor 1/1, model 15/15 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/15
## ✓ Slice3: preprocessor 1/1, model 1/15
## i Slice3: preprocessor 1/1, model 1/15 (predictions)
## i Slice3: preprocessor 1/1, model 2/15
## ✓ Slice3: preprocessor 1/1, model 2/15
## i Slice3: preprocessor 1/1, model 2/15 (predictions)
## i Slice3: preprocessor 1/1, model 3/15
## ✓ Slice3: preprocessor 1/1, model 3/15
## i Slice3: preprocessor 1/1, model 3/15 (predictions)
## i Slice3: preprocessor 1/1, model 4/15
## ✓ Slice3: preprocessor 1/1, model 4/15
## i Slice3: preprocessor 1/1, model 4/15 (predictions)
## i Slice3: preprocessor 1/1, model 5/15
## ✓ Slice3: preprocessor 1/1, model 5/15
## i Slice3: preprocessor 1/1, model 5/15 (predictions)
## i Slice3: preprocessor 1/1, model 6/15
## ✓ Slice3: preprocessor 1/1, model 6/15
## i Slice3: preprocessor 1/1, model 6/15 (predictions)
## i Slice3: preprocessor 1/1, model 7/15
## ✓ Slice3: preprocessor 1/1, model 7/15
## i Slice3: preprocessor 1/1, model 7/15 (predictions)
## i Slice3: preprocessor 1/1, model 8/15
## ✓ Slice3: preprocessor 1/1, model 8/15
## i Slice3: preprocessor 1/1, model 8/15 (predictions)
## i Slice3: preprocessor 1/1, model 9/15
## ✓ Slice3: preprocessor 1/1, model 9/15
## i Slice3: preprocessor 1/1, model 9/15 (predictions)
## i Slice3: preprocessor 1/1, model 10/15
## ✓ Slice3: preprocessor 1/1, model 10/15
## i Slice3: preprocessor 1/1, model 10/15 (predictions)
## i Slice3: preprocessor 1/1, model 11/15
## ✓ Slice3: preprocessor 1/1, model 11/15
## i Slice3: preprocessor 1/1, model 11/15 (predictions)
## i Slice3: preprocessor 1/1, model 12/15
## ✓ Slice3: preprocessor 1/1, model 12/15
## i Slice3: preprocessor 1/1, model 12/15 (predictions)
## i Slice3: preprocessor 1/1, model 13/15
## ✓ Slice3: preprocessor 1/1, model 13/15
## i Slice3: preprocessor 1/1, model 13/15 (predictions)
## i Slice3: preprocessor 1/1, model 14/15
## ✓ Slice3: preprocessor 1/1, model 14/15
## i Slice3: preprocessor 1/1, model 14/15 (predictions)
## i Slice3: preprocessor 1/1, model 15/15
## ✓ Slice3: preprocessor 1/1, model 15/15
## i Slice3: preprocessor 1/1, model 15/15 (predictions)
## ! Slice3: internal:
##   There was 1 warning in `dplyr::summarise()`.
##   ℹ In argument: `.estimate = metric_fn(truth = close, estimate = .pred,...
##     na_rm)`.
##   ℹ In group 1: `mtry = 13`, `trees = 1596`, `min_n = 15`, `tree_depth =...
##     `learn_rate = 0.001927961`, `loss_reduction = 4.818007`, `sample_size =
##     0.4531939`, `stop_iter = 7`.
##   Caused by warning:
##   ! A correlation computation is required, but `estimate` is constant an...
##   ℹ In argument: `.estimate = metric_fn(truth = close, estimate = .pred,...
##     na_rm)`.
##   ℹ In group 1: `mtry = 47`, `trees = 977`, `min_n = 9`, `tree_depth = 2`,
##     `learn_rate = 0.002810093`, `loss_reduction = 0.00000005056225`, `sa...
##     = 0.9607917`, `stop_iter = 15`.
##   Caused by warning:
##   ! A correlation computation is required, but `estimate` is constant an...
##   ℹ In argument: `.estimate = metric_fn(truth = close, estimate = .pred,...
##     na_rm)`.
##   ℹ In group 1: `mtry = 64`, `trees = 1289`, `min_n = 19`, `tree_depth =...
##     `learn_rate = 0.001168409`, `loss_reduction = 0.004976309`, `sample_...
##     0.5437508`, `stop_iter = 4`.
##   Caused by warning:
##   ! A correlation computation is required, but `estimate` is constant an...
## ✓ Slice3: internal
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/15
## ✓ Slice4: preprocessor 1/1, model 1/15
## i Slice4: preprocessor 1/1, model 1/15 (predictions)
## i Slice4: preprocessor 1/1, model 2/15
## ✓ Slice4: preprocessor 1/1, model 2/15
## i Slice4: preprocessor 1/1, model 2/15 (predictions)
## i Slice4: preprocessor 1/1, model 3/15
## ✓ Slice4: preprocessor 1/1, model 3/15
## i Slice4: preprocessor 1/1, model 3/15 (predictions)
## i Slice4: preprocessor 1/1, model 4/15
## ✓ Slice4: preprocessor 1/1, model 4/15
## i Slice4: preprocessor 1/1, model 4/15 (predictions)
## i Slice4: preprocessor 1/1, model 5/15
## ✓ Slice4: preprocessor 1/1, model 5/15
## i Slice4: preprocessor 1/1, model 5/15 (predictions)
## i Slice4: preprocessor 1/1, model 6/15
## ✓ Slice4: preprocessor 1/1, model 6/15
## i Slice4: preprocessor 1/1, model 6/15 (predictions)
## i Slice4: preprocessor 1/1, model 7/15
## ✓ Slice4: preprocessor 1/1, model 7/15
## i Slice4: preprocessor 1/1, model 7/15 (predictions)
## i Slice4: preprocessor 1/1, model 8/15
## ✓ Slice4: preprocessor 1/1, model 8/15
## i Slice4: preprocessor 1/1, model 8/15 (predictions)
## i Slice4: preprocessor 1/1, model 9/15
## ✓ Slice4: preprocessor 1/1, model 9/15
## i Slice4: preprocessor 1/1, model 9/15 (predictions)
## i Slice4: preprocessor 1/1, model 10/15
## ✓ Slice4: preprocessor 1/1, model 10/15
## i Slice4: preprocessor 1/1, model 10/15 (predictions)
## i Slice4: preprocessor 1/1, model 11/15
## ✓ Slice4: preprocessor 1/1, model 11/15
## i Slice4: preprocessor 1/1, model 11/15 (predictions)
## i Slice4: preprocessor 1/1, model 12/15
## ✓ Slice4: preprocessor 1/1, model 12/15
## i Slice4: preprocessor 1/1, model 12/15 (predictions)
## i Slice4: preprocessor 1/1, model 13/15
## ✓ Slice4: preprocessor 1/1, model 13/15
## i Slice4: preprocessor 1/1, model 13/15 (predictions)
## i Slice4: preprocessor 1/1, model 14/15
## ✓ Slice4: preprocessor 1/1, model 14/15
## i Slice4: preprocessor 1/1, model 14/15 (predictions)
## i Slice4: preprocessor 1/1, model 15/15
## ✓ Slice4: preprocessor 1/1, model 15/15
## i Slice4: preprocessor 1/1, model 15/15 (predictions)
## ! Slice4: internal:
##   There was 1 warning in `dplyr::summarise()`.
##   ℹ In argument: `.estimate = metric_fn(truth = close, estimate = .pred,...
##     na_rm)`.
##   ℹ In group 1: `mtry = 9`, `trees = 567`, `min_n = 40`, `tree_depth = 11`,
##     `learn_rate = 0.005844909`, `loss_reduction = 0.0000002763745`, `sam...
##     = 0.4629729`, `stop_iter = 11`.
##   Caused by warning:
##   ! A correlation computation is required, but `estimate` is constant an...
##   ℹ In argument: `.estimate = metric_fn(truth = close, estimate = .pred,...
##     na_rm)`.
##   ℹ In group 1: `mtry = 13`, `trees = 1596`, `min_n = 15`, `tree_depth =...
##     `learn_rate = 0.001927961`, `loss_reduction = 4.818007`, `sample_size =
##     0.4531939`, `stop_iter = 7`.
##   Caused by warning:
##   ! A correlation computation is required, but `estimate` is constant an...
##   ℹ In argument: `.estimate = metric_fn(truth = close, estimate = .pred,...
##     na_rm)`.
##   ℹ In group 1: `mtry = 47`, `trees = 977`, `min_n = 9`, `tree_depth = 2`,
##     `learn_rate = 0.002810093`, `loss_reduction = 0.00000005056225`, `sa...
##     = 0.9607917`, `stop_iter = 15`.
##   Caused by warning:
##   ! A correlation computation is required, but `estimate` is constant an...
##   ℹ In argument: `.estimate = metric_fn(truth = close, estimate = .pred,...
##     na_rm)`.
##   ℹ In group 1: `mtry = 64`, `trees = 1289`, `min_n = 19`, `tree_depth =...
##     `learn_rate = 0.001168409`, `loss_reduction = 0.004976309`, `sample_...
##     0.5437508`, `stop_iter = 4`.
##   Caused by warning:
##   ! A correlation computation is required, but `estimate` is constant an...
## ✓ Slice4: internal
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/15
## ✓ Slice5: preprocessor 1/1, model 1/15
## i Slice5: preprocessor 1/1, model 1/15 (predictions)
## i Slice5: preprocessor 1/1, model 2/15
## ✓ Slice5: preprocessor 1/1, model 2/15
## i Slice5: preprocessor 1/1, model 2/15 (predictions)
## i Slice5: preprocessor 1/1, model 3/15
## ✓ Slice5: preprocessor 1/1, model 3/15
## i Slice5: preprocessor 1/1, model 3/15 (predictions)
## i Slice5: preprocessor 1/1, model 4/15
## ✓ Slice5: preprocessor 1/1, model 4/15
## i Slice5: preprocessor 1/1, model 4/15 (predictions)
## i Slice5: preprocessor 1/1, model 5/15
## ✓ Slice5: preprocessor 1/1, model 5/15
## i Slice5: preprocessor 1/1, model 5/15 (predictions)
## i Slice5: preprocessor 1/1, model 6/15
## ✓ Slice5: preprocessor 1/1, model 6/15
## i Slice5: preprocessor 1/1, model 6/15 (predictions)
## i Slice5: preprocessor 1/1, model 7/15
## ✓ Slice5: preprocessor 1/1, model 7/15
## i Slice5: preprocessor 1/1, model 7/15 (predictions)
## i Slice5: preprocessor 1/1, model 8/15
## ✓ Slice5: preprocessor 1/1, model 8/15
## i Slice5: preprocessor 1/1, model 8/15 (predictions)
## i Slice5: preprocessor 1/1, model 9/15
## ✓ Slice5: preprocessor 1/1, model 9/15
## i Slice5: preprocessor 1/1, model 9/15 (predictions)
## i Slice5: preprocessor 1/1, model 10/15
## ✓ Slice5: preprocessor 1/1, model 10/15
## i Slice5: preprocessor 1/1, model 10/15 (predictions)
## i Slice5: preprocessor 1/1, model 11/15
## ✓ Slice5: preprocessor 1/1, model 11/15
## i Slice5: preprocessor 1/1, model 11/15 (predictions)
## i Slice5: preprocessor 1/1, model 12/15
## ✓ Slice5: preprocessor 1/1, model 12/15
## i Slice5: preprocessor 1/1, model 12/15 (predictions)
## i Slice5: preprocessor 1/1, model 13/15
## ✓ Slice5: preprocessor 1/1, model 13/15
## i Slice5: preprocessor 1/1, model 13/15 (predictions)
## i Slice5: preprocessor 1/1, model 14/15
## ✓ Slice5: preprocessor 1/1, model 14/15
## i Slice5: preprocessor 1/1, model 14/15 (predictions)
## i Slice5: preprocessor 1/1, model 15/15
## ✓ Slice5: preprocessor 1/1, model 15/15
## i Slice5: preprocessor 1/1, model 15/15 (predictions)
## ! Slice5: internal:
##   There was 1 warning in `dplyr::summarise()`.
##   ℹ In argument: `.estimate = metric_fn(truth = close, estimate = .pred,...
##     na_rm)`.
##   ℹ In group 1: `mtry = 64`, `trees = 1289`, `min_n = 19`, `tree_depth =...
##     `learn_rate = 0.001168409`, `loss_reduction = 0.004976309`, `sample_...
##     0.5437508`, `stop_iter = 4`.
##   Caused by warning:
##   ! A correlation computation is required, but `estimate` is constant an...
## ✓ Slice5: internal
toc()
## 71.47 sec elapsed
tune_result_xgboost %>% 
  show_best(metric = "rmse", n = Inf)
## # A tibble: 15 × 14
##     mtry trees min_n tree_depth learn_rate loss_reduction sample_size stop_iter
##    <int> <int> <int>      <int>      <dbl>          <dbl>       <dbl>     <int>
##  1    27  1093    29         13    0.0235        2.66e- 3       0.265        14
##  2    25   727    33          4    0.0113        3.28e- 6       0.643        18
##  3    20  1830     3         11    0.00707       3.68e- 9       0.598        19
##  4    52   825    12         14    0.0415        4.55e- 5       0.105         8
##  5    61   125    14          2    0.209         1.02e- 9       0.741         9
##  6    18  1395    32         14    0.00353       1.92e-10       0.301        11
##  7    38  1883    37          6    0.136         7.89e- 4       0.847        17
##  8    34   173    20          8    0.0575        7.50e- 1       0.899         5
##  9    44  1721     6          7    0.0744        2.02e- 5       0.341        13
## 10    50   317    26          9    0.0186        1.46e+ 1       0.188         5
## 11     4   492    24         10    0.301         1.30e- 1       0.768        16
## 12     9   567    40         11    0.00584       2.76e- 7       0.463        11
## 13    13  1596    15          5    0.00193       4.82e+ 0       0.453         7
## 14    47   977     9          2    0.00281       5.06e- 8       0.961        15
## 15    64  1289    19          4    0.00117       4.98e- 3       0.544         4
## # ℹ 6 more variables: .metric <chr>, .estimator <chr>, mean <dbl>, n <int>,
## #   std_err <dbl>, .config <chr>
tune_result_xgboost %>% write_rds("tune_result_xgboost")

model_fit_xgboost_tune %>% 
  # update_model(model_spec_prophet) %>% 
  finalize_workflow(
    tune_result_xgboost %>% 
      show_best(metric = "rmse") %>%
      dplyr::slice(1)
  ) %>% 
  fit(training(splits)) %>% 
  modeltime_calibrate(new_data = testing(splits)) %>%
  # modeltime_forecast(new_data = test_data, actual_data = ihsg_tbl) %>%
  # plot_modeltime_forecast()
  modeltime_refit(data = rupiah) %>%
  # modeltime_forecast(new_data = ihsg_future_tbl, actual_data = ihsg_tbl) %>%
  modeltime_forecast(h = "1 year", actual_data = rupiah) %>%
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.
model_fit_xgboost_best <- model_fit_xgboost %>% 
  # update_model(model_spec_prophet) %>% 
  finalize_workflow(
    tune_result_xgboost %>% 
      show_best(metric = "rmse") %>%
      dplyr::slice(1)
  )

tune Cubist

model_spec_cubist_tune <- cubist_rules(committees = tune(), 
                                  neighbors = tune(), 
                                  max_rules = tune()) %>% 
  set_engine("Cubist")

grid_spec_cubist <- grid_latin_hypercube(
  # extract_parameter_dials(model_spec_prophet_boost_tune),
  parameters(model_spec_cubist_tune),
  size = 15
)

model_fit_cubist_tune <- model_fit_cubist %>% 
  update_model(model_spec_cubist_tune)

tic()
tune_result_cubist <- model_fit_cubist_tune %>%
  tune_grid(
    resamples = resamples_tscv_no_acum,
    grid      = grid_spec_cubist,
    metrics   = default_forecast_accuracy_metric_set(),
    control   = control_grid(verbose = TRUE, save_pred = TRUE)
  )
## Warning: package 'Cubist' was built under R version 4.2.3
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/15
## ✓ Slice1: preprocessor 1/1, model 1/15
## i Slice1: preprocessor 1/1, model 1/15 (predictions)
## i Slice1: preprocessor 1/1, model 2/15
## ✓ Slice1: preprocessor 1/1, model 2/15
## i Slice1: preprocessor 1/1, model 2/15 (predictions)
## i Slice1: preprocessor 1/1, model 3/15
## ✓ Slice1: preprocessor 1/1, model 3/15
## i Slice1: preprocessor 1/1, model 3/15 (predictions)
## i Slice1: preprocessor 1/1, model 4/15
## ✓ Slice1: preprocessor 1/1, model 4/15
## i Slice1: preprocessor 1/1, model 4/15 (predictions)
## i Slice1: preprocessor 1/1, model 5/15
## ✓ Slice1: preprocessor 1/1, model 5/15
## i Slice1: preprocessor 1/1, model 5/15 (predictions)
## i Slice1: preprocessor 1/1, model 6/15
## ✓ Slice1: preprocessor 1/1, model 6/15
## i Slice1: preprocessor 1/1, model 6/15 (predictions)
## i Slice1: preprocessor 1/1, model 7/15
## ✓ Slice1: preprocessor 1/1, model 7/15
## i Slice1: preprocessor 1/1, model 7/15 (predictions)
## i Slice1: preprocessor 1/1, model 8/15
## ✓ Slice1: preprocessor 1/1, model 8/15
## i Slice1: preprocessor 1/1, model 8/15 (predictions)
## i Slice1: preprocessor 1/1, model 9/15
## ✓ Slice1: preprocessor 1/1, model 9/15
## i Slice1: preprocessor 1/1, model 9/15 (predictions)
## i Slice1: preprocessor 1/1, model 10/15
## ✓ Slice1: preprocessor 1/1, model 10/15
## i Slice1: preprocessor 1/1, model 10/15 (predictions)
## i Slice1: preprocessor 1/1, model 11/15
## ✓ Slice1: preprocessor 1/1, model 11/15
## i Slice1: preprocessor 1/1, model 11/15 (predictions)
## i Slice1: preprocessor 1/1, model 12/15
## ✓ Slice1: preprocessor 1/1, model 12/15
## i Slice1: preprocessor 1/1, model 12/15 (predictions)
## i Slice1: preprocessor 1/1, model 13/15
## ✓ Slice1: preprocessor 1/1, model 13/15
## i Slice1: preprocessor 1/1, model 13/15 (predictions)
## i Slice1: preprocessor 1/1, model 14/15
## ✓ Slice1: preprocessor 1/1, model 14/15
## i Slice1: preprocessor 1/1, model 14/15 (predictions)
## i Slice1: preprocessor 1/1, model 15/15
## ✓ Slice1: preprocessor 1/1, model 15/15
## i Slice1: preprocessor 1/1, model 15/15 (predictions)
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/15
## ✓ Slice2: preprocessor 1/1, model 1/15
## i Slice2: preprocessor 1/1, model 1/15 (predictions)
## i Slice2: preprocessor 1/1, model 2/15
## ✓ Slice2: preprocessor 1/1, model 2/15
## i Slice2: preprocessor 1/1, model 2/15 (predictions)
## i Slice2: preprocessor 1/1, model 3/15
## ✓ Slice2: preprocessor 1/1, model 3/15
## i Slice2: preprocessor 1/1, model 3/15 (predictions)
## i Slice2: preprocessor 1/1, model 4/15
## ✓ Slice2: preprocessor 1/1, model 4/15
## i Slice2: preprocessor 1/1, model 4/15 (predictions)
## i Slice2: preprocessor 1/1, model 5/15
## ✓ Slice2: preprocessor 1/1, model 5/15
## i Slice2: preprocessor 1/1, model 5/15 (predictions)
## i Slice2: preprocessor 1/1, model 6/15
## ✓ Slice2: preprocessor 1/1, model 6/15
## i Slice2: preprocessor 1/1, model 6/15 (predictions)
## i Slice2: preprocessor 1/1, model 7/15
## ✓ Slice2: preprocessor 1/1, model 7/15
## i Slice2: preprocessor 1/1, model 7/15 (predictions)
## i Slice2: preprocessor 1/1, model 8/15
## ✓ Slice2: preprocessor 1/1, model 8/15
## i Slice2: preprocessor 1/1, model 8/15 (predictions)
## i Slice2: preprocessor 1/1, model 9/15
## ✓ Slice2: preprocessor 1/1, model 9/15
## i Slice2: preprocessor 1/1, model 9/15 (predictions)
## i Slice2: preprocessor 1/1, model 10/15
## ✓ Slice2: preprocessor 1/1, model 10/15
## i Slice2: preprocessor 1/1, model 10/15 (predictions)
## i Slice2: preprocessor 1/1, model 11/15
## ✓ Slice2: preprocessor 1/1, model 11/15
## i Slice2: preprocessor 1/1, model 11/15 (predictions)
## i Slice2: preprocessor 1/1, model 12/15
## ✓ Slice2: preprocessor 1/1, model 12/15
## i Slice2: preprocessor 1/1, model 12/15 (predictions)
## i Slice2: preprocessor 1/1, model 13/15
## ✓ Slice2: preprocessor 1/1, model 13/15
## i Slice2: preprocessor 1/1, model 13/15 (predictions)
## i Slice2: preprocessor 1/1, model 14/15
## ✓ Slice2: preprocessor 1/1, model 14/15
## i Slice2: preprocessor 1/1, model 14/15 (predictions)
## i Slice2: preprocessor 1/1, model 15/15
## ✓ Slice2: preprocessor 1/1, model 15/15
## i Slice2: preprocessor 1/1, model 15/15 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/15
## ✓ Slice3: preprocessor 1/1, model 1/15
## i Slice3: preprocessor 1/1, model 1/15 (predictions)
## i Slice3: preprocessor 1/1, model 2/15
## ✓ Slice3: preprocessor 1/1, model 2/15
## i Slice3: preprocessor 1/1, model 2/15 (predictions)
## i Slice3: preprocessor 1/1, model 3/15
## ✓ Slice3: preprocessor 1/1, model 3/15
## i Slice3: preprocessor 1/1, model 3/15 (predictions)
## i Slice3: preprocessor 1/1, model 4/15
## ✓ Slice3: preprocessor 1/1, model 4/15
## i Slice3: preprocessor 1/1, model 4/15 (predictions)
## i Slice3: preprocessor 1/1, model 5/15
## ✓ Slice3: preprocessor 1/1, model 5/15
## i Slice3: preprocessor 1/1, model 5/15 (predictions)
## i Slice3: preprocessor 1/1, model 6/15
## ✓ Slice3: preprocessor 1/1, model 6/15
## i Slice3: preprocessor 1/1, model 6/15 (predictions)
## i Slice3: preprocessor 1/1, model 7/15
## ✓ Slice3: preprocessor 1/1, model 7/15
## i Slice3: preprocessor 1/1, model 7/15 (predictions)
## i Slice3: preprocessor 1/1, model 8/15
## ✓ Slice3: preprocessor 1/1, model 8/15
## i Slice3: preprocessor 1/1, model 8/15 (predictions)
## i Slice3: preprocessor 1/1, model 9/15
## ✓ Slice3: preprocessor 1/1, model 9/15
## i Slice3: preprocessor 1/1, model 9/15 (predictions)
## i Slice3: preprocessor 1/1, model 10/15
## ✓ Slice3: preprocessor 1/1, model 10/15
## i Slice3: preprocessor 1/1, model 10/15 (predictions)
## i Slice3: preprocessor 1/1, model 11/15
## ✓ Slice3: preprocessor 1/1, model 11/15
## i Slice3: preprocessor 1/1, model 11/15 (predictions)
## i Slice3: preprocessor 1/1, model 12/15
## ✓ Slice3: preprocessor 1/1, model 12/15
## i Slice3: preprocessor 1/1, model 12/15 (predictions)
## i Slice3: preprocessor 1/1, model 13/15
## ✓ Slice3: preprocessor 1/1, model 13/15
## i Slice3: preprocessor 1/1, model 13/15 (predictions)
## i Slice3: preprocessor 1/1, model 14/15
## ✓ Slice3: preprocessor 1/1, model 14/15
## i Slice3: preprocessor 1/1, model 14/15 (predictions)
## i Slice3: preprocessor 1/1, model 15/15
## ✓ Slice3: preprocessor 1/1, model 15/15
## i Slice3: preprocessor 1/1, model 15/15 (predictions)
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/15
## ✓ Slice4: preprocessor 1/1, model 1/15
## i Slice4: preprocessor 1/1, model 1/15 (predictions)
## i Slice4: preprocessor 1/1, model 2/15
## ✓ Slice4: preprocessor 1/1, model 2/15
## i Slice4: preprocessor 1/1, model 2/15 (predictions)
## i Slice4: preprocessor 1/1, model 3/15
## ✓ Slice4: preprocessor 1/1, model 3/15
## i Slice4: preprocessor 1/1, model 3/15 (predictions)
## i Slice4: preprocessor 1/1, model 4/15
## ✓ Slice4: preprocessor 1/1, model 4/15
## i Slice4: preprocessor 1/1, model 4/15 (predictions)
## i Slice4: preprocessor 1/1, model 5/15
## ✓ Slice4: preprocessor 1/1, model 5/15
## i Slice4: preprocessor 1/1, model 5/15 (predictions)
## i Slice4: preprocessor 1/1, model 6/15
## ✓ Slice4: preprocessor 1/1, model 6/15
## i Slice4: preprocessor 1/1, model 6/15 (predictions)
## i Slice4: preprocessor 1/1, model 7/15
## ✓ Slice4: preprocessor 1/1, model 7/15
## i Slice4: preprocessor 1/1, model 7/15 (predictions)
## i Slice4: preprocessor 1/1, model 8/15
## ✓ Slice4: preprocessor 1/1, model 8/15
## i Slice4: preprocessor 1/1, model 8/15 (predictions)
## i Slice4: preprocessor 1/1, model 9/15
## ✓ Slice4: preprocessor 1/1, model 9/15
## i Slice4: preprocessor 1/1, model 9/15 (predictions)
## i Slice4: preprocessor 1/1, model 10/15
## ✓ Slice4: preprocessor 1/1, model 10/15
## i Slice4: preprocessor 1/1, model 10/15 (predictions)
## i Slice4: preprocessor 1/1, model 11/15
## ✓ Slice4: preprocessor 1/1, model 11/15
## i Slice4: preprocessor 1/1, model 11/15 (predictions)
## i Slice4: preprocessor 1/1, model 12/15
## ✓ Slice4: preprocessor 1/1, model 12/15
## i Slice4: preprocessor 1/1, model 12/15 (predictions)
## i Slice4: preprocessor 1/1, model 13/15
## ✓ Slice4: preprocessor 1/1, model 13/15
## i Slice4: preprocessor 1/1, model 13/15 (predictions)
## i Slice4: preprocessor 1/1, model 14/15
## ✓ Slice4: preprocessor 1/1, model 14/15
## i Slice4: preprocessor 1/1, model 14/15 (predictions)
## i Slice4: preprocessor 1/1, model 15/15
## ✓ Slice4: preprocessor 1/1, model 15/15
## i Slice4: preprocessor 1/1, model 15/15 (predictions)
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/15
## ✓ Slice5: preprocessor 1/1, model 1/15
## i Slice5: preprocessor 1/1, model 1/15 (predictions)
## i Slice5: preprocessor 1/1, model 2/15
## ✓ Slice5: preprocessor 1/1, model 2/15
## i Slice5: preprocessor 1/1, model 2/15 (predictions)
## i Slice5: preprocessor 1/1, model 3/15
## ✓ Slice5: preprocessor 1/1, model 3/15
## i Slice5: preprocessor 1/1, model 3/15 (predictions)
## i Slice5: preprocessor 1/1, model 4/15
## ✓ Slice5: preprocessor 1/1, model 4/15
## i Slice5: preprocessor 1/1, model 4/15 (predictions)
## i Slice5: preprocessor 1/1, model 5/15
## ✓ Slice5: preprocessor 1/1, model 5/15
## i Slice5: preprocessor 1/1, model 5/15 (predictions)
## i Slice5: preprocessor 1/1, model 6/15
## ✓ Slice5: preprocessor 1/1, model 6/15
## i Slice5: preprocessor 1/1, model 6/15 (predictions)
## i Slice5: preprocessor 1/1, model 7/15
## ✓ Slice5: preprocessor 1/1, model 7/15
## i Slice5: preprocessor 1/1, model 7/15 (predictions)
## i Slice5: preprocessor 1/1, model 8/15
## ✓ Slice5: preprocessor 1/1, model 8/15
## i Slice5: preprocessor 1/1, model 8/15 (predictions)
## i Slice5: preprocessor 1/1, model 9/15
## ✓ Slice5: preprocessor 1/1, model 9/15
## i Slice5: preprocessor 1/1, model 9/15 (predictions)
## i Slice5: preprocessor 1/1, model 10/15
## ✓ Slice5: preprocessor 1/1, model 10/15
## i Slice5: preprocessor 1/1, model 10/15 (predictions)
## i Slice5: preprocessor 1/1, model 11/15
## ✓ Slice5: preprocessor 1/1, model 11/15
## i Slice5: preprocessor 1/1, model 11/15 (predictions)
## i Slice5: preprocessor 1/1, model 12/15
## ✓ Slice5: preprocessor 1/1, model 12/15
## i Slice5: preprocessor 1/1, model 12/15 (predictions)
## i Slice5: preprocessor 1/1, model 13/15
## ✓ Slice5: preprocessor 1/1, model 13/15
## i Slice5: preprocessor 1/1, model 13/15 (predictions)
## i Slice5: preprocessor 1/1, model 14/15
## ✓ Slice5: preprocessor 1/1, model 14/15
## i Slice5: preprocessor 1/1, model 14/15 (predictions)
## i Slice5: preprocessor 1/1, model 15/15
## ✓ Slice5: preprocessor 1/1, model 15/15
## i Slice5: preprocessor 1/1, model 15/15 (predictions)
toc()
## 47.33 sec elapsed
tune_result_cubist %>% 
  show_best(metric = "rmse", n = Inf)
## # A tibble: 15 × 9
##    committees neighbors max_rules .metric .estimator  mean     n std_err .config
##         <int>     <int>     <int> <chr>   <chr>      <dbl> <int>   <dbl> <chr>  
##  1         29         9       469 rmse    standard    289.     5    95.8 Prepro…
##  2         51         5       332 rmse    standard    291.     5    98.4 Prepro…
##  3         34         4       262 rmse    standard    292.     5    93.6 Prepro…
##  4         66         7       140 rmse    standard    293.     5    99.2 Prepro…
##  5         68         3        30 rmse    standard    293.     5    97.5 Prepro…
##  6         21         7       297 rmse    standard    293.     5    98.4 Prepro…
##  7         56         4       436 rmse    standard    295.     5   100.  Prepro…
##  8         79         1       364 rmse    standard    295.     5    99.8 Prepro…
##  9         42         6       117 rmse    standard    296.     5    97.1 Prepro…
## 10         19         1       374 rmse    standard    298.     5    99.5 Prepro…
## 11         85         0        36 rmse    standard    299.     5   105.  Prepro…
## 12         87         4       226 rmse    standard    304.     5   106.  Prepro…
## 13         94         6       194 rmse    standard    310.     5   110.  Prepro…
## 14          9         8        97 rmse    standard    334.     5   104.  Prepro…
## 15          2         2       408 rmse    standard    396.     5    98.8 Prepro…
tune_result_cubist %>% write_rds("tune_result_cubist")

model_fit_cubist_tune %>% 
  # update_model(model_spec_prophet) %>% 
  finalize_workflow(
    tune_result_cubist %>% 
      show_best(metric = "rmse") %>%
      dplyr::slice(1)
  ) %>% 
  fit(training(splits)) %>% 
  modeltime_calibrate(new_data = testing(splits)) %>%
  # modeltime_forecast(new_data = test_data, actual_data = ihsg_tbl) %>%
  # plot_modeltime_forecast()
  modeltime_refit(data = rupiah) %>%
  # modeltime_forecast(new_data = ihsg_future_tbl, actual_data = ihsg_tbl) %>%
  modeltime_forecast(h = "1 year", actual_data = rupiah) %>%
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.
model_fit_cubist_tune <- model_fit_cubist %>% 
  # update_model(model_spec_prophet) %>% 
  finalize_workflow(
    tune_result_cubist %>% 
      show_best(metric = "rmse") %>%
      dplyr::slice(1)
  )

tune Prophet Boost

# model_spec_prophet_boost_tune <- prophet_boost(
#                                        growth = "linear",
#                                        changepoint_num = tune(),
#                                        changepoint_range = tune(),
#                                        season = "additive",
#                                        seasonality_yearly = T,
#                                        seasonality_weekly = T,
#                                        seasonality_daily = T,
#                                        prior_scale_changepoints = tune(),
#                                        prior_scale_seasonality = tune(),
#                                        trees = tune(),
#                                        min_n = tune(),
#                                        tree_depth = tune(),
#                                        learn_rate = tune(),
#                                        loss_reduction = tune(),
#                                        sample_size = tune(),
#                                        stop_iter = tune(),
#                                        # mode = "regression",
#                                        mtry = tune()
# ) %>%
#   set_mode("regression") %>%
# set_engine("prophet_xgboost")
# 
# grid_spec_prophet_boost <- grid_latin_hypercube(
#   # extract_parameter_dials(model_spec_prophet_boost_tune),
#   parameters(model_spec_prophet_boost_tune) %>%
#         update(mtry = mtry(range = c(0, 65)), sample_size = sample_size(range = c(0, 100))),
#   size = 15
# )
# 
# 
# # grid_spec_prophet_boost <- grid_latin_hypercube(
# #   # extract_parameter_dials(model_spec_prophet_boost_tune),
# #   parameters(model_spec_prophet_boost_tune),
# #   size = 15
# # )
# 
# model_fit_prophet_boost_tune <- model_fit_prophet_boost %>%
#   update_model(model_spec_prophet_boost_tune)
# 
# 
# tic()
# tune_result_prophet_boost <- model_fit_prophet_boost_tune %>%
#   tune_grid(
#     resamples = resamples_tscv_no_acum,
#     grid      = grid_spec_prophet_boost,
#     metrics   = default_forecast_accuracy_metric_set(),
#     control   = control_grid(verbose = TRUE, save_pred = TRUE)
#   )
# toc()
# 
# tune_result_prophet_boost %>%
#   show_best(metric = "rmse", n = Inf)
# 
# tune_result_prophet_boost %>% write_rds("tune_result_prophet_boost")
# 
# model_fit_prophet_boost_tune %>%
#   # update_model(model_spec_prophet) %>%
#   finalize_workflow(
#     tune_result_prophet_boost %>%
#       show_best(metric = "rmse") %>%
#       dplyr::slice(1)
#   ) %>%
#   fit(training(splits)) %>%
#   modeltime_calibrate(new_data = testing(splits)) %>%
#   # modeltime_forecast(new_data = test_data, actual_data = ihsg_tbl) %>%
#   # plot_modeltime_forecast()
#   modeltime_refit(data = rupiah) %>%
#   # modeltime_forecast(new_data = ihsg_future_tbl, actual_data = ihsg_tbl) %>%
#   modeltime_forecast(h = "1 year", actual_data = rupiah) %>%
#   plot_modeltime_forecast(.conf_interval_show = F)
# 
# model_fit_prophet_boost_tune <- model_fit_prophet_boost %>%
#   # update_model(model_spec_prophet) %>%
#   finalize_workflow(
#     tune_result_prophet_boost %>%
#       show_best(metric = "rmse") %>%
#       dplyr::slice(1)
#   )
# 
# model_fit_prophet_boost_tune %>%
#   modeltime_calibrate(new_data = testing(splits)) %>%
#   modeltime_refit(data = yield) %>%
#   modeltime_forecast(h = "1 year", actual_data = yield) %>%
#   plot_modeltime_forecast(.conf_interval_show = F)

tune BART

# bart_tune_spec <- 
#   bart(trees = tune(), 
#        prior_terminal_node_coef = tune(), 
#        prior_terminal_node_expo = tune(), 
#        prior_outcome_range = tune()) %>% 
#   # This model can be used for classification or regression, so set mode
#   set_mode("regression") %>% 
#   set_engine("dbarts")
# 
# grid_spec_bart <- grid_latin_hypercube(
#   # extract_parameter_dials(model_spec_prophet_boost_tune),
#   parameters(bart_tune_spec),
#   size = 15
# )
# 
# model_fit_bart_tune <- model_fit_bart %>% 
#   update_model(bart_tune_spec)
# 
# tic()
# tune_result_bart <- model_fit_bart_tune %>%
#   tune_grid(
#     resamples = resamples_tscv_no_acum,
#     grid      = grid_spec_bart,
#     metrics   = default_forecast_accuracy_metric_set(),
#     control   = control_grid(verbose = TRUE, save_pred = TRUE)
#   )
# toc()
# 
# tune_result_bart %>% 
#   show_best(metric = "rmse", n = Inf)
# 
# tune_result_bart %>% write_rds("tune_result_bart")
# 
# model_fit_bart_tune %>% 
#   # update_model(model_spec_prophet) %>% 
#   finalize_workflow(
#     tune_result_bart %>% 
#       show_best(metric = "rmse") %>%
#       dplyr::slice(1)
#   ) %>% 
#   fit(training(splits)) %>% 
#   modeltime_calibrate(new_data = testing(splits)) %>%
#   # modeltime_forecast(new_data = test_data, actual_data = ihsg_tbl) %>%
#   # plot_modeltime_forecast()
#   modeltime_refit(data = yield) %>%
#   # modeltime_forecast(new_data = ihsg_future_tbl, actual_data = ihsg_tbl) %>%
#   modeltime_forecast(h = "1 year", actual_data = yield) %>%
#   plot_modeltime_forecast(.conf_interval_show = F)
# 
# model_fit_bart_best <- model_fit_bart %>% 
#   # update_model(model_spec_prophet) %>% 
#   finalize_workflow(
#     tune_result_bart %>% 
#       show_best(metric = "rmse") %>%
#       dplyr::slice(1)
#   )

Combine Tune Models

all_model_fit_tune <- modeltime_table(
  # model_fit_bart_best,
                model_fit_cubist_tune, 
                # model_fit_prophet_boost_tune,
                model_fit_spect_rf_tune, 
                model_fit_xgboost_best)

all_model_fit_tune_calibrate <- all_model_fit_tune %>% 
  modeltime_calibrate(new_data = testing(splits))

all_model_fit_tune_calibrate %>% 
  modeltime_accuracy(new_data = testing(splits))
## # A tibble: 3 × 9
##   .model_id .model_desc  .type   mae  mape  mase smape  rmse    rsq
##       <int> <chr>        <chr> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
## 1         1 CUBIST       Test   540.  3.71  16.0  3.64  626. 0.0646
## 2         2 RANDOMFOREST Test   521.  3.56  15.4  3.51  612. 0.0212
## 3         3 XGBOOST      Test   436.  2.96  12.9  2.95  500. 0.0249
all_model_fit_tune_refit <- all_model_fit_tune_calibrate %>% 
  modeltime_refit(data = rupiah) 
## Warning: There were 2 warnings in `dplyr::mutate()`.
## The first warning was:
## ℹ In argument: `.model = purrr::map2(...)`.
## Caused by warning:
## ! The number of neighbors should be >= 0 and <= 9. Truncating the value.
## ℹ Run ]8;;ide:run:dplyr::last_dplyr_warnings()dplyr::last_dplyr_warnings()]8;; to see the 1 remaining warning.
all_model_fit_tune_refit %>% write_rds("all_model_fit_tune_refit")

all_model_fit_tune_refit %>% 
  modeltime_forecast(h = "1 year", actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
all_model_fit_tune_calibrate %>% 
  modeltime_residuals() %>% 
  plot_modeltime_residuals()

Resampling

Resample

all_model_fit_resample <- all_model_fit %>% 
  modeltime_fit_resamples(resamples = resamples_tscv_no_acum, 
                          control = control_resamples(verbose = FALSE))

all_model_fit_resample %>% 
  modeltime_resample_accuracy(summary_fns = mean) %>% 
  table_modeltime_accuracy(.interactive = FALSE)
## Warning: There was 1 warning in `dplyr::summarise()`.
## ℹ In argument: `dplyr::across(.fns = summary_fns, ...)`.
## Caused by warning:
## ! Using `across()` without supplying `.cols` was deprecated in dplyr 1.1.0.
## ℹ Please supply `.cols` instead.
Accuracy Table
.model_id .model_desc .type n mae mape mase smape rmse rsq
1 PROPHET Resamples 5 270.91 1.94 7.82 1.93 315.97 0.11
2 GLMNET Resamples 5 264.37 1.85 7.67 1.85 289.05 0.25
3 KERNLAB Resamples 5 591.48 4.09 14.76 4.21 613.69 0.08
4 KERNLAB Resamples 5 240.18 1.68 6.98 1.69 268.41 0.16
5 KKNN Resamples 5 251.47 1.76 7.39 1.78 278.95 0.11
6 RANDOMFOREST Resamples 5 329.30 2.31 9.14 2.32 364.82 0.17
7 XGBOOST Resamples 5 279.22 1.94 7.52 1.96 308.50 0.22
8 CUBIST Resamples 5 283.73 1.97 7.32 2.01 312.95 0.20
9 NNAR(2,1,10)[5] Resamples 5 302.59 2.11 8.46 2.13 323.90 0.16
10 PROPHET W/ XGBOOST ERRORS Resamples 5 612.04 4.20 12.87 4.51 666.54 0.33
# model_id with smallest RMSE : 3, 2, 10, 7 dan 4

all_model_fit_resample %>% 
  plot_modeltime_resamples()

Visual each model w/ best RMSE

# model_id with smallest RMSE : 3, 2, 10, 7 dan 4

all_model_fit_resample %>% 
  pull_modeltime_model(3) %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_refit(data = rupiah) %>% 
  modeltime_forecast(h = "1 year", actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.
all_model_fit_resample %>% 
  pull_modeltime_model(2) %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_refit(data = rupiah) %>% 
  modeltime_forecast(h = "1 year", actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.
all_model_fit_resample %>% 
  pull_modeltime_model(10) %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_refit(data = rupiah) %>% 
  modeltime_forecast(h = "1 year", actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.
# XGBoost
all_model_fit_resample %>% 
  pull_modeltime_model(7) %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_refit(data = rupiah) %>% 
  modeltime_forecast(h = "1 year", actual_data = rupiah) %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

Hyperparameter Tuning

XGBoost

# wflw_fit_xgboost <- all_model_fit_resample %>% 
#   pull_modeltime_model(7)
# 
# wflw_fit_xgboost
# 
# model_spec_xgboost_tune <- boost_tree(
#   # mtry = tune(), 
#   trees = tune(), 
#   min_n = tune(), 
#   tree_depth = tune(),
#   learn_rate = tune(),
#   loss_reduction = tune(),
#   sample_size = tune(),
#   stop_iter = tune()
# ) %>%
#  set_engine("xgboost") %>%
#  set_mode("regression")
# 
# grid_spec_xgboost <- grid_latin_hypercube(
#   # extract_parameter_dials(model_spec_prophet_boost_tune),
#   parameters(model_spec_xgboost_tune),
#   size = 15
# )
# 
# wflw_tune_xgboost <- wflw_fit_xgboost %>% 
#   update_model(model_spec_xgboost_tune)
# 
# tic()
# tune_result_xgboost <- wflw_tune_xgboost %>%
#   tune_grid(
#     resamples = resamples_tscv_no_acum,
#     grid      = grid_spec_xgboost,
#     metrics   = default_forecast_accuracy_metric_set(),
#     control   = control_grid(verbose = TRUE, save_pred = TRUE)
#   )
# toc()
# 
# tune_result_xgboost %>% write_rds("tune_result_xgboost")
# tune_result_xgboost <- read_rds("tune_result_xgboost")
# 
# tune_result_xgboost %>% 
#   show_best(metric = "rmse", n = Inf)
# 
# wflw_fit_xgboost %>% 
#   # update_model(model_spec_prophet) %>% 
#   finalize_workflow(
#     tune_result_xgboost %>% 
#       show_best(metric = "rmse") %>%
#       dplyr::slice(1)
#   ) %>% 
#   fit(training(splits)) %>% 
#   modeltime_calibrate(new_data = testing(splits)) %>%
#   # modeltime_forecast(new_data = test_data, actual_data = ihsg_tbl) %>%
#   # plot_modeltime_forecast()
#   modeltime_refit(data = yield) %>%
#   # modeltime_forecast(new_data = ihsg_future_tbl, actual_data = ihsg_tbl) %>%
#   modeltime_forecast(h = "1 year", actual_data = yield) %>%
#   plot_modeltime_forecast(.conf_interval_show = F)
# 
# wflw_fit_xgboost_best <- wflw_fit_xgboost %>% 
#   # update_model(model_spec_prophet) %>% 
#   finalize_workflow(
#     tune_result_xgboost %>% 
#       show_best(metric = "rmse") %>%
#       dplyr::slice(1)
#   )
# 
# wflw_fit_xgboost_best %>% write_rds("wflw_fit_xgboost_best")

Prophet w/ Boost (Done)

# wflw_fit_prophet_boost <-  all_model_fit_resample %>% 
#   pull_modeltime_model(10)
# 
# model_spec_prophet_boost_tune <- prophet_boost(
#                                        growth = tune(),
#                                        changepoint_num = tune(), 
#                                        changepoint_range = tune(), 
#                                        season = tune(), 
#                                        seasonality_yearly = T, 
#                                        seasonality_weekly = T, 
#                                        seasonality_daily = T, 
#                                        prior_scale_changepoints = tune(), 
#                                        prior_scale_seasonality = tune(), 
#                                        trees = tune(), 
#                                        min_n = tune(), 
#                                        tree_depth = tune(), 
#                                        learn_rate = tune(), 
#                                        loss_reduction = tune(), 
#                                        # sample_size = tune(), 
#                                        stop_iter = tune()
# ) %>%
# set_engine("prophet_xgboost")
# 
# 
# grid_spec_prophet_boost <- grid_latin_hypercube(
#   # extract_parameter_dials(model_spec_prophet_boost_tune),
#   parameters(model_spec_prophet_boost_tune),
#   size = 15
# )
# 
# wflw_tune_prophet_boost <- wflw_fit_prophet_boost %>% 
#   update_model(model_spec_prophet_boost_tune)
# 
# tic()
# tune_result_prophet_boost <- wflw_tune_prophet_boost %>%
#   tune_grid(
#     resamples = resamples_tscv_no_acum,
#     grid      = grid_spec_prophet_boost,
#     metrics   = default_forecast_accuracy_metric_set(),
#     control   = control_grid(verbose = TRUE, save_pred = TRUE)
#   )
# toc()
# 
# tune_result_prophet_boost %>% write_rds("tune_result_prophet_boost")
# tune_result_prophet_boost <- read_rds("tune_result_prophet_boost")
# 
# tune_result_prophet_boost %>% 
#   show_best(metric = "rmse", n = Inf)
# 
# wflw_fit_prophet_boost %>% 
#   # update_model(model_spec_prophet) %>% 
#   finalize_workflow(
#     tune_result_prophet_boost %>% 
#       show_best(metric = "rmse") %>%
#       dplyr::slice(1)
#   ) %>% 
#   fit(training(splits)) %>% 
#   modeltime_calibrate(new_data = testing(splits)) %>%
#   # modeltime_forecast(new_data = test_data, actual_data = ihsg_tbl) %>%
#   # plot_modeltime_forecast()
#   modeltime_refit(data = yield) %>%
#   # modeltime_forecast(new_data = ihsg_future_tbl, actual_data = ihsg_tbl) %>%
#   modeltime_forecast(h = "1 year", actual_data = yield) %>%
#   plot_modeltime_forecast()
# 
# wflw_fit_prophet_boost_best <- wflw_fit_prophet_boost %>% 
#   # update_model(model_spec_prophet) %>% 
#   finalize_workflow(
#     tune_result_prophet_boost %>% 
#       show_best(metric = "rmse") %>%
#       dplyr::slice(1)
#   )
# 
# wflw_fit_prophet_boost_best %>% write_rds("wflw_fit_prophet_boost_best")

Randomforest (Done)

# wflw_fit_randomforest <- all_model_fit_resample %>% 
#   pull_modeltime_model(6)
# 
# model_spec_rf_tune <- rand_forest(
#   # mtry = tune(),
#   trees = tune(),
#   min_n = tune()
# ) %>%
# set_engine("randomForest") %>%
# set_mode("regression")
# 
# 
# grid_spec_rf <- grid_latin_hypercube(
#   # extract_parameter_dials(model_spec_prophet_boost_tune),
#   parameters(model_spec_rf_tune),
#   size = 15
# )
# 
# wflw_tune_rf <- wflw_fit_randomforest %>% 
#   update_model(model_spec_rf_tune)
# 
# tic()
# tune_result_rf <- wflw_tune_rf %>%
#   tune_grid(
#     resamples = resamples_tscv_no_acum,
#     grid      = grid_spec_rf,
#     metrics   = default_forecast_accuracy_metric_set(),
#     control   = control_grid(verbose = TRUE, save_pred = TRUE)
#   )
# toc()
# 
# tune_result_rf %>% write_rds("tune_result_rf")
# tune_result_rf <- read_rds("tune_result_rf")
# 
# tune_result_rf %>% 
#   show_best(metric = "rmse", n = Inf)
# 
# wflw_fit_randomforest %>% 
#   # update_model(model_spec_prophet) %>% 
#   finalize_workflow(
#     tune_result_rf %>% 
#       show_best(metric = "rmse") %>%
#       dplyr::slice(1)
#   ) %>% 
#   fit(training(splits)) %>% 
#   modeltime_calibrate(new_data = testing(splits)) %>%
#   # modeltime_forecast(new_data = test_data, actual_data = ihsg_tbl) %>%
#   # plot_modeltime_forecast()
#   modeltime_refit(data = yield) %>%
#   # modeltime_forecast(new_data = ihsg_future_tbl, actual_data = ihsg_tbl) %>%
#   modeltime_forecast(h = "1 year", actual_data = yield) %>%
#   plot_modeltime_forecast()
# 
# 
# wflw_fit_randomforest_best <- wflw_fit_randomforest %>% 
#   # update_model(model_spec_prophet) %>% 
#   finalize_workflow(
#     tune_result_rf %>% 
#       show_best(metric = "rmse") %>%
#       dplyr::slice(1)
#   )
# 
# wflw_fit_randomforest_best %>% write_rds("wflw_fit_randomforest_best")

Ensemble

Median

library(dbarts)
## Warning: package 'dbarts' was built under R version 4.2.3
## 
## Attaching package: 'dbarts'
## The following object is masked from 'package:tidyr':
## 
##     extract
## The following object is masked from 'package:parsnip':
## 
##     bart
all_model_fit_refit %>% 
  ensemble_average(type = "median") %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_forecast(actual_data = rupiah, h = "1 year") %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

Mean

all_model_fit_refit %>% 
  ensemble_average(type = "mean") %>% 
  modeltime_calibrate(new_data = testing(splits)) %>% 
  modeltime_forecast(actual_data = rupiah, h = "1 year") %>% 
  plot_modeltime_forecast(.conf_interval_show = F)
## Converting to Modeltime Table.

Stacking

Submodels Resample

all_model_fit_refit %>% 
  filter(.model_desc != "DBARTS")
## # Modeltime Table
## # A tibble: 10 × 5
##    .model_id .model     .model_desc               .type .calibration_data 
##        <int> <list>     <chr>                     <chr> <list>            
##  1         1 <fit[+]>   PROPHET                   Test  <tibble [761 × 4]>
##  2         2 <workflow> GLMNET                    Test  <tibble [761 × 4]>
##  3         3 <workflow> KERNLAB                   Test  <tibble [761 × 4]>
##  4         4 <workflow> KERNLAB                   Test  <tibble [761 × 4]>
##  5         5 <workflow> KKNN                      Test  <tibble [761 × 4]>
##  6         6 <workflow> RANDOMFOREST              Test  <tibble [761 × 4]>
##  7         7 <workflow> XGBOOST                   Test  <tibble [761 × 4]>
##  8         8 <workflow> CUBIST                    Test  <tibble [761 × 4]>
##  9         9 <workflow> NNAR(2,1,10)[5]           Test  <tibble [761 × 4]>
## 10        10 <workflow> PROPHET W/ XGBOOST ERRORS Test  <tibble [761 × 4]>
submodels_resample <- all_model_fit_refit %>% 
  filter(.model_desc != "DBARTS") %>%
    modeltime_fit_resamples(
        resamples = resamples_tscv_no_acum,
        control   = control_resamples(
            verbose   = TRUE, 
            # allow_par = FALSE, 
            allow_par = TRUE,
            pkgs      = c("Cubist", "rules", "tidymodels", "ranger", "parsnip", "modeltime")
        )
    )
## ── Fitting Resamples ────────────────────────────────────────────
## • Model ID: 1 PROPHET
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/1
## ✓ Slice1: preprocessor 1/1, model 1/1
## i Slice1: preprocessor 1/1, model 1/1 (predictions)
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/1
## ✓ Slice2: preprocessor 1/1, model 1/1
## i Slice2: preprocessor 1/1, model 1/1 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/1
## ✓ Slice3: preprocessor 1/1, model 1/1
## i Slice3: preprocessor 1/1, model 1/1 (predictions)
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/1
## ✓ Slice4: preprocessor 1/1, model 1/1
## i Slice4: preprocessor 1/1, model 1/1 (predictions)
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/1
## ✓ Slice5: preprocessor 1/1, model 1/1
## i Slice5: preprocessor 1/1, model 1/1 (predictions)
## • Model ID: 2 GLMNET
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/1
## ✓ Slice1: preprocessor 1/1, model 1/1
## i Slice1: preprocessor 1/1, model 1/1 (predictions)
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/1
## ✓ Slice2: preprocessor 1/1, model 1/1
## i Slice2: preprocessor 1/1, model 1/1 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/1
## ✓ Slice3: preprocessor 1/1, model 1/1
## i Slice3: preprocessor 1/1, model 1/1 (predictions)
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/1
## ✓ Slice4: preprocessor 1/1, model 1/1
## i Slice4: preprocessor 1/1, model 1/1 (predictions)
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/1
## ✓ Slice5: preprocessor 1/1, model 1/1
## i Slice5: preprocessor 1/1, model 1/1 (predictions)
## • Model ID: 3 KERNLAB
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/1
## ✓ Slice1: preprocessor 1/1, model 1/1
## i Slice1: preprocessor 1/1, model 1/1 (predictions)
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/1
## ✓ Slice2: preprocessor 1/1, model 1/1
## i Slice2: preprocessor 1/1, model 1/1 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/1
## ✓ Slice3: preprocessor 1/1, model 1/1
## i Slice3: preprocessor 1/1, model 1/1 (predictions)
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/1
## ✓ Slice4: preprocessor 1/1, model 1/1
## i Slice4: preprocessor 1/1, model 1/1 (predictions)
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/1
## ✓ Slice5: preprocessor 1/1, model 1/1
## i Slice5: preprocessor 1/1, model 1/1 (predictions)
## • Model ID: 4 KERNLAB
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/1
## ✓ Slice1: preprocessor 1/1, model 1/1
## i Slice1: preprocessor 1/1, model 1/1 (predictions)
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/1
## ✓ Slice2: preprocessor 1/1, model 1/1
## i Slice2: preprocessor 1/1, model 1/1 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/1
## ✓ Slice3: preprocessor 1/1, model 1/1
## i Slice3: preprocessor 1/1, model 1/1 (predictions)
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/1
## ✓ Slice4: preprocessor 1/1, model 1/1
## i Slice4: preprocessor 1/1, model 1/1 (predictions)
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/1
## ✓ Slice5: preprocessor 1/1, model 1/1
## i Slice5: preprocessor 1/1, model 1/1 (predictions)
## • Model ID: 5 KKNN
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/1
## ✓ Slice1: preprocessor 1/1, model 1/1
## i Slice1: preprocessor 1/1, model 1/1 (predictions)
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/1
## ✓ Slice2: preprocessor 1/1, model 1/1
## i Slice2: preprocessor 1/1, model 1/1 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/1
## ✓ Slice3: preprocessor 1/1, model 1/1
## i Slice3: preprocessor 1/1, model 1/1 (predictions)
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/1
## ✓ Slice4: preprocessor 1/1, model 1/1
## i Slice4: preprocessor 1/1, model 1/1 (predictions)
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/1
## ✓ Slice5: preprocessor 1/1, model 1/1
## i Slice5: preprocessor 1/1, model 1/1 (predictions)
## • Model ID: 6 RANDOMFOREST
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/1
## ! Slice1: preprocessor 1/1, model 1/1: 25 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice1: preprocessor 1/1, model 1/1
## i Slice1: preprocessor 1/1, model 1/1 (predictions)
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/1
## ! Slice2: preprocessor 1/1, model 1/1: 25 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice2: preprocessor 1/1, model 1/1
## i Slice2: preprocessor 1/1, model 1/1 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/1
## ! Slice3: preprocessor 1/1, model 1/1: 25 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice3: preprocessor 1/1, model 1/1
## i Slice3: preprocessor 1/1, model 1/1 (predictions)
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/1
## ! Slice4: preprocessor 1/1, model 1/1: 25 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice4: preprocessor 1/1, model 1/1
## i Slice4: preprocessor 1/1, model 1/1 (predictions)
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/1
## ! Slice5: preprocessor 1/1, model 1/1: 25 columns were requested but there were 17 predictors in the data. 17 w...
## ✓ Slice5: preprocessor 1/1, model 1/1
## i Slice5: preprocessor 1/1, model 1/1 (predictions)
## • Model ID: 7 XGBOOST
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/1
## ✓ Slice1: preprocessor 1/1, model 1/1
## i Slice1: preprocessor 1/1, model 1/1 (predictions)
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/1
## ✓ Slice2: preprocessor 1/1, model 1/1
## i Slice2: preprocessor 1/1, model 1/1 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/1
## ✓ Slice3: preprocessor 1/1, model 1/1
## i Slice3: preprocessor 1/1, model 1/1 (predictions)
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/1
## ✓ Slice4: preprocessor 1/1, model 1/1
## i Slice4: preprocessor 1/1, model 1/1 (predictions)
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/1
## ✓ Slice5: preprocessor 1/1, model 1/1
## i Slice5: preprocessor 1/1, model 1/1 (predictions)
## • Model ID: 8 CUBIST
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/1
## ! Slice1: preprocessor 1/1, model 1/1: The number of neighbors should be >= 0 and <= 9. Truncating the value.
## ✓ Slice1: preprocessor 1/1, model 1/1
## i Slice1: preprocessor 1/1, model 1/1 (predictions)
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/1
## ! Slice2: preprocessor 1/1, model 1/1: The number of neighbors should be >= 0 and <= 9. Truncating the value.
## ✓ Slice2: preprocessor 1/1, model 1/1
## i Slice2: preprocessor 1/1, model 1/1 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/1
## ! Slice3: preprocessor 1/1, model 1/1: The number of neighbors should be >= 0 and <= 9. Truncating the value.
## ✓ Slice3: preprocessor 1/1, model 1/1
## i Slice3: preprocessor 1/1, model 1/1 (predictions)
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/1
## ! Slice4: preprocessor 1/1, model 1/1: The number of neighbors should be >= 0 and <= 9. Truncating the value.
## ✓ Slice4: preprocessor 1/1, model 1/1
## i Slice4: preprocessor 1/1, model 1/1 (predictions)
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/1
## ! Slice5: preprocessor 1/1, model 1/1: The number of neighbors should be >= 0 and <= 9. Truncating the value.
## ✓ Slice5: preprocessor 1/1, model 1/1
## i Slice5: preprocessor 1/1, model 1/1 (predictions)
## • Model ID: 9 NNAR(2,1,10)[5]
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/1
## frequency = 5 observations per 1 week
## ✓ Slice1: preprocessor 1/1, model 1/1
## i Slice1: preprocessor 1/1, model 1/1 (predictions)
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/1
## frequency = 5 observations per 1 week
## ✓ Slice2: preprocessor 1/1, model 1/1
## i Slice2: preprocessor 1/1, model 1/1 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/1
## frequency = 5 observations per 1 week
## ✓ Slice3: preprocessor 1/1, model 1/1
## i Slice3: preprocessor 1/1, model 1/1 (predictions)
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/1
## frequency = 5 observations per 1 week
## ✓ Slice4: preprocessor 1/1, model 1/1
## i Slice4: preprocessor 1/1, model 1/1 (predictions)
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/1
## frequency = 5 observations per 1 week
## ✓ Slice5: preprocessor 1/1, model 1/1
## i Slice5: preprocessor 1/1, model 1/1 (predictions)
## • Model ID: 10 PROPHET W/ XGBOOST ERRORS
## i Slice1: preprocessor 1/1
## ✓ Slice1: preprocessor 1/1
## i Slice1: preprocessor 1/1, model 1/1
## ✓ Slice1: preprocessor 1/1, model 1/1
## i Slice1: preprocessor 1/1, model 1/1 (predictions)
## i Slice2: preprocessor 1/1
## ✓ Slice2: preprocessor 1/1
## i Slice2: preprocessor 1/1, model 1/1
## ✓ Slice2: preprocessor 1/1, model 1/1
## i Slice2: preprocessor 1/1, model 1/1 (predictions)
## i Slice3: preprocessor 1/1
## ✓ Slice3: preprocessor 1/1
## i Slice3: preprocessor 1/1, model 1/1
## ✓ Slice3: preprocessor 1/1, model 1/1
## i Slice3: preprocessor 1/1, model 1/1 (predictions)
## i Slice4: preprocessor 1/1
## ✓ Slice4: preprocessor 1/1
## i Slice4: preprocessor 1/1, model 1/1
## ✓ Slice4: preprocessor 1/1, model 1/1
## i Slice4: preprocessor 1/1, model 1/1 (predictions)
## i Slice5: preprocessor 1/1
## ✓ Slice5: preprocessor 1/1
## i Slice5: preprocessor 1/1, model 1/1
## ✓ Slice5: preprocessor 1/1, model 1/1
## i Slice5: preprocessor 1/1, model 1/1 (predictions)
## 40.94 sec elapsed
submodels_resample %>% write_rds("submodels_resample")

submodels_resample$.resample_results[[1]]$.predictions
## [[1]]
## # A tibble: 65 × 4
##     .pred  .row close .config             
##     <dbl> <int> <dbl> <chr>               
##  1 14236.  1471 14365 Preprocessor1_Model1
##  2 14255.  1472 14365 Preprocessor1_Model1
##  3 14241.  1473 14342 Preprocessor1_Model1
##  4 14253.  1474 14365 Preprocessor1_Model1
##  5 14255.  1475 14563 Preprocessor1_Model1
##  6 14240.  1476 14544 Preprocessor1_Model1
##  7 14248.  1477 14365 Preprocessor1_Model1
##  8 14223.  1478 14456 Preprocessor1_Model1
##  9 14224.  1479 14365 Preprocessor1_Model1
## 10 14216.  1480 14498 Preprocessor1_Model1
## # ℹ 55 more rows
## 
## [[2]]
## # A tibble: 65 × 4
##     .pred  .row close .config             
##     <dbl> <int> <dbl> <chr>               
##  1 14146.  1220 14110 Preprocessor1_Model1
##  2 14151.  1221 14135 Preprocessor1_Model1
##  3 14138.  1222 14115 Preprocessor1_Model1
##  4 14145.  1223 14135 Preprocessor1_Model1
##  5 14134.  1224 14080 Preprocessor1_Model1
##  6 14142.  1225 14105 Preprocessor1_Model1
##  7 14153.  1226 14125 Preprocessor1_Model1
##  8 14147.  1227 14125 Preprocessor1_Model1
##  9 14160.  1228 14060 Preprocessor1_Model1
## 10 14156.  1229 13999 Preprocessor1_Model1
## # ℹ 55 more rows
## 
## [[3]]
## # A tibble: 65 × 4
##     .pred  .row close .config             
##     <dbl> <int> <dbl> <chr>               
##  1 14225.   969 14173 Preprocessor1_Model1
##  2 14255.   970 14385 Preprocessor1_Model1
##  3 14286.   971 14325 Preprocessor1_Model1
##  4 14385.   972 14375 Preprocessor1_Model1
##  5 14418.   973 14375 Preprocessor1_Model1
##  6 14452.   974 14347 Preprocessor1_Model1
##  7 14474.   975 14380 Preprocessor1_Model1
##  8 14496.   976 14365 Preprocessor1_Model1
##  9 14557.   977 14320 Preprocessor1_Model1
## 10 14575.   978 14355 Preprocessor1_Model1
## # ℹ 55 more rows
## 
## [[4]]
## # A tibble: 65 × 4
##     .pred  .row close .config             
##     <dbl> <int> <dbl> <chr>               
##  1 13387.   718 13348 Preprocessor1_Model1
##  2 13394.   719 13369 Preprocessor1_Model1
##  3 13405.   720 13315 Preprocessor1_Model1
##  4 13405.   721 13285 Preprocessor1_Model1
##  5 13405.   722 13323 Preprocessor1_Model1
##  6 13408.   723 13308 Preprocessor1_Model1
##  7 13413.   724 13315 Preprocessor1_Model1
##  8 13424.   725 13330 Preprocessor1_Model1
##  9 13423.   726 13310 Preprocessor1_Model1
## 10 13419.   727 13308 Preprocessor1_Model1
## # ℹ 55 more rows
## 
## [[5]]
## # A tibble: 65 × 4
##     .pred  .row close .config             
##     <dbl> <int> <dbl> <chr>               
##  1 12944.   467 13088 Preprocessor1_Model1
##  2 12932.   468 13105 Preprocessor1_Model1
##  3 12897.   469 13095 Preprocessor1_Model1
##  4 12864.   470 13107 Preprocessor1_Model1
##  5 12817.   471 13135 Preprocessor1_Model1
##  6 12808.   472 13165 Preprocessor1_Model1
##  7 12813.   473 13135 Preprocessor1_Model1
##  8 12797.   474 13100 Preprocessor1_Model1
##  9 12785.   475 13097 Preprocessor1_Model1
## 10 12814.   476 13010 Preprocessor1_Model1
## # ℹ 55 more rows
summary(submodels_resample)
##    .model_id       .model.Length      .model.Class        .model.Mode   
##  Min.   : 1.00   6                  _prophet_fit_impl  list             
##  1st Qu.: 3.25   4                  workflow           list             
##  Median : 5.50   4                  workflow           list             
##  Mean   : 5.50   4                  workflow           list             
##  3rd Qu.: 7.75   4                  workflow           list             
##  Max.   :10.00   4                  workflow           list             
##                  4                  workflow           list             
##                  4                  workflow           list             
##                  4                  workflow           list             
##                  4                  workflow           list             
##  .model_desc           .type          
##  Length:10          Length:10         
##  Class :character   Class :character  
##  Mode  :character   Mode  :character  
##                                       
##                                       
##                                       
##                                       
##                                       
##                                       
##                                       
##  .calibration_data.Length  .calibration_data.Class  .calibration_data.Mode
##  4       tbl_df  list                                                     
##  4       tbl_df  list                                                     
##  4       tbl_df  list                                                     
##  4       tbl_df  list                                                     
##  4       tbl_df  list                                                     
##  4       tbl_df  list                                                     
##  4       tbl_df  list                                                     
##  4       tbl_df  list                                                     
##  4       tbl_df  list                                                     
##  4       tbl_df  list                                                     
##  .resample_results.Length  .resample_results.Class  .resample_results.Mode
##  5                 resample_results  list                                 
##  5                 resample_results  list                                 
##  5                 resample_results  list                                 
##  5                 resample_results  list                                 
##  5                 resample_results  list                                 
##  5                 resample_results  list                                 
##  5                 resample_results  list                                 
##  5                 resample_results  list                                 
##  5                 resample_results  list                                 
##  5                 resample_results  list
str(submodels_resample)
## mdl_tm_t [10 × 6] (S3: mdl_time_tbl/tbl_df/tbl/data.frame)
##  $ .model_id        : int [1:10] 1 2 3 4 5 6 7 8 9 10
##  $ .model           :List of 10
##   ..$ :List of 6
##   .. ..$ lvl         : NULL
##   .. ..$ spec        :List of 8
##   .. .. ..$ args                 :List of 12
##   .. .. .. ..$ growth                  : language ~NULL
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. ..$ changepoint_num         : language ~NULL
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. ..$ changepoint_range       : language ~NULL
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. ..$ seasonality_yearly      : language ~TRUE
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. ..$ seasonality_weekly      : language ~TRUE
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. ..$ seasonality_daily       : language ~TRUE
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. ..$ season                  : language ~NULL
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. ..$ prior_scale_changepoints: language ~NULL
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. ..$ prior_scale_seasonality : language ~NULL
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. ..$ prior_scale_holidays    : language ~NULL
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. ..$ logistic_cap            : language ~NULL
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. ..$ logistic_floor          : language ~NULL
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. ..$ eng_args             : Named list()
##   .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. ..$ mode                 : chr "regression"
##   .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. ..$ method               :List of 3
##   .. .. .. ..$ libs: chr [1:2] "prophet" "modeltime"
##   .. .. .. ..$ fit :List of 5
##   .. .. .. .. ..$ interface: chr "data.frame"
##   .. .. .. .. ..$ protect  : chr [1:2] "x" "y"
##   .. .. .. .. ..$ func     : Named chr "prophet_fit_impl"
##   .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. ..$ defaults :List of 1
##   .. .. .. .. .. ..$ uncertainty.samples: num 0
##   .. .. .. .. ..$ args     :List of 6
##   .. .. .. .. .. ..$ x                  : language missing_arg()
##   .. .. .. .. .. ..$ y                  : language missing_arg()
##   .. .. .. .. .. ..$ yearly.seasonality : language ~TRUE
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ weekly.seasonality : language ~TRUE
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ daily.seasonality  : language ~TRUE
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ uncertainty.samples: num 0
##   .. .. .. ..$ pred:List of 1
##   .. .. .. .. ..$ numeric:List of 4
##   .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. ..$ func: Named chr "predict"
##   .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. ..$ args:List of 2
##   .. .. .. .. .. .. ..$ object  : language object$fit
##   .. .. .. .. .. .. ..$ new_data: symbol new_data
##   .. .. ..$ engine               : chr "prophet"
##   .. .. ..$ user_specified_engine: logi TRUE
##   .. .. ..$ defaults             :List of 1
##   .. .. .. ..$ uncertainty.samples: num 0
##   .. .. ..- attr(*, "class")= chr [1:2] "prophet_reg" "model_spec"
##   .. ..$ fit         :List of 4
##   .. .. ..$ models:List of 1
##   .. .. .. ..$ model_1:List of 32
##   .. .. .. .. ..$ growth                 : chr "linear"
##   .. .. .. .. ..$ changepoints           : POSIXct[1:25], format: "2014-12-23" ...
##   .. .. .. .. ..$ n.changepoints         : num 25
##   .. .. .. .. ..$ changepoint.range      : num 0.8
##   .. .. .. .. ..$ yearly.seasonality     : logi TRUE
##   .. .. .. .. ..$ weekly.seasonality     : logi TRUE
##   .. .. .. .. ..$ daily.seasonality      : logi TRUE
##   .. .. .. .. ..$ holidays               : NULL
##   .. .. .. .. ..$ seasonality.mode       : chr "additive"
##   .. .. .. .. ..$ seasonality.prior.scale: num 10
##   .. .. .. .. ..$ changepoint.prior.scale: num 0.05
##   .. .. .. .. ..$ holidays.prior.scale   : num 10
##   .. .. .. .. ..$ mcmc.samples           : num 0
##   .. .. .. .. ..$ interval.width         : num 0.8
##   .. .. .. .. ..$ uncertainty.samples    : num 0
##   .. .. .. .. ..$ specified.changepoints : logi FALSE
##   .. .. .. .. ..$ start                  : POSIXct[1:1], format: "2014-09-11"
##   .. .. .. .. ..$ y.scale                : num 16738
##   .. .. .. .. ..$ logistic.floor         : logi FALSE
##   .. .. .. .. ..$ t.scale                : num 288316800
##   .. .. .. .. ..$ changepoints.t         : num [1:25] 0.0309 0.0632 0.0965 0.128 0.1597 ...
##   .. .. .. .. ..$ seasonalities          :List of 3
##   .. .. .. .. .. ..$ yearly:List of 5
##   .. .. .. .. .. .. ..$ period        : num 365
##   .. .. .. .. .. .. ..$ fourier.order : num 10
##   .. .. .. .. .. .. ..$ prior.scale   : num 10
##   .. .. .. .. .. .. ..$ mode          : chr "additive"
##   .. .. .. .. .. .. ..$ condition.name: NULL
##   .. .. .. .. .. ..$ weekly:List of 5
##   .. .. .. .. .. .. ..$ period        : num 7
##   .. .. .. .. .. .. ..$ fourier.order : num 3
##   .. .. .. .. .. .. ..$ prior.scale   : num 10
##   .. .. .. .. .. .. ..$ mode          : chr "additive"
##   .. .. .. .. .. .. ..$ condition.name: NULL
##   .. .. .. .. .. ..$ daily :List of 5
##   .. .. .. .. .. .. ..$ period        : num 1
##   .. .. .. .. .. .. ..$ fourier.order : num 4
##   .. .. .. .. .. .. ..$ prior.scale   : num 10
##   .. .. .. .. .. .. ..$ mode          : chr "additive"
##   .. .. .. .. .. .. ..$ condition.name: NULL
##   .. .. .. .. ..$ extra_regressors       : list()
##   .. .. .. .. ..$ country_holidays       : NULL
##   .. .. .. .. ..$ stan.fit               :List of 4
##   .. .. .. .. .. ..$ par        :List of 6
##   .. .. .. .. .. .. ..$ k        : num 1.16
##   .. .. .. .. .. .. ..$ m        : num 0.704
##   .. .. .. .. .. .. ..$ delta    : num [1:25(1d)] -0.000049108 -0.000072706 -1.005608943 -0.610655433 -0.000000322 ...
##   .. .. .. .. .. .. ..$ sigma_obs: num 0.0163
##   .. .. .. .. .. .. ..$ beta     : num [1:34(1d)] -0.005058 0.000911 -0.002362 -0.004987 -0.00267 ...
##   .. .. .. .. .. .. ..$ trend    : num [1:2296(1d)] 0.704 0.705 0.706 0.706 0.706 ...
##   .. .. .. .. .. ..$ value      : num 8118
##   .. .. .. .. .. ..$ return_code: int 0
##   .. .. .. .. .. ..$ theta_tilde: num [1, 1:2358] 1.1634972 0.7042586 -0.0000491 -0.0000727 -1.0056089 ...
##   .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. ..$ : chr [1:2358] "k" "m" "delta[1]" "delta[2]" ...
##   .. .. .. .. ..$ params                 :List of 6
##   .. .. .. .. .. ..$ k        : num 1.16
##   .. .. .. .. .. ..$ m        : num 0.704
##   .. .. .. .. .. ..$ delta    : num [1, 1:25] -0.000049108 -0.000072706 -1.005608943 -0.610655433 -0.000000322 ...
##   .. .. .. .. .. ..$ sigma_obs: num 0.0163
##   .. .. .. .. .. ..$ beta     : num [1, 1:34] -0.005058 0.000911 -0.002362 -0.004987 -0.00267 ...
##   .. .. .. .. .. ..$ trend    : num [1:2296(1d)] 0.704 0.705 0.706 0.706 0.706 ...
##   .. .. .. .. ..$ history                : tibble [2,296 × 5] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. ..$ y       : num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. ..$ ds      : POSIXct[1:2296], format: "2014-09-11" ...
##   .. .. .. .. .. ..$ floor   : num [1:2296] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. ..$ t       : num [1:2296] 0 0.0003 0.0012 0.0015 0.0018 ...
##   .. .. .. .. .. ..$ y_scaled: num [1:2296] 0.706 0.706 0.712 0.715 0.714 ...
##   .. .. .. .. ..$ history.dates          : POSIXct[1:2296], format: "2014-09-11" ...
##   .. .. .. .. ..$ train.holiday.names    : NULL
##   .. .. .. .. ..$ train.component.cols   :'data.frame':  34 obs. of  5 variables:
##   .. .. .. .. .. ..$ additive_terms      : int [1:34] 1 1 1 1 1 1 1 1 1 1 ...
##   .. .. .. .. .. ..$ daily               : int [1:34] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. ..$ weekly              : int [1:34] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. ..$ yearly              : int [1:34] 1 1 1 1 1 1 1 1 1 1 ...
##   .. .. .. .. .. ..$ multiplicative_terms: num [1:34] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. ..$ component.modes        :List of 2
##   .. .. .. .. .. ..$ additive      : chr [1:6] "yearly" "weekly" "daily" "additive_terms" ...
##   .. .. .. .. .. ..$ multiplicative: chr [1:2] "multiplicative_terms" "extra_regressors_multiplicative"
##   .. .. .. .. ..$ fit.kwargs             : list()
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "prophet" "list"
##   .. .. ..$ data  : tibble [2,296 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ time      : Date[1:2296], format: "2014-09-11" ...
##   .. .. .. ..$ .actual   : num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. ..$ .fitted   : num [1:2296] 11912 11921 11956 11966 11978 ...
##   .. .. .. ..$ .residuals: num [1:2296] -91.59 -103.46 -30.97 -6.24 -28.28 ...
##   .. .. ..$ extras:List of 2
##   .. .. .. ..$ xreg_recipe    : NULL
##   .. .. .. ..$ logistic_params:List of 3
##   .. .. .. .. ..$ growth        : chr "linear"
##   .. .. .. .. ..$ logistic_cap  : NULL
##   .. .. .. .. ..$ logistic_floor: NULL
##   .. .. ..$ desc  : chr "PROPHET"
##   .. .. ..- attr(*, "class")= chr [1:2] "prophet_fit_impl" "modeltime_bridge"
##   .. ..$ preproc     :List of 4
##   .. .. ..$ terms  :Classes 'terms', 'formula'  language close ~ time
##   .. .. .. .. ..- attr(*, "variables")= language list(close, time)
##   .. .. .. .. ..- attr(*, "factors")= int [1:2, 1] 0 1
##   .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. ..$ : chr [1:2] "close" "time"
##   .. .. .. .. .. .. ..$ : chr "time"
##   .. .. .. .. ..- attr(*, "term.labels")= chr "time"
##   .. .. .. .. ..- attr(*, "order")= int 1
##   .. .. .. .. ..- attr(*, "intercept")= int 1
##   .. .. .. .. ..- attr(*, "response")= int 1
##   .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f272850248> 
##   .. .. .. .. ..- attr(*, "predvars")= language list(close, time)
##   .. .. .. .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "other"
##   .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "close" "time"
##   .. .. ..$ xlevels: Named list()
##   .. .. ..$ options:List of 3
##   .. .. .. ..$ indicators      : chr "none"
##   .. .. .. ..$ composition     : chr "data.frame"
##   .. .. .. ..$ remove_intercept: logi FALSE
##   .. .. ..$ y_var  : chr "close"
##   .. ..$ elapsed     :List of 1
##   .. .. ..$ elapsed: num NA
##   .. ..$ censor_probs: list()
##   .. ..- attr(*, "class")= chr [1:2] "_prophet_fit_impl" "model_fit"
##   ..$ :List of 4
##   .. ..$ pre    :List of 3
##   .. .. ..$ actions     :List of 1
##   .. .. .. ..$ recipe:List of 2
##   .. .. .. .. ..$ recipe   :List of 7
##   .. .. .. .. .. ..$ var_info    : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info   : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ steps       :List of 4
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ columns: NULL
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 5
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ inputs :List of 1
##   .. .. .. .. .. .. .. .. ..$ time: language ~as.numeric(time)
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f272446678> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "mutate_ZBHUQ"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_mutate" "step"
##   .. .. .. .. .. ..$ template    : tibble [1,535 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. .. .. ..$ levels      : NULL
##   .. .. .. .. .. ..$ retained    : logi NA
##   .. .. .. .. .. ..$ requirements:List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ blueprint:List of 8
##   .. .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. .. ..$ ptypes            : NULL
##   .. .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. .. ..$ recipe            : NULL
##   .. .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_recipe" "action_pre" "action"
##   .. .. ..$ mold        :List of 4
##   .. .. .. ..$ predictors: tibble [2,296 × 17] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ time          : num [1:2296] 16324 16325 16328 16329 16330 ...
##   .. .. .. .. ..$ time_index.num: num [1:2296] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. ..$ time_year     : int [1:2296] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##   .. .. .. .. ..$ time_half     : int [1:2296] 2 2 2 2 2 2 2 2 2 2 ...
##   .. .. .. .. ..$ time_quarter  : int [1:2296] 3 3 3 3 3 3 3 3 3 3 ...
##   .. .. .. .. ..$ time_month    : int [1:2296] 9 9 9 9 9 9 9 9 9 9 ...
##   .. .. .. .. ..$ time_day      : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_wday     : int [1:2296] 5 6 2 3 4 5 6 2 3 4 ...
##   .. .. .. .. ..$ time_mday     : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_qday     : int [1:2296] 73 74 77 78 79 80 81 84 85 86 ...
##   .. .. .. .. ..$ time_yday     : int [1:2296] 254 255 258 259 260 261 262 265 266 267 ...
##   .. .. .. .. ..$ time_mweek    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. ..$ time_week     : int [1:2296] 37 37 37 37 38 38 38 38 38 39 ...
##   .. .. .. .. ..$ time_week2    : int [1:2296] 1 1 1 1 0 0 0 0 0 1 ...
##   .. .. .. .. ..$ time_week3    : int [1:2296] 1 1 1 1 2 2 2 2 2 0 ...
##   .. .. .. .. ..$ time_week4    : int [1:2296] 1 1 1 1 2 2 2 2 2 3 ...
##   .. .. .. .. ..$ time_mday7    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. ..$ outcomes  : tibble [2,296 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ close: num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. ..$ blueprint :List of 8
##   .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. ..$ ptypes            :List of 2
##   .. .. .. .. .. ..$ predictors: tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time: 'Date' num(0) 
##   .. .. .. .. .. ..$ outcomes  : tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ close: num(0) 
##   .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. ..$ recipe            :List of 8
##   .. .. .. .. .. ..$ var_info      : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info     : tibble [18 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "close" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. ..$ type    :List of 18
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:18] "predictor" "outcome" "predictor" "predictor" ...
##   .. .. .. .. .. .. ..$ source  : chr [1:18] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. ..$ steps         :List of 4
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ columns: Named chr "time"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "time"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 5
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ inputs :List of 1
##   .. .. .. .. .. .. .. .. ..$ time: language ~as.numeric(time)
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f272446678> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "mutate_ZBHUQ"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_mutate" "step"
##   .. .. .. .. .. ..$ retained      : logi FALSE
##   .. .. .. .. .. ..$ requirements  :List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..$ tr_info       :'data.frame':    1 obs. of  2 variables:
##   .. .. .. .. .. .. ..$ nrows    : int 2296
##   .. .. .. .. .. .. ..$ ncomplete: int 2296
##   .. .. .. .. .. ..$ orig_lvls     :List of 2
##   .. .. .. .. .. .. ..$ time :List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. ..$ close:List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. ..$ last_term_info: gropd_df [29 × 6] (S3: grouped_df/tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. ..$ type    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr "outcome"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. ..$ source  : chr [1:29] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. .. ..$ number  : num [1:29] 4 4 1 4 4 1 1 4 4 4 ...
##   .. .. .. .. .. .. ..$ skip    : logi [1:29] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. .. ..- attr(*, "groups")= tibble [29 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. .. ..$ .rows   : list<int> [1:29] 
##   .. .. .. .. .. .. .. .. ..$ : int 1
##   .. .. .. .. .. .. .. .. ..$ : int 2
##   .. .. .. .. .. .. .. .. ..$ : int 3
##   .. .. .. .. .. .. .. .. ..$ : int 4
##   .. .. .. .. .. .. .. .. ..$ : int 5
##   .. .. .. .. .. .. .. .. ..$ : int 6
##   .. .. .. .. .. .. .. .. ..$ : int 7
##   .. .. .. .. .. .. .. .. ..$ : int 8
##   .. .. .. .. .. .. .. .. ..$ : int 9
##   .. .. .. .. .. .. .. .. ..$ : int 10
##   .. .. .. .. .. .. .. .. ..$ : int 11
##   .. .. .. .. .. .. .. .. ..$ : int 12
##   .. .. .. .. .. .. .. .. ..$ : int 13
##   .. .. .. .. .. .. .. .. ..$ : int 14
##   .. .. .. .. .. .. .. .. ..$ : int 15
##   .. .. .. .. .. .. .. .. ..$ : int 16
##   .. .. .. .. .. .. .. .. ..$ : int 17
##   .. .. .. .. .. .. .. .. ..$ : int 18
##   .. .. .. .. .. .. .. .. ..$ : int 19
##   .. .. .. .. .. .. .. .. ..$ : int 20
##   .. .. .. .. .. .. .. .. ..$ : int 21
##   .. .. .. .. .. .. .. .. ..$ : int 22
##   .. .. .. .. .. .. .. .. ..$ : int 23
##   .. .. .. .. .. .. .. .. ..$ : int 24
##   .. .. .. .. .. .. .. .. ..$ : int 25
##   .. .. .. .. .. .. .. .. ..$ : int 26
##   .. .. .. .. .. .. .. .. ..$ : int 27
##   .. .. .. .. .. .. .. .. ..$ : int 28
##   .. .. .. .. .. .. .. .. ..$ : int 29
##   .. .. .. .. .. .. .. .. ..@ ptype: int(0) 
##   .. .. .. .. .. .. .. ..- attr(*, ".drop")= logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. ..$ extras    :List of 1
##   .. .. .. .. ..$ roles: NULL
##   .. .. ..$ case_weights: NULL
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_pre" "stage"
##   .. ..$ fit    :List of 2
##   .. .. ..$ actions:List of 1
##   .. .. .. ..$ model:List of 2
##   .. .. .. .. ..$ spec   :List of 7
##   .. .. .. .. .. ..$ args                 :List of 2
##   .. .. .. .. .. .. ..$ penalty: language ~0
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ mixture: language ~0
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. .. ..$ method               : NULL
##   .. .. .. .. .. ..$ engine               : chr "glmnet"
##   .. .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "linear_reg" "model_spec"
##   .. .. .. .. ..$ formula: NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_model" "action_fit" "action"
##   .. .. ..$ fit    :List of 6
##   .. .. .. ..$ lvl         : NULL
##   .. .. .. ..$ spec        :List of 8
##   .. .. .. .. ..$ args                 :List of 2
##   .. .. .. .. .. ..$ penalty: num 0
##   .. .. .. .. .. ..$ mixture: language ~0
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. ..$ method               :List of 3
##   .. .. .. .. .. ..$ libs: chr "glmnet"
##   .. .. .. .. .. ..$ fit :List of 5
##   .. .. .. .. .. .. ..$ interface: chr "matrix"
##   .. .. .. .. .. .. ..$ protect  : chr [1:3] "x" "y" "weights"
##   .. .. .. .. .. .. ..$ func     : Named chr [1:2] "glmnet" "glmnet"
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "pkg" "fun"
##   .. .. .. .. .. .. ..$ defaults :List of 1
##   .. .. .. .. .. .. .. ..$ family: chr "gaussian"
##   .. .. .. .. .. .. ..$ args     :List of 5
##   .. .. .. .. .. .. .. ..$ x      : language missing_arg()
##   .. .. .. .. .. .. .. ..$ y      : language missing_arg()
##   .. .. .. .. .. .. .. ..$ weights: language missing_arg()
##   .. .. .. .. .. .. .. ..$ alpha  : language ~0
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ family : chr "gaussian"
##   .. .. .. .. .. ..$ pred:List of 2
##   .. .. .. .. .. .. ..$ numeric:List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post:function (x, object)  
##   .. .. .. .. .. .. .. ..$ func: Named chr "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 4
##   .. .. .. .. .. .. .. .. ..$ object: language object$fit
##   .. .. .. .. .. .. .. .. ..$ newx  : language as.matrix(new_data[, rownames(object$fit$beta), drop = FALSE])
##   .. .. .. .. .. .. .. .. ..$ type  : chr "response"
##   .. .. .. .. .. .. .. .. ..$ s     : language object$spec$args$penalty
##   .. .. .. .. .. .. ..$ raw    :List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 2
##   .. .. .. .. .. .. .. .. ..$ object: language object$fit
##   .. .. .. .. .. .. .. .. ..$ newx  : language as.matrix(new_data)
##   .. .. .. .. ..$ engine               : chr "glmnet"
##   .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. ..$ defaults             :List of 1
##   .. .. .. .. .. ..$ family: chr "gaussian"
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "linear_reg" "model_spec"
##   .. .. .. ..$ fit         :List of 12
##   .. .. .. .. ..$ a0       : Named num [1:100] 14058 13357 13288 13214 13132 ...
##   .. .. .. .. .. ..- attr(*, "names")= chr [1:100] "s0" "s1" "s2" "s3" ...
##   .. .. .. .. ..$ beta     :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
##   .. .. .. .. .. .. ..@ i       : int [1:1700] 0 1 2 3 4 5 6 7 8 9 ...
##   .. .. .. .. .. .. ..@ p       : int [1:101] 0 17 34 51 68 85 102 119 136 153 ...
##   .. .. .. .. .. .. ..@ Dim     : int [1:2] 17 100
##   .. .. .. .. .. .. ..@ Dimnames:List of 2
##   .. .. .. .. .. .. .. ..$ : chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. ..$ : chr [1:100] "s0" "s1" "s2" "s3" ...
##   .. .. .. .. .. .. ..@ x       : num [1:1700] 0.00000000000000000000000000000000000070957021 0.00000000000000000000000000000000000000000821 0.00000000000000000| __truncated__ ...
##   .. .. .. .. .. .. ..@ factors : list()
##   .. .. .. .. ..$ df       : int [1:100] 17 17 17 17 17 17 17 17 17 17 ...
##   .. .. .. .. ..$ dim      : int [1:2] 17 100
##   .. .. .. .. ..$ lambda   : num [1:100] 676421 616330 561577 511688 466231 ...
##   .. .. .. .. ..$ dev.ratio: num [1:100] 0.0000000000000000000000000000000000042 0.0054571772743308207681556254442512 0.0059858089734038718437991732912450| __truncated__ ...
##   .. .. .. .. ..$ nulldev  : num 1519147615
##   .. .. .. .. ..$ npasses  : int 409
##   .. .. .. .. ..$ jerr     : int 0
##   .. .. .. .. ..$ offset   : logi FALSE
##   .. .. .. .. ..$ call     : language glmnet::glmnet(x = maybe_matrix(x), y = y, family = "gaussian", alpha = ~0)
##   .. .. .. .. ..$ nobs     : int 2296
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "elnet" "glmnet"
##   .. .. .. ..$ preproc     :List of 1
##   .. .. .. .. ..$ y_var: chr(0) 
##   .. .. .. ..$ elapsed     :List of 1
##   .. .. .. .. ..$ elapsed: num NA
##   .. .. .. ..$ censor_probs: list()
##   .. .. .. ..- attr(*, "class")= chr [1:2] "_elnet" "model_fit"
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_fit" "stage"
##   .. ..$ post   :List of 1
##   .. .. ..$ actions: Named list()
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_post" "stage"
##   .. ..$ trained: logi TRUE
##   .. ..- attr(*, "class")= chr "workflow"
##   ..$ :List of 4
##   .. ..$ pre    :List of 3
##   .. .. ..$ actions     :List of 1
##   .. .. .. ..$ recipe:List of 2
##   .. .. .. .. ..$ recipe   :List of 7
##   .. .. .. .. .. ..$ var_info    : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info   : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ steps       :List of 3
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ columns: NULL
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. ..$ template    : tibble [1,535 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. .. .. ..$ levels      : NULL
##   .. .. .. .. .. ..$ retained    : logi NA
##   .. .. .. .. .. ..$ requirements:List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ blueprint:List of 8
##   .. .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. .. ..$ ptypes            : NULL
##   .. .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. .. ..$ recipe            : NULL
##   .. .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_recipe" "action_pre" "action"
##   .. .. ..$ mold        :List of 4
##   .. .. .. ..$ predictors: tibble [2,296 × 17] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ time          : Date[1:2296], format: "2014-09-11" ...
##   .. .. .. .. ..$ time_index.num: num [1:2296] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. ..$ time_year     : int [1:2296] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##   .. .. .. .. ..$ time_half     : int [1:2296] 2 2 2 2 2 2 2 2 2 2 ...
##   .. .. .. .. ..$ time_quarter  : int [1:2296] 3 3 3 3 3 3 3 3 3 3 ...
##   .. .. .. .. ..$ time_month    : int [1:2296] 9 9 9 9 9 9 9 9 9 9 ...
##   .. .. .. .. ..$ time_day      : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_wday     : int [1:2296] 5 6 2 3 4 5 6 2 3 4 ...
##   .. .. .. .. ..$ time_mday     : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_qday     : int [1:2296] 73 74 77 78 79 80 81 84 85 86 ...
##   .. .. .. .. ..$ time_yday     : int [1:2296] 254 255 258 259 260 261 262 265 266 267 ...
##   .. .. .. .. ..$ time_mweek    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. ..$ time_week     : int [1:2296] 37 37 37 37 38 38 38 38 38 39 ...
##   .. .. .. .. ..$ time_week2    : int [1:2296] 1 1 1 1 0 0 0 0 0 1 ...
##   .. .. .. .. ..$ time_week3    : int [1:2296] 1 1 1 1 2 2 2 2 2 0 ...
##   .. .. .. .. ..$ time_week4    : int [1:2296] 1 1 1 1 2 2 2 2 2 3 ...
##   .. .. .. .. ..$ time_mday7    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. ..$ outcomes  : tibble [2,296 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ close: num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. ..$ blueprint :List of 8
##   .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. ..$ ptypes            :List of 2
##   .. .. .. .. .. ..$ predictors: tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time: 'Date' num(0) 
##   .. .. .. .. .. ..$ outcomes  : tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ close: num(0) 
##   .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. ..$ recipe            :List of 8
##   .. .. .. .. .. ..$ var_info      : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info     : tibble [18 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "close" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. ..$ type    :List of 18
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:18] "predictor" "outcome" "predictor" "predictor" ...
##   .. .. .. .. .. .. ..$ source  : chr [1:18] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. ..$ steps         :List of 3
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ columns: Named chr "time"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "time"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. ..$ retained      : logi FALSE
##   .. .. .. .. .. ..$ requirements  :List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..$ tr_info       :'data.frame':    1 obs. of  2 variables:
##   .. .. .. .. .. .. ..$ nrows    : int 2296
##   .. .. .. .. .. .. ..$ ncomplete: int 2296
##   .. .. .. .. .. ..$ orig_lvls     :List of 2
##   .. .. .. .. .. .. ..$ time :List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. ..$ close:List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. ..$ last_term_info: gropd_df [29 × 6] (S3: grouped_df/tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. ..$ type    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr "outcome"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. ..$ source  : chr [1:29] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. .. ..$ number  : num [1:29] 3 3 1 3 3 1 1 3 3 3 ...
##   .. .. .. .. .. .. ..$ skip    : logi [1:29] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. .. ..- attr(*, "groups")= tibble [29 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. .. ..$ .rows   : list<int> [1:29] 
##   .. .. .. .. .. .. .. .. ..$ : int 1
##   .. .. .. .. .. .. .. .. ..$ : int 2
##   .. .. .. .. .. .. .. .. ..$ : int 3
##   .. .. .. .. .. .. .. .. ..$ : int 4
##   .. .. .. .. .. .. .. .. ..$ : int 5
##   .. .. .. .. .. .. .. .. ..$ : int 6
##   .. .. .. .. .. .. .. .. ..$ : int 7
##   .. .. .. .. .. .. .. .. ..$ : int 8
##   .. .. .. .. .. .. .. .. ..$ : int 9
##   .. .. .. .. .. .. .. .. ..$ : int 10
##   .. .. .. .. .. .. .. .. ..$ : int 11
##   .. .. .. .. .. .. .. .. ..$ : int 12
##   .. .. .. .. .. .. .. .. ..$ : int 13
##   .. .. .. .. .. .. .. .. ..$ : int 14
##   .. .. .. .. .. .. .. .. ..$ : int 15
##   .. .. .. .. .. .. .. .. ..$ : int 16
##   .. .. .. .. .. .. .. .. ..$ : int 17
##   .. .. .. .. .. .. .. .. ..$ : int 18
##   .. .. .. .. .. .. .. .. ..$ : int 19
##   .. .. .. .. .. .. .. .. ..$ : int 20
##   .. .. .. .. .. .. .. .. ..$ : int 21
##   .. .. .. .. .. .. .. .. ..$ : int 22
##   .. .. .. .. .. .. .. .. ..$ : int 23
##   .. .. .. .. .. .. .. .. ..$ : int 24
##   .. .. .. .. .. .. .. .. ..$ : int 25
##   .. .. .. .. .. .. .. .. ..$ : int 26
##   .. .. .. .. .. .. .. .. ..$ : int 27
##   .. .. .. .. .. .. .. .. ..$ : int 28
##   .. .. .. .. .. .. .. .. ..$ : int 29
##   .. .. .. .. .. .. .. .. ..@ ptype: int(0) 
##   .. .. .. .. .. .. .. ..- attr(*, ".drop")= logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. ..$ extras    :List of 1
##   .. .. .. .. ..$ roles: NULL
##   .. .. ..$ case_weights: NULL
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_pre" "stage"
##   .. ..$ fit    :List of 2
##   .. .. ..$ actions:List of 1
##   .. .. .. ..$ model:List of 2
##   .. .. .. .. ..$ spec   :List of 7
##   .. .. .. .. .. ..$ args                 :List of 4
##   .. .. .. .. .. .. ..$ cost        : language ~10
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ degree      : language ~1
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ scale_factor: language ~1
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ margin      : language ~0.1
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. .. ..$ method               : NULL
##   .. .. .. .. .. ..$ engine               : chr "kernlab"
##   .. .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "svm_poly" "model_spec"
##   .. .. .. .. ..$ formula: NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_model" "action_fit" "action"
##   .. .. ..$ fit    :List of 6
##   .. .. .. ..$ lvl         : NULL
##   .. .. .. ..$ spec        :List of 8
##   .. .. .. .. ..$ args                 :List of 4
##   .. .. .. .. .. ..$ cost        : language ~10
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ degree      : language ~1
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ scale_factor: language ~1
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ margin      : language ~0.1
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. ..$ method               :List of 3
##   .. .. .. .. .. ..$ libs: chr "kernlab"
##   .. .. .. .. .. ..$ fit :List of 6
##   .. .. .. .. .. .. ..$ interface: chr "formula"
##   .. .. .. .. .. .. ..$ data     : Named chr [1:2] "x" "data"
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "formula" "data"
##   .. .. .. .. .. .. ..$ protect  : chr [1:2] "x" "data"
##   .. .. .. .. .. .. ..$ func     : Named chr [1:2] "kernlab" "ksvm"
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "pkg" "fun"
##   .. .. .. .. .. .. ..$ defaults :List of 1
##   .. .. .. .. .. .. .. ..$ kernel: chr "polydot"
##   .. .. .. .. .. .. ..$ args     :List of 6
##   .. .. .. .. .. .. .. ..$ x      : language missing_arg()
##   .. .. .. .. .. .. .. ..$ data   : language missing_arg()
##   .. .. .. .. .. .. .. ..$ C      : language ~10
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ epsilon: language ~0.1
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ kernel : chr "polydot"
##   .. .. .. .. .. .. .. ..$ kpar   : language list(degree = ~1, scale = ~1)
##   .. .. .. .. .. ..$ pred:List of 2
##   .. .. .. .. .. .. ..$ numeric:List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post:function (results, object)  
##   .. .. .. .. .. .. .. ..$ func: Named chr [1:2] "kernlab" "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "pkg" "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 3
##   .. .. .. .. .. .. .. .. ..$ object : language object$fit
##   .. .. .. .. .. .. .. .. ..$ newdata: symbol new_data
##   .. .. .. .. .. .. .. .. ..$ type   : chr "response"
##   .. .. .. .. .. .. ..$ raw    :List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr [1:2] "kernlab" "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "pkg" "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 2
##   .. .. .. .. .. .. .. .. ..$ object : language object$fit
##   .. .. .. .. .. .. .. .. ..$ newdata: symbol new_data
##   .. .. .. .. ..$ engine               : chr "kernlab"
##   .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. ..$ defaults             :List of 1
##   .. .. .. .. .. ..$ kernel: chr "polydot"
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "svm_poly" "model_spec"
##   .. .. .. ..$ fit         :Formal class 'ksvm' [package "kernlab"] with 24 slots
##   .. .. .. .. .. ..@ param     :List of 2
##   .. .. .. .. .. .. ..$ epsilon: num 0.1
##   .. .. .. .. .. .. ..$ C      : num 10
##   .. .. .. .. .. ..@ scaling   :List of 3
##   .. .. .. .. .. .. ..$ scaled : logi [1:17] TRUE TRUE TRUE TRUE TRUE TRUE ...
##   .. .. .. .. .. .. ..$ x.scale:List of 2
##   .. .. .. .. .. .. .. ..$ scaled:center: Named num [1:17] 17982.15 1553657782.58 2018.73 1.52 2.54 ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. ..$ scaled:scale : Named num [1:17] 963.12 83213750.87 2.65 0.5 1.13 ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. ..$ y.scale:List of 2
##   .. .. .. .. .. .. .. ..$ scaled:center: num 14058
##   .. .. .. .. .. .. .. ..$ scaled:scale : num 814
##   .. .. .. .. .. ..@ coef      : num [1:1898] -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 ...
##   .. .. .. .. .. ..@ alphaindex: int [1:1898] 1 2 3 4 5 6 7 8 9 10 ...
##   .. .. .. .. .. ..@ b         : num 0.111
##   .. .. .. .. .. ..@ obj       : num -7123
##   .. .. .. .. .. ..@ SVindex   : int [1:1898] 1 2 3 4 5 6 7 8 9 10 ...
##   .. .. .. .. .. ..@ nSV       : int 1898
##   .. .. .. .. .. ..@ prior     :List of 1
##   .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. ..@ prob.model:List of 1
##   .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. ..@ alpha     : num [1:1898] -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 ...
##   .. .. .. .. .. ..@ type      : chr "eps-svr"
##   .. .. .. .. .. ..@ kernelf   :Formal class 'polykernel' [package "kernlab"] with 2 slots
##   .. .. .. .. .. .. .. ..@ .Data:function (x, y = NULL)  
##   .. .. .. .. .. .. .. ..@ kpar :List of 3
##   .. .. .. .. .. .. .. .. ..$ degree: num 1
##   .. .. .. .. .. .. .. .. ..$ scale : num 1
##   .. .. .. .. .. .. .. .. ..$ offset: num 1
##   .. .. .. .. .. ..@ kpar      : list()
##   .. .. .. .. .. ..@ xmatrix   : num [1:1898, 1:17] -1.72 -1.72 -1.72 -1.72 -1.72 ...
##   .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. ..$ : chr [1:1898] "1" "2" "3" "4" ...
##   .. .. .. .. .. .. .. ..$ : chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. ..@ ymatrix   : num [1:2296] -2.75 -2.75 -2.62 -2.58 -2.59 ...
##   .. .. .. .. .. ..@ fitted    : num [1:2296, 1] -1.46 -1.48 -1.5 -1.52 -1.42 ...
##   .. .. .. .. .. ..@ lev       : num [1:1121] -2.75 -2.75 -2.62 -2.59 -2.58 ...
##   .. .. .. .. .. ..@ nclass    : int 1121
##   .. .. .. .. .. ..@ error     : num 0.315
##   .. .. .. .. .. ..@ cross     : num -1
##   .. .. .. .. .. ..@ n.action  :function (object, ...)  
##   .. .. .. .. .. ..@ terms     :Classes 'terms', 'formula'  language ..y ~ time + time_index.num + time_year + time_half + time_quarter + time_month +      time_day + time_wday + tim| __truncated__ ...
##   .. .. .. .. .. .. .. ..- attr(*, "variables")= language list(..y, time, time_index.num, time_year, time_half, time_quarter, time_month,      time_day, time_wday, time_md| __truncated__ ...
##   .. .. .. .. .. .. .. ..- attr(*, "factors")= int [1:18, 1:17] 0 1 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. ..$ : chr [1:18] "..y" "time" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. .. .. .. ..$ : chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. ..- attr(*, "term.labels")= chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. ..- attr(*, "order")= int [1:17] 1 1 1 1 1 1 1 1 1 1 ...
##   .. .. .. .. .. .. .. ..- attr(*, "intercept")= num 0
##   .. .. .. .. .. .. .. ..- attr(*, "response")= int 1
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f2051d1898> 
##   .. .. .. .. .. .. .. ..- attr(*, "predvars")= language list(..y, time, time_index.num, time_year, time_half, time_quarter, time_month,      time_day, time_wday, time_md| __truncated__ ...
##   .. .. .. .. .. .. .. ..- attr(*, "dataClasses")= Named chr [1:18] "numeric" "other" "numeric" "numeric" ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:18] "..y" "time" "time_index.num" "time_year" ...
##   .. .. .. .. .. ..@ kcall     : language .local(x = x, data = ..1, C = ..2, epsilon = ..3, kernel = "polydot", kpar = ..5)
##   .. .. .. ..$ preproc     :List of 2
##   .. .. .. .. ..$ x_var: chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. ..$ y_var: chr "close"
##   .. .. .. ..$ elapsed     :List of 1
##   .. .. .. .. ..$ elapsed: num NA
##   .. .. .. ..$ censor_probs: list()
##   .. .. .. ..- attr(*, "class")= chr [1:2] "_ksvm" "model_fit"
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_fit" "stage"
##   .. ..$ post   :List of 1
##   .. .. ..$ actions: Named list()
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_post" "stage"
##   .. ..$ trained: logi TRUE
##   .. ..- attr(*, "class")= chr "workflow"
##   ..$ :List of 4
##   .. ..$ pre    :List of 3
##   .. .. ..$ actions     :List of 1
##   .. .. .. ..$ recipe:List of 2
##   .. .. .. .. ..$ recipe   :List of 7
##   .. .. .. .. .. ..$ var_info    : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info   : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ steps       :List of 3
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ columns: NULL
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. ..$ template    : tibble [1,535 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. .. .. ..$ levels      : NULL
##   .. .. .. .. .. ..$ retained    : logi NA
##   .. .. .. .. .. ..$ requirements:List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ blueprint:List of 8
##   .. .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. .. ..$ ptypes            : NULL
##   .. .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. .. ..$ recipe            : NULL
##   .. .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_recipe" "action_pre" "action"
##   .. .. ..$ mold        :List of 4
##   .. .. .. ..$ predictors: tibble [2,296 × 17] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ time          : Date[1:2296], format: "2014-09-11" ...
##   .. .. .. .. ..$ time_index.num: num [1:2296] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. ..$ time_year     : int [1:2296] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##   .. .. .. .. ..$ time_half     : int [1:2296] 2 2 2 2 2 2 2 2 2 2 ...
##   .. .. .. .. ..$ time_quarter  : int [1:2296] 3 3 3 3 3 3 3 3 3 3 ...
##   .. .. .. .. ..$ time_month    : int [1:2296] 9 9 9 9 9 9 9 9 9 9 ...
##   .. .. .. .. ..$ time_day      : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_wday     : int [1:2296] 5 6 2 3 4 5 6 2 3 4 ...
##   .. .. .. .. ..$ time_mday     : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_qday     : int [1:2296] 73 74 77 78 79 80 81 84 85 86 ...
##   .. .. .. .. ..$ time_yday     : int [1:2296] 254 255 258 259 260 261 262 265 266 267 ...
##   .. .. .. .. ..$ time_mweek    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. ..$ time_week     : int [1:2296] 37 37 37 37 38 38 38 38 38 39 ...
##   .. .. .. .. ..$ time_week2    : int [1:2296] 1 1 1 1 0 0 0 0 0 1 ...
##   .. .. .. .. ..$ time_week3    : int [1:2296] 1 1 1 1 2 2 2 2 2 0 ...
##   .. .. .. .. ..$ time_week4    : int [1:2296] 1 1 1 1 2 2 2 2 2 3 ...
##   .. .. .. .. ..$ time_mday7    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. ..$ outcomes  : tibble [2,296 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ close: num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. ..$ blueprint :List of 8
##   .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. ..$ ptypes            :List of 2
##   .. .. .. .. .. ..$ predictors: tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time: 'Date' num(0) 
##   .. .. .. .. .. ..$ outcomes  : tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ close: num(0) 
##   .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. ..$ recipe            :List of 8
##   .. .. .. .. .. ..$ var_info      : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info     : tibble [18 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "close" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. ..$ type    :List of 18
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:18] "predictor" "outcome" "predictor" "predictor" ...
##   .. .. .. .. .. .. ..$ source  : chr [1:18] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. ..$ steps         :List of 3
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ columns: Named chr "time"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "time"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. ..$ retained      : logi FALSE
##   .. .. .. .. .. ..$ requirements  :List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..$ tr_info       :'data.frame':    1 obs. of  2 variables:
##   .. .. .. .. .. .. ..$ nrows    : int 2296
##   .. .. .. .. .. .. ..$ ncomplete: int 2296
##   .. .. .. .. .. ..$ orig_lvls     :List of 2
##   .. .. .. .. .. .. ..$ time :List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. ..$ close:List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. ..$ last_term_info: gropd_df [29 × 6] (S3: grouped_df/tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. ..$ type    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr "outcome"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. ..$ source  : chr [1:29] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. .. ..$ number  : num [1:29] 3 3 1 3 3 1 1 3 3 3 ...
##   .. .. .. .. .. .. ..$ skip    : logi [1:29] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. .. ..- attr(*, "groups")= tibble [29 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. .. ..$ .rows   : list<int> [1:29] 
##   .. .. .. .. .. .. .. .. ..$ : int 1
##   .. .. .. .. .. .. .. .. ..$ : int 2
##   .. .. .. .. .. .. .. .. ..$ : int 3
##   .. .. .. .. .. .. .. .. ..$ : int 4
##   .. .. .. .. .. .. .. .. ..$ : int 5
##   .. .. .. .. .. .. .. .. ..$ : int 6
##   .. .. .. .. .. .. .. .. ..$ : int 7
##   .. .. .. .. .. .. .. .. ..$ : int 8
##   .. .. .. .. .. .. .. .. ..$ : int 9
##   .. .. .. .. .. .. .. .. ..$ : int 10
##   .. .. .. .. .. .. .. .. ..$ : int 11
##   .. .. .. .. .. .. .. .. ..$ : int 12
##   .. .. .. .. .. .. .. .. ..$ : int 13
##   .. .. .. .. .. .. .. .. ..$ : int 14
##   .. .. .. .. .. .. .. .. ..$ : int 15
##   .. .. .. .. .. .. .. .. ..$ : int 16
##   .. .. .. .. .. .. .. .. ..$ : int 17
##   .. .. .. .. .. .. .. .. ..$ : int 18
##   .. .. .. .. .. .. .. .. ..$ : int 19
##   .. .. .. .. .. .. .. .. ..$ : int 20
##   .. .. .. .. .. .. .. .. ..$ : int 21
##   .. .. .. .. .. .. .. .. ..$ : int 22
##   .. .. .. .. .. .. .. .. ..$ : int 23
##   .. .. .. .. .. .. .. .. ..$ : int 24
##   .. .. .. .. .. .. .. .. ..$ : int 25
##   .. .. .. .. .. .. .. .. ..$ : int 26
##   .. .. .. .. .. .. .. .. ..$ : int 27
##   .. .. .. .. .. .. .. .. ..$ : int 28
##   .. .. .. .. .. .. .. .. ..$ : int 29
##   .. .. .. .. .. .. .. .. ..@ ptype: int(0) 
##   .. .. .. .. .. .. .. ..- attr(*, ".drop")= logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. ..$ extras    :List of 1
##   .. .. .. .. ..$ roles: NULL
##   .. .. ..$ case_weights: NULL
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_pre" "stage"
##   .. ..$ fit    :List of 2
##   .. .. ..$ actions:List of 1
##   .. .. .. ..$ model:List of 2
##   .. .. .. .. ..$ spec   :List of 7
##   .. .. .. .. .. ..$ args                 :List of 3
##   .. .. .. .. .. .. ..$ cost     : language ~1
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ rbf_sigma: language ~0.01
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ margin   : language ~0.1
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. .. ..$ method               : NULL
##   .. .. .. .. .. ..$ engine               : chr "kernlab"
##   .. .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "svm_rbf" "model_spec"
##   .. .. .. .. ..$ formula: NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_model" "action_fit" "action"
##   .. .. ..$ fit    :List of 6
##   .. .. .. ..$ lvl         : NULL
##   .. .. .. ..$ spec        :List of 8
##   .. .. .. .. ..$ args                 :List of 3
##   .. .. .. .. .. ..$ cost     : language ~1
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ rbf_sigma: language ~0.01
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ margin   : language ~0.1
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. ..$ method               :List of 3
##   .. .. .. .. .. ..$ libs: chr "kernlab"
##   .. .. .. .. .. ..$ fit :List of 6
##   .. .. .. .. .. .. ..$ interface: chr "formula"
##   .. .. .. .. .. .. ..$ data     : Named chr [1:2] "x" "data"
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "formula" "data"
##   .. .. .. .. .. .. ..$ protect  : chr [1:2] "x" "data"
##   .. .. .. .. .. .. ..$ func     : Named chr [1:2] "kernlab" "ksvm"
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "pkg" "fun"
##   .. .. .. .. .. .. ..$ defaults :List of 1
##   .. .. .. .. .. .. .. ..$ kernel: chr "rbfdot"
##   .. .. .. .. .. .. ..$ args     :List of 6
##   .. .. .. .. .. .. .. ..$ x      : language missing_arg()
##   .. .. .. .. .. .. .. ..$ data   : language missing_arg()
##   .. .. .. .. .. .. .. ..$ C      : language ~1
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ epsilon: language ~0.1
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ kernel : chr "rbfdot"
##   .. .. .. .. .. .. .. ..$ kpar   : language list(sigma = ~0.01)
##   .. .. .. .. .. ..$ pred:List of 2
##   .. .. .. .. .. .. ..$ numeric:List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post:function (results, object)  
##   .. .. .. .. .. .. .. ..$ func: Named chr [1:2] "kernlab" "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "pkg" "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 3
##   .. .. .. .. .. .. .. .. ..$ object : language object$fit
##   .. .. .. .. .. .. .. .. ..$ newdata: symbol new_data
##   .. .. .. .. .. .. .. .. ..$ type   : chr "response"
##   .. .. .. .. .. .. ..$ raw    :List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr [1:2] "kernlab" "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "pkg" "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 2
##   .. .. .. .. .. .. .. .. ..$ object : language object$fit
##   .. .. .. .. .. .. .. .. ..$ newdata: symbol new_data
##   .. .. .. .. ..$ engine               : chr "kernlab"
##   .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. ..$ defaults             :List of 1
##   .. .. .. .. .. ..$ kernel: chr "rbfdot"
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "svm_rbf" "model_spec"
##   .. .. .. ..$ fit         :Formal class 'ksvm' [package "kernlab"] with 24 slots
##   .. .. .. .. .. ..@ param     :List of 2
##   .. .. .. .. .. .. ..$ epsilon: num 0.1
##   .. .. .. .. .. .. ..$ C      : num 1
##   .. .. .. .. .. ..@ scaling   :List of 3
##   .. .. .. .. .. .. ..$ scaled : logi [1:17] TRUE TRUE TRUE TRUE TRUE TRUE ...
##   .. .. .. .. .. .. ..$ x.scale:List of 2
##   .. .. .. .. .. .. .. ..$ scaled:center: Named num [1:17] 17982.15 1553657782.58 2018.73 1.52 2.54 ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. ..$ scaled:scale : Named num [1:17] 963.12 83213750.87 2.65 0.5 1.13 ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. ..$ y.scale:List of 2
##   .. .. .. .. .. .. .. ..$ scaled:center: num 14058
##   .. .. .. .. .. .. .. ..$ scaled:scale : num 814
##   .. .. .. .. .. ..@ coef      : num [1:1794] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
##   .. .. .. .. .. ..@ alphaindex: int [1:1794] 1 2 3 4 5 6 7 8 9 10 ...
##   .. .. .. .. .. ..@ b         : num 0.458
##   .. .. .. .. .. ..@ obj       : num -697
##   .. .. .. .. .. ..@ SVindex   : int [1:1794] 1 2 3 4 5 6 7 8 9 10 ...
##   .. .. .. .. .. ..@ nSV       : int 1794
##   .. .. .. .. .. ..@ prior     :List of 1
##   .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. ..@ prob.model:List of 1
##   .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. ..@ alpha     : num [1:1794] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
##   .. .. .. .. .. ..@ type      : chr "eps-svr"
##   .. .. .. .. .. ..@ kernelf   :Formal class 'rbfkernel' [package "kernlab"] with 2 slots
##   .. .. .. .. .. .. .. ..@ .Data:function (x, y = NULL)  
##   .. .. .. .. .. .. .. ..@ kpar :List of 1
##   .. .. .. .. .. .. .. .. ..$ sigma: num 0.01
##   .. .. .. .. .. ..@ kpar      : list()
##   .. .. .. .. .. ..@ xmatrix   : num [1:1794, 1:17] -1.72 -1.72 -1.72 -1.72 -1.72 ...
##   .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. ..$ : chr [1:1794] "1" "2" "3" "4" ...
##   .. .. .. .. .. .. .. ..$ : chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. ..@ ymatrix   : num [1:2296] -2.75 -2.75 -2.62 -2.58 -2.59 ...
##   .. .. .. .. .. ..@ fitted    : num [1:2296, 1] -1.69 -1.68 -1.68 -1.7 -1.63 ...
##   .. .. .. .. .. ..@ lev       : num [1:1121] -2.75 -2.75 -2.62 -2.59 -2.58 ...
##   .. .. .. .. .. ..@ nclass    : int 1121
##   .. .. .. .. .. ..@ error     : num 0.312
##   .. .. .. .. .. ..@ cross     : num -1
##   .. .. .. .. .. ..@ n.action  :function (object, ...)  
##   .. .. .. .. .. ..@ terms     :Classes 'terms', 'formula'  language ..y ~ time + time_index.num + time_year + time_half + time_quarter + time_month +      time_day + time_wday + tim| __truncated__ ...
##   .. .. .. .. .. .. .. ..- attr(*, "variables")= language list(..y, time, time_index.num, time_year, time_half, time_quarter, time_month,      time_day, time_wday, time_md| __truncated__ ...
##   .. .. .. .. .. .. .. ..- attr(*, "factors")= int [1:18, 1:17] 0 1 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. ..$ : chr [1:18] "..y" "time" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. .. .. .. ..$ : chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. ..- attr(*, "term.labels")= chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. ..- attr(*, "order")= int [1:17] 1 1 1 1 1 1 1 1 1 1 ...
##   .. .. .. .. .. .. .. ..- attr(*, "intercept")= num 0
##   .. .. .. .. .. .. .. ..- attr(*, "response")= int 1
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f2019c1a88> 
##   .. .. .. .. .. .. .. ..- attr(*, "predvars")= language list(..y, time, time_index.num, time_year, time_half, time_quarter, time_month,      time_day, time_wday, time_md| __truncated__ ...
##   .. .. .. .. .. .. .. ..- attr(*, "dataClasses")= Named chr [1:18] "numeric" "other" "numeric" "numeric" ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:18] "..y" "time" "time_index.num" "time_year" ...
##   .. .. .. .. .. ..@ kcall     : language .local(x = x, data = ..1, C = ..2, epsilon = ..3, kernel = "rbfdot", kpar = ..5)
##   .. .. .. ..$ preproc     :List of 2
##   .. .. .. .. ..$ x_var: chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. ..$ y_var: chr "close"
##   .. .. .. ..$ elapsed     :List of 1
##   .. .. .. .. ..$ elapsed: num NA
##   .. .. .. ..$ censor_probs: list()
##   .. .. .. ..- attr(*, "class")= chr [1:2] "_ksvm" "model_fit"
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_fit" "stage"
##   .. ..$ post   :List of 1
##   .. .. ..$ actions: Named list()
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_post" "stage"
##   .. ..$ trained: logi TRUE
##   .. ..- attr(*, "class")= chr "workflow"
##   ..$ :List of 4
##   .. ..$ pre    :List of 3
##   .. .. ..$ actions     :List of 1
##   .. .. .. ..$ recipe:List of 2
##   .. .. .. .. ..$ recipe   :List of 7
##   .. .. .. .. .. ..$ var_info    : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info   : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ steps       :List of 4
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ columns: NULL
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 5
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ inputs :List of 1
##   .. .. .. .. .. .. .. .. ..$ time: language ~as.numeric(time)
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f205d1fbd8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "mutate_EoYnc"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_mutate" "step"
##   .. .. .. .. .. ..$ template    : tibble [1,535 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. .. .. ..$ levels      : NULL
##   .. .. .. .. .. ..$ retained    : logi NA
##   .. .. .. .. .. ..$ requirements:List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ blueprint:List of 8
##   .. .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. .. ..$ ptypes            : NULL
##   .. .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. .. ..$ recipe            : NULL
##   .. .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_recipe" "action_pre" "action"
##   .. .. ..$ mold        :List of 4
##   .. .. .. ..$ predictors: tibble [2,296 × 17] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ time          : num [1:2296] 16324 16325 16328 16329 16330 ...
##   .. .. .. .. ..$ time_index.num: num [1:2296] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. ..$ time_year     : int [1:2296] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##   .. .. .. .. ..$ time_half     : int [1:2296] 2 2 2 2 2 2 2 2 2 2 ...
##   .. .. .. .. ..$ time_quarter  : int [1:2296] 3 3 3 3 3 3 3 3 3 3 ...
##   .. .. .. .. ..$ time_month    : int [1:2296] 9 9 9 9 9 9 9 9 9 9 ...
##   .. .. .. .. ..$ time_day      : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_wday     : int [1:2296] 5 6 2 3 4 5 6 2 3 4 ...
##   .. .. .. .. ..$ time_mday     : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_qday     : int [1:2296] 73 74 77 78 79 80 81 84 85 86 ...
##   .. .. .. .. ..$ time_yday     : int [1:2296] 254 255 258 259 260 261 262 265 266 267 ...
##   .. .. .. .. ..$ time_mweek    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. ..$ time_week     : int [1:2296] 37 37 37 37 38 38 38 38 38 39 ...
##   .. .. .. .. ..$ time_week2    : int [1:2296] 1 1 1 1 0 0 0 0 0 1 ...
##   .. .. .. .. ..$ time_week3    : int [1:2296] 1 1 1 1 2 2 2 2 2 0 ...
##   .. .. .. .. ..$ time_week4    : int [1:2296] 1 1 1 1 2 2 2 2 2 3 ...
##   .. .. .. .. ..$ time_mday7    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. ..$ outcomes  : tibble [2,296 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ close: num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. ..$ blueprint :List of 8
##   .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. ..$ ptypes            :List of 2
##   .. .. .. .. .. ..$ predictors: tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time: 'Date' num(0) 
##   .. .. .. .. .. ..$ outcomes  : tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ close: num(0) 
##   .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. ..$ recipe            :List of 8
##   .. .. .. .. .. ..$ var_info      : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info     : tibble [18 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "close" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. ..$ type    :List of 18
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:18] "predictor" "outcome" "predictor" "predictor" ...
##   .. .. .. .. .. .. ..$ source  : chr [1:18] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. ..$ steps         :List of 4
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ columns: Named chr "time"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "time"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 5
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ inputs :List of 1
##   .. .. .. .. .. .. .. .. ..$ time: language ~as.numeric(time)
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f205d1fbd8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "mutate_EoYnc"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_mutate" "step"
##   .. .. .. .. .. ..$ retained      : logi FALSE
##   .. .. .. .. .. ..$ requirements  :List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..$ tr_info       :'data.frame':    1 obs. of  2 variables:
##   .. .. .. .. .. .. ..$ nrows    : int 2296
##   .. .. .. .. .. .. ..$ ncomplete: int 2296
##   .. .. .. .. .. ..$ orig_lvls     :List of 2
##   .. .. .. .. .. .. ..$ time :List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. ..$ close:List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. ..$ last_term_info: gropd_df [29 × 6] (S3: grouped_df/tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. ..$ type    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr "outcome"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. ..$ source  : chr [1:29] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. .. ..$ number  : num [1:29] 4 4 1 4 4 1 1 4 4 4 ...
##   .. .. .. .. .. .. ..$ skip    : logi [1:29] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. .. ..- attr(*, "groups")= tibble [29 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. .. ..$ .rows   : list<int> [1:29] 
##   .. .. .. .. .. .. .. .. ..$ : int 1
##   .. .. .. .. .. .. .. .. ..$ : int 2
##   .. .. .. .. .. .. .. .. ..$ : int 3
##   .. .. .. .. .. .. .. .. ..$ : int 4
##   .. .. .. .. .. .. .. .. ..$ : int 5
##   .. .. .. .. .. .. .. .. ..$ : int 6
##   .. .. .. .. .. .. .. .. ..$ : int 7
##   .. .. .. .. .. .. .. .. ..$ : int 8
##   .. .. .. .. .. .. .. .. ..$ : int 9
##   .. .. .. .. .. .. .. .. ..$ : int 10
##   .. .. .. .. .. .. .. .. ..$ : int 11
##   .. .. .. .. .. .. .. .. ..$ : int 12
##   .. .. .. .. .. .. .. .. ..$ : int 13
##   .. .. .. .. .. .. .. .. ..$ : int 14
##   .. .. .. .. .. .. .. .. ..$ : int 15
##   .. .. .. .. .. .. .. .. ..$ : int 16
##   .. .. .. .. .. .. .. .. ..$ : int 17
##   .. .. .. .. .. .. .. .. ..$ : int 18
##   .. .. .. .. .. .. .. .. ..$ : int 19
##   .. .. .. .. .. .. .. .. ..$ : int 20
##   .. .. .. .. .. .. .. .. ..$ : int 21
##   .. .. .. .. .. .. .. .. ..$ : int 22
##   .. .. .. .. .. .. .. .. ..$ : int 23
##   .. .. .. .. .. .. .. .. ..$ : int 24
##   .. .. .. .. .. .. .. .. ..$ : int 25
##   .. .. .. .. .. .. .. .. ..$ : int 26
##   .. .. .. .. .. .. .. .. ..$ : int 27
##   .. .. .. .. .. .. .. .. ..$ : int 28
##   .. .. .. .. .. .. .. .. ..$ : int 29
##   .. .. .. .. .. .. .. .. ..@ ptype: int(0) 
##   .. .. .. .. .. .. .. ..- attr(*, ".drop")= logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. ..$ extras    :List of 1
##   .. .. .. .. ..$ roles: NULL
##   .. .. ..$ case_weights: NULL
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_pre" "stage"
##   .. ..$ fit    :List of 2
##   .. .. ..$ actions:List of 1
##   .. .. .. ..$ model:List of 2
##   .. .. .. .. ..$ spec   :List of 7
##   .. .. .. .. .. ..$ args                 :List of 3
##   .. .. .. .. .. .. ..$ neighbors  : language ~50
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ weight_func: language ~"optimal"
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ dist_power : language ~10
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. .. ..$ method               : NULL
##   .. .. .. .. .. ..$ engine               : chr "kknn"
##   .. .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "nearest_neighbor" "model_spec"
##   .. .. .. .. ..$ formula: NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_model" "action_fit" "action"
##   .. .. ..$ fit    :List of 6
##   .. .. .. ..$ lvl         : NULL
##   .. .. .. ..$ spec        :List of 7
##   .. .. .. .. ..$ args                 :List of 3
##   .. .. .. .. .. ..$ neighbors  : language ~50
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ weight_func: language ~"optimal"
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ dist_power : language ~10
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. ..$ method               :List of 3
##   .. .. .. .. .. ..$ libs: chr "kknn"
##   .. .. .. .. .. ..$ fit :List of 5
##   .. .. .. .. .. .. ..$ interface: chr "formula"
##   .. .. .. .. .. .. ..$ protect  : chr [1:2] "formula" "data"
##   .. .. .. .. .. .. ..$ func     : Named chr [1:2] "kknn" "train.kknn"
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "pkg" "fun"
##   .. .. .. .. .. .. ..$ defaults : list()
##   .. .. .. .. .. .. ..$ args     :List of 5
##   .. .. .. .. .. .. .. ..$ formula : language missing_arg()
##   .. .. .. .. .. .. .. ..$ data    : language missing_arg()
##   .. .. .. .. .. .. .. ..$ ks      : language min_rows(50, data, 5)
##   .. .. .. .. .. .. .. ..$ kernel  : language ~"optimal"
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ distance: language ~10
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ pred:List of 2
##   .. .. .. .. .. .. ..$ numeric:List of 4
##   .. .. .. .. .. .. .. ..$ pre :function (x, object)  
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 3
##   .. .. .. .. .. .. .. .. ..$ object : language object$fit
##   .. .. .. .. .. .. .. .. ..$ newdata: symbol new_data
##   .. .. .. .. .. .. .. .. ..$ type   : chr "raw"
##   .. .. .. .. .. .. ..$ raw    :List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 2
##   .. .. .. .. .. .. .. .. ..$ object : language object$fit
##   .. .. .. .. .. .. .. .. ..$ newdata: symbol new_data
##   .. .. .. .. ..$ engine               : chr "kknn"
##   .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "nearest_neighbor" "model_spec"
##   .. .. .. ..$ fit         :List of 10
##   .. .. .. .. ..$ MISCLASS       : logi [1, 1] NA
##   .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. ..$ : chr "50"
##   .. .. .. .. .. .. ..$ : chr "optimal"
##   .. .. .. .. ..$ MEAN.ABS       : num [1, 1] 393
##   .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. ..$ : chr "50"
##   .. .. .. .. .. .. ..$ : chr "optimal"
##   .. .. .. .. ..$ MEAN.SQU       : num [1, 1] 258651
##   .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. ..$ : chr "50"
##   .. .. .. .. .. .. ..$ : chr "optimal"
##   .. .. .. .. ..$ fitted.values  :List of 1
##   .. .. .. .. .. ..$ : num [1:2296] 13345 13325 13343 13383 13313 ...
##   .. .. .. .. .. .. ..- attr(*, "kernel")= chr "optimal"
##   .. .. .. .. .. .. ..- attr(*, "k")= int 50
##   .. .. .. .. ..$ best.parameters:List of 2
##   .. .. .. .. .. ..$ kernel: chr "optimal"
##   .. .. .. .. .. ..$ k     : int 50
##   .. .. .. .. ..$ response       : chr "continuous"
##   .. .. .. .. ..$ distance       : num 10
##   .. .. .. .. ..$ call           : language kknn::train.kknn(formula = ..y ~ ., data = data, ks = min_rows(50, data,      5), distance = ~10, kernel = ~"optimal")
##   .. .. .. .. ..$ terms          :Classes 'terms', 'formula'  language ..y ~ time + time_index.num + time_year + time_half + time_quarter + time_month +      time_day + time_wday + tim| __truncated__ ...
##   .. .. .. .. .. .. ..- attr(*, "variables")= language list(..y, time, time_index.num, time_year, time_half, time_quarter, time_month,      time_day, time_wday, time_md| __truncated__ ...
##   .. .. .. .. .. .. ..- attr(*, "factors")= int [1:18, 1:17] 0 1 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. ..$ : chr [1:18] "..y" "time" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. .. .. ..$ : chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. ..- attr(*, "term.labels")= chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. ..- attr(*, "order")= int [1:17] 1 1 1 1 1 1 1 1 1 1 ...
##   .. .. .. .. .. .. ..- attr(*, "intercept")= int 1
##   .. .. .. .. .. .. ..- attr(*, "response")= int 1
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f273c5e090> 
##   .. .. .. .. .. .. ..- attr(*, "predvars")= language list(..y, time, time_index.num, time_year, time_half, time_quarter, time_month,      time_day, time_wday, time_md| __truncated__ ...
##   .. .. .. .. .. .. ..- attr(*, "dataClasses")= Named chr [1:18] "numeric" "numeric" "numeric" "numeric" ...
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:18] "..y" "time" "time_index.num" "time_year" ...
##   .. .. .. .. ..$ data           : tibble [2,296 × 18] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. ..$ time          : num [1:2296] 16324 16325 16328 16329 16330 ...
##   .. .. .. .. .. ..$ time_index.num: num [1:2296] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. .. ..$ time_year     : int [1:2296] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##   .. .. .. .. .. ..$ time_half     : int [1:2296] 2 2 2 2 2 2 2 2 2 2 ...
##   .. .. .. .. .. ..$ time_quarter  : int [1:2296] 3 3 3 3 3 3 3 3 3 3 ...
##   .. .. .. .. .. ..$ time_month    : int [1:2296] 9 9 9 9 9 9 9 9 9 9 ...
##   .. .. .. .. .. ..$ time_day      : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. .. ..$ time_wday     : int [1:2296] 5 6 2 3 4 5 6 2 3 4 ...
##   .. .. .. .. .. ..$ time_mday     : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. .. ..$ time_qday     : int [1:2296] 73 74 77 78 79 80 81 84 85 86 ...
##   .. .. .. .. .. ..$ time_yday     : int [1:2296] 254 255 258 259 260 261 262 265 266 267 ...
##   .. .. .. .. .. ..$ time_mweek    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. .. ..$ time_week     : int [1:2296] 37 37 37 37 38 38 38 38 38 39 ...
##   .. .. .. .. .. ..$ time_week2    : int [1:2296] 1 1 1 1 0 0 0 0 0 1 ...
##   .. .. .. .. .. ..$ time_week3    : int [1:2296] 1 1 1 1 2 2 2 2 2 0 ...
##   .. .. .. .. .. ..$ time_week4    : int [1:2296] 1 1 1 1 2 2 2 2 2 3 ...
##   .. .. .. .. .. ..$ time_mday7    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. .. ..$ ..y           : num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "train.kknn" "kknn"
##   .. .. .. ..$ preproc     :List of 2
##   .. .. .. .. ..$ x_var: chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. ..$ y_var: chr "close"
##   .. .. .. ..$ elapsed     :List of 1
##   .. .. .. .. ..$ elapsed: num NA
##   .. .. .. ..$ censor_probs: list()
##   .. .. .. ..- attr(*, "class")= chr [1:2] "_train.kknn" "model_fit"
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_fit" "stage"
##   .. ..$ post   :List of 1
##   .. .. ..$ actions: Named list()
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_post" "stage"
##   .. ..$ trained: logi TRUE
##   .. ..- attr(*, "class")= chr "workflow"
##   ..$ :List of 4
##   .. ..$ pre    :List of 3
##   .. .. ..$ actions     :List of 1
##   .. .. .. ..$ recipe:List of 2
##   .. .. .. .. ..$ recipe   :List of 7
##   .. .. .. .. .. ..$ var_info    : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info   : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ steps       :List of 4
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ columns: NULL
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 5
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ inputs :List of 1
##   .. .. .. .. .. .. .. .. ..$ time: language ~as.numeric(time)
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f2037afd80> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "mutate_EoYnc"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_mutate" "step"
##   .. .. .. .. .. ..$ template    : tibble [1,535 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. .. .. ..$ levels      : NULL
##   .. .. .. .. .. ..$ retained    : logi NA
##   .. .. .. .. .. ..$ requirements:List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ blueprint:List of 8
##   .. .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. .. ..$ ptypes            : NULL
##   .. .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. .. ..$ recipe            : NULL
##   .. .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_recipe" "action_pre" "action"
##   .. .. ..$ mold        :List of 4
##   .. .. .. ..$ predictors: tibble [2,296 × 17] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ time          : num [1:2296] 16324 16325 16328 16329 16330 ...
##   .. .. .. .. ..$ time_index.num: num [1:2296] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. ..$ time_year     : int [1:2296] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##   .. .. .. .. ..$ time_half     : int [1:2296] 2 2 2 2 2 2 2 2 2 2 ...
##   .. .. .. .. ..$ time_quarter  : int [1:2296] 3 3 3 3 3 3 3 3 3 3 ...
##   .. .. .. .. ..$ time_month    : int [1:2296] 9 9 9 9 9 9 9 9 9 9 ...
##   .. .. .. .. ..$ time_day      : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_wday     : int [1:2296] 5 6 2 3 4 5 6 2 3 4 ...
##   .. .. .. .. ..$ time_mday     : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_qday     : int [1:2296] 73 74 77 78 79 80 81 84 85 86 ...
##   .. .. .. .. ..$ time_yday     : int [1:2296] 254 255 258 259 260 261 262 265 266 267 ...
##   .. .. .. .. ..$ time_mweek    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. ..$ time_week     : int [1:2296] 37 37 37 37 38 38 38 38 38 39 ...
##   .. .. .. .. ..$ time_week2    : int [1:2296] 1 1 1 1 0 0 0 0 0 1 ...
##   .. .. .. .. ..$ time_week3    : int [1:2296] 1 1 1 1 2 2 2 2 2 0 ...
##   .. .. .. .. ..$ time_week4    : int [1:2296] 1 1 1 1 2 2 2 2 2 3 ...
##   .. .. .. .. ..$ time_mday7    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. ..$ outcomes  : tibble [2,296 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ close: num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. ..$ blueprint :List of 8
##   .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. ..$ ptypes            :List of 2
##   .. .. .. .. .. ..$ predictors: tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time: 'Date' num(0) 
##   .. .. .. .. .. ..$ outcomes  : tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ close: num(0) 
##   .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. ..$ recipe            :List of 8
##   .. .. .. .. .. ..$ var_info      : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info     : tibble [18 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "close" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. ..$ type    :List of 18
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:18] "predictor" "outcome" "predictor" "predictor" ...
##   .. .. .. .. .. .. ..$ source  : chr [1:18] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. ..$ steps         :List of 4
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ columns: Named chr "time"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "time"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 5
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ inputs :List of 1
##   .. .. .. .. .. .. .. .. ..$ time: language ~as.numeric(time)
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f2037afd80> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "mutate_EoYnc"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_mutate" "step"
##   .. .. .. .. .. ..$ retained      : logi FALSE
##   .. .. .. .. .. ..$ requirements  :List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..$ tr_info       :'data.frame':    1 obs. of  2 variables:
##   .. .. .. .. .. .. ..$ nrows    : int 2296
##   .. .. .. .. .. .. ..$ ncomplete: int 2296
##   .. .. .. .. .. ..$ orig_lvls     :List of 2
##   .. .. .. .. .. .. ..$ time :List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. ..$ close:List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. ..$ last_term_info: gropd_df [29 × 6] (S3: grouped_df/tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. ..$ type    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr "outcome"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. ..$ source  : chr [1:29] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. .. ..$ number  : num [1:29] 4 4 1 4 4 1 1 4 4 4 ...
##   .. .. .. .. .. .. ..$ skip    : logi [1:29] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. .. ..- attr(*, "groups")= tibble [29 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. .. ..$ .rows   : list<int> [1:29] 
##   .. .. .. .. .. .. .. .. ..$ : int 1
##   .. .. .. .. .. .. .. .. ..$ : int 2
##   .. .. .. .. .. .. .. .. ..$ : int 3
##   .. .. .. .. .. .. .. .. ..$ : int 4
##   .. .. .. .. .. .. .. .. ..$ : int 5
##   .. .. .. .. .. .. .. .. ..$ : int 6
##   .. .. .. .. .. .. .. .. ..$ : int 7
##   .. .. .. .. .. .. .. .. ..$ : int 8
##   .. .. .. .. .. .. .. .. ..$ : int 9
##   .. .. .. .. .. .. .. .. ..$ : int 10
##   .. .. .. .. .. .. .. .. ..$ : int 11
##   .. .. .. .. .. .. .. .. ..$ : int 12
##   .. .. .. .. .. .. .. .. ..$ : int 13
##   .. .. .. .. .. .. .. .. ..$ : int 14
##   .. .. .. .. .. .. .. .. ..$ : int 15
##   .. .. .. .. .. .. .. .. ..$ : int 16
##   .. .. .. .. .. .. .. .. ..$ : int 17
##   .. .. .. .. .. .. .. .. ..$ : int 18
##   .. .. .. .. .. .. .. .. ..$ : int 19
##   .. .. .. .. .. .. .. .. ..$ : int 20
##   .. .. .. .. .. .. .. .. ..$ : int 21
##   .. .. .. .. .. .. .. .. ..$ : int 22
##   .. .. .. .. .. .. .. .. ..$ : int 23
##   .. .. .. .. .. .. .. .. ..$ : int 24
##   .. .. .. .. .. .. .. .. ..$ : int 25
##   .. .. .. .. .. .. .. .. ..$ : int 26
##   .. .. .. .. .. .. .. .. ..$ : int 27
##   .. .. .. .. .. .. .. .. ..$ : int 28
##   .. .. .. .. .. .. .. .. ..$ : int 29
##   .. .. .. .. .. .. .. .. ..@ ptype: int(0) 
##   .. .. .. .. .. .. .. ..- attr(*, ".drop")= logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. ..$ extras    :List of 1
##   .. .. .. .. ..$ roles: NULL
##   .. .. ..$ case_weights: NULL
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_pre" "stage"
##   .. ..$ fit    :List of 2
##   .. .. ..$ actions:List of 1
##   .. .. .. ..$ model:List of 2
##   .. .. .. .. ..$ spec   :List of 7
##   .. .. .. .. .. ..$ args                 :List of 3
##   .. .. .. .. .. .. ..$ mtry : language ~25
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ trees: language ~1000
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ min_n: language ~25
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. .. ..$ method               : NULL
##   .. .. .. .. .. ..$ engine               : chr "randomForest"
##   .. .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "rand_forest" "model_spec"
##   .. .. .. .. ..$ formula: NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_model" "action_fit" "action"
##   .. .. ..$ fit    :List of 6
##   .. .. .. ..$ lvl         : NULL
##   .. .. .. ..$ spec        :List of 7
##   .. .. .. .. ..$ args                 :List of 3
##   .. .. .. .. .. ..$ mtry : language ~25
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ trees: language ~1000
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ min_n: language ~25
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. ..$ method               :List of 3
##   .. .. .. .. .. ..$ libs: chr "randomForest"
##   .. .. .. .. .. ..$ fit :List of 5
##   .. .. .. .. .. .. ..$ interface: chr "data.frame"
##   .. .. .. .. .. .. ..$ protect  : chr [1:2] "x" "y"
##   .. .. .. .. .. .. ..$ func     : Named chr [1:2] "randomForest" "randomForest"
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "pkg" "fun"
##   .. .. .. .. .. .. ..$ defaults : list()
##   .. .. .. .. .. .. ..$ args     :List of 5
##   .. .. .. .. .. .. .. ..$ x       : language missing_arg()
##   .. .. .. .. .. .. .. ..$ y       : language missing_arg()
##   .. .. .. .. .. .. .. ..$ mtry    : language min_cols(~25, x)
##   .. .. .. .. .. .. .. ..$ ntree   : language ~1000
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ nodesize: language min_rows(~25, x)
##   .. .. .. .. .. ..$ pred:List of 2
##   .. .. .. .. .. .. ..$ numeric:List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 2
##   .. .. .. .. .. .. .. .. ..$ object : language object$fit
##   .. .. .. .. .. .. .. .. ..$ newdata: symbol new_data
##   .. .. .. .. .. .. ..$ raw    :List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 2
##   .. .. .. .. .. .. .. .. ..$ object : language object$fit
##   .. .. .. .. .. .. .. .. ..$ newdata: symbol new_data
##   .. .. .. .. ..$ engine               : chr "randomForest"
##   .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "rand_forest" "model_spec"
##   .. .. .. ..$ fit         :List of 17
##   .. .. .. .. ..$ call           : language randomForest(x = maybe_data_frame(x), y = y, ntree = ~1000, mtry = min_cols(~25,      x), nodesize = min_rows(~25, x))
##   .. .. .. .. ..$ type           : chr "regression"
##   .. .. .. .. ..$ predicted      : Named num [1:2296] 11970 11965 11952 11944 11942 ...
##   .. .. .. .. .. ..- attr(*, "names")= chr [1:2296] "1" "2" "3" "4" ...
##   .. .. .. .. ..$ mse            : num [1:1000] 6845 6810 7019 6914 6625 ...
##   .. .. .. .. ..$ rsq            : num [1:1000] 0.99 0.99 0.989 0.99 0.99 ...
##   .. .. .. .. ..$ oob.times      : int [1:2296] 350 355 356 390 379 379 346 383 365 353 ...
##   .. .. .. .. ..$ importance     : num [1:17, 1] 712829357 705836515 7809759 174273 870960 ...
##   .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. ..$ : chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. ..$ : chr "IncNodePurity"
##   .. .. .. .. ..$ importanceSD   : NULL
##   .. .. .. .. ..$ localImportance: NULL
##   .. .. .. .. ..$ proximity      : NULL
##   .. .. .. .. ..$ ntree          : num 1000
##   .. .. .. .. ..$ mtry           : num 17
##   .. .. .. .. ..$ forest         :List of 11
##   .. .. .. .. .. ..$ ndbigtree    : int [1:1000] 341 333 345 331 317 327 343 311 353 333 ...
##   .. .. .. .. .. ..$ nodestatus   : int [1:371, 1:1000] -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 ...
##   .. .. .. .. .. ..$ leftDaughter : int [1:371, 1:1000] 2 4 6 8 10 12 14 16 18 20 ...
##   .. .. .. .. .. ..$ rightDaughter: int [1:371, 1:1000] 3 5 7 9 11 13 15 17 19 21 ...
##   .. .. .. .. .. ..$ nodepred     : num [1:371, 1:1000] 14066 13287 14594 12367 13436 ...
##   .. .. .. .. .. ..$ bestvar      : int [1:371, 1:1000] 2 2 1 1 1 11 13 2 1 10 ...
##   .. .. .. .. .. ..$ xbestsplit   : num [1:371, 1:1000] 1525521600 1425081600 19159 16417 16589 ...
##   .. .. .. .. .. ..$ ncat         : Named int [1:17] 1 1 1 1 1 1 1 1 1 1 ...
##   .. .. .. .. .. .. ..- attr(*, "names")= chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. ..$ nrnodes      : int 371
##   .. .. .. .. .. ..$ ntree        : num 1000
##   .. .. .. .. .. ..$ xlevels      :List of 17
##   .. .. .. .. .. .. ..$ time          : num 0
##   .. .. .. .. .. .. ..$ time_index.num: num 0
##   .. .. .. .. .. .. ..$ time_year     : num 0
##   .. .. .. .. .. .. ..$ time_half     : num 0
##   .. .. .. .. .. .. ..$ time_quarter  : num 0
##   .. .. .. .. .. .. ..$ time_month    : num 0
##   .. .. .. .. .. .. ..$ time_day      : num 0
##   .. .. .. .. .. .. ..$ time_wday     : num 0
##   .. .. .. .. .. .. ..$ time_mday     : num 0
##   .. .. .. .. .. .. ..$ time_qday     : num 0
##   .. .. .. .. .. .. ..$ time_yday     : num 0
##   .. .. .. .. .. .. ..$ time_mweek    : num 0
##   .. .. .. .. .. .. ..$ time_week     : num 0
##   .. .. .. .. .. .. ..$ time_week2    : num 0
##   .. .. .. .. .. .. ..$ time_week3    : num 0
##   .. .. .. .. .. .. ..$ time_week4    : num 0
##   .. .. .. .. .. .. ..$ time_mday7    : num 0
##   .. .. .. .. ..$ coefs          : NULL
##   .. .. .. .. ..$ y              : num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..$ test           : NULL
##   .. .. .. .. ..$ inbag          : NULL
##   .. .. .. .. ..- attr(*, "class")= chr "randomForest"
##   .. .. .. ..$ preproc     :List of 1
##   .. .. .. .. ..$ y_var: chr(0) 
##   .. .. .. ..$ elapsed     :List of 1
##   .. .. .. .. ..$ elapsed: num NA
##   .. .. .. ..$ censor_probs: list()
##   .. .. .. ..- attr(*, "class")= chr [1:2] "_randomForest" "model_fit"
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_fit" "stage"
##   .. ..$ post   :List of 1
##   .. .. ..$ actions: Named list()
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_post" "stage"
##   .. ..$ trained: logi TRUE
##   .. ..- attr(*, "class")= chr "workflow"
##   ..$ :List of 4
##   .. ..$ pre    :List of 3
##   .. .. ..$ actions     :List of 1
##   .. .. .. ..$ recipe:List of 2
##   .. .. .. .. ..$ recipe   :List of 7
##   .. .. .. .. .. ..$ var_info    : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info   : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ steps       :List of 4
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ columns: NULL
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 5
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ inputs :List of 1
##   .. .. .. .. .. .. .. .. ..$ time: language ~as.numeric(time)
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271b24698> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "mutate_EoYnc"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_mutate" "step"
##   .. .. .. .. .. ..$ template    : tibble [1,535 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. .. .. ..$ levels      : NULL
##   .. .. .. .. .. ..$ retained    : logi NA
##   .. .. .. .. .. ..$ requirements:List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ blueprint:List of 8
##   .. .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. .. ..$ ptypes            : NULL
##   .. .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. .. ..$ recipe            : NULL
##   .. .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_recipe" "action_pre" "action"
##   .. .. ..$ mold        :List of 4
##   .. .. .. ..$ predictors: tibble [2,296 × 17] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ time          : num [1:2296] 16324 16325 16328 16329 16330 ...
##   .. .. .. .. ..$ time_index.num: num [1:2296] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. ..$ time_year     : int [1:2296] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##   .. .. .. .. ..$ time_half     : int [1:2296] 2 2 2 2 2 2 2 2 2 2 ...
##   .. .. .. .. ..$ time_quarter  : int [1:2296] 3 3 3 3 3 3 3 3 3 3 ...
##   .. .. .. .. ..$ time_month    : int [1:2296] 9 9 9 9 9 9 9 9 9 9 ...
##   .. .. .. .. ..$ time_day      : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_wday     : int [1:2296] 5 6 2 3 4 5 6 2 3 4 ...
##   .. .. .. .. ..$ time_mday     : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_qday     : int [1:2296] 73 74 77 78 79 80 81 84 85 86 ...
##   .. .. .. .. ..$ time_yday     : int [1:2296] 254 255 258 259 260 261 262 265 266 267 ...
##   .. .. .. .. ..$ time_mweek    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. ..$ time_week     : int [1:2296] 37 37 37 37 38 38 38 38 38 39 ...
##   .. .. .. .. ..$ time_week2    : int [1:2296] 1 1 1 1 0 0 0 0 0 1 ...
##   .. .. .. .. ..$ time_week3    : int [1:2296] 1 1 1 1 2 2 2 2 2 0 ...
##   .. .. .. .. ..$ time_week4    : int [1:2296] 1 1 1 1 2 2 2 2 2 3 ...
##   .. .. .. .. ..$ time_mday7    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. ..$ outcomes  : tibble [2,296 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ close: num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. ..$ blueprint :List of 8
##   .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. ..$ ptypes            :List of 2
##   .. .. .. .. .. ..$ predictors: tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time: 'Date' num(0) 
##   .. .. .. .. .. ..$ outcomes  : tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ close: num(0) 
##   .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. ..$ recipe            :List of 8
##   .. .. .. .. .. ..$ var_info      : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info     : tibble [18 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "close" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. ..$ type    :List of 18
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:18] "predictor" "outcome" "predictor" "predictor" ...
##   .. .. .. .. .. .. ..$ source  : chr [1:18] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. ..$ steps         :List of 4
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ columns: Named chr "time"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "time"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 5
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ inputs :List of 1
##   .. .. .. .. .. .. .. .. ..$ time: language ~as.numeric(time)
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271b24698> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "mutate_EoYnc"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_mutate" "step"
##   .. .. .. .. .. ..$ retained      : logi FALSE
##   .. .. .. .. .. ..$ requirements  :List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..$ tr_info       :'data.frame':    1 obs. of  2 variables:
##   .. .. .. .. .. .. ..$ nrows    : int 2296
##   .. .. .. .. .. .. ..$ ncomplete: int 2296
##   .. .. .. .. .. ..$ orig_lvls     :List of 2
##   .. .. .. .. .. .. ..$ time :List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. ..$ close:List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. ..$ last_term_info: gropd_df [29 × 6] (S3: grouped_df/tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. ..$ type    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr "outcome"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. ..$ source  : chr [1:29] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. .. ..$ number  : num [1:29] 4 4 1 4 4 1 1 4 4 4 ...
##   .. .. .. .. .. .. ..$ skip    : logi [1:29] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. .. ..- attr(*, "groups")= tibble [29 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. .. ..$ .rows   : list<int> [1:29] 
##   .. .. .. .. .. .. .. .. ..$ : int 1
##   .. .. .. .. .. .. .. .. ..$ : int 2
##   .. .. .. .. .. .. .. .. ..$ : int 3
##   .. .. .. .. .. .. .. .. ..$ : int 4
##   .. .. .. .. .. .. .. .. ..$ : int 5
##   .. .. .. .. .. .. .. .. ..$ : int 6
##   .. .. .. .. .. .. .. .. ..$ : int 7
##   .. .. .. .. .. .. .. .. ..$ : int 8
##   .. .. .. .. .. .. .. .. ..$ : int 9
##   .. .. .. .. .. .. .. .. ..$ : int 10
##   .. .. .. .. .. .. .. .. ..$ : int 11
##   .. .. .. .. .. .. .. .. ..$ : int 12
##   .. .. .. .. .. .. .. .. ..$ : int 13
##   .. .. .. .. .. .. .. .. ..$ : int 14
##   .. .. .. .. .. .. .. .. ..$ : int 15
##   .. .. .. .. .. .. .. .. ..$ : int 16
##   .. .. .. .. .. .. .. .. ..$ : int 17
##   .. .. .. .. .. .. .. .. ..$ : int 18
##   .. .. .. .. .. .. .. .. ..$ : int 19
##   .. .. .. .. .. .. .. .. ..$ : int 20
##   .. .. .. .. .. .. .. .. ..$ : int 21
##   .. .. .. .. .. .. .. .. ..$ : int 22
##   .. .. .. .. .. .. .. .. ..$ : int 23
##   .. .. .. .. .. .. .. .. ..$ : int 24
##   .. .. .. .. .. .. .. .. ..$ : int 25
##   .. .. .. .. .. .. .. .. ..$ : int 26
##   .. .. .. .. .. .. .. .. ..$ : int 27
##   .. .. .. .. .. .. .. .. ..$ : int 28
##   .. .. .. .. .. .. .. .. ..$ : int 29
##   .. .. .. .. .. .. .. .. ..@ ptype: int(0) 
##   .. .. .. .. .. .. .. ..- attr(*, ".drop")= logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. ..$ extras    :List of 1
##   .. .. .. .. ..$ roles: NULL
##   .. .. ..$ case_weights: NULL
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_pre" "stage"
##   .. ..$ fit    :List of 2
##   .. .. ..$ actions:List of 1
##   .. .. .. ..$ model:List of 2
##   .. .. .. .. ..$ spec   :List of 7
##   .. .. .. .. .. ..$ args                 :List of 8
##   .. .. .. .. .. .. ..$ mtry          : language ~25
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ trees         : language ~1000
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ min_n         : language ~2
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ tree_depth    : language ~12
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ learn_rate    : language ~0.3
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ loss_reduction: language ~0
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ sample_size   : language ~NULL
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ stop_iter     : language ~NULL
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. .. ..$ method               : NULL
##   .. .. .. .. .. ..$ engine               : chr "xgboost"
##   .. .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "boost_tree" "model_spec"
##   .. .. .. .. ..$ formula: NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_model" "action_fit" "action"
##   .. .. ..$ fit    :List of 6
##   .. .. .. ..$ lvl         : NULL
##   .. .. .. ..$ spec        :List of 8
##   .. .. .. .. ..$ args                 :List of 8
##   .. .. .. .. .. ..$ mtry          : language ~25
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ trees         : language ~1000
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ min_n         : language ~2
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ tree_depth    : language ~12
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ learn_rate    : language ~0.3
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ loss_reduction: language ~0
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ sample_size   : language ~NULL
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ stop_iter     : language ~NULL
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. ..$ method               :List of 3
##   .. .. .. .. .. ..$ libs: chr "xgboost"
##   .. .. .. .. .. ..$ fit :List of 5
##   .. .. .. .. .. .. ..$ interface: chr "matrix"
##   .. .. .. .. .. .. ..$ protect  : chr [1:3] "x" "y" "weights"
##   .. .. .. .. .. .. ..$ func     : Named chr [1:2] "parsnip" "xgb_train"
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "pkg" "fun"
##   .. .. .. .. .. .. ..$ defaults :List of 2
##   .. .. .. .. .. .. .. ..$ nthread: num 1
##   .. .. .. .. .. .. .. ..$ verbose: num 0
##   .. .. .. .. .. .. ..$ args     :List of 11
##   .. .. .. .. .. .. .. ..$ x               : language missing_arg()
##   .. .. .. .. .. .. .. ..$ y               : language missing_arg()
##   .. .. .. .. .. .. .. ..$ weights         : language missing_arg()
##   .. .. .. .. .. .. .. ..$ colsample_bynode: language ~25
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ nrounds         : language ~1000
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ min_child_weight: language ~2
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ max_depth       : language ~12
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ eta             : language ~0.3
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ gamma           : language ~0
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ nthread         : num 1
##   .. .. .. .. .. .. .. ..$ verbose         : num 0
##   .. .. .. .. .. ..$ pred:List of 2
##   .. .. .. .. .. .. ..$ numeric:List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr "xgb_predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 2
##   .. .. .. .. .. .. .. .. ..$ object  : language object$fit
##   .. .. .. .. .. .. .. .. ..$ new_data: symbol new_data
##   .. .. .. .. .. .. ..$ raw    :List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr "xgb_predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 2
##   .. .. .. .. .. .. .. .. ..$ object  : language object$fit
##   .. .. .. .. .. .. .. .. ..$ new_data: symbol new_data
##   .. .. .. .. ..$ engine               : chr "xgboost"
##   .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. ..$ defaults             :List of 2
##   .. .. .. .. .. ..$ nthread: num 1
##   .. .. .. .. .. ..$ verbose: num 0
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "boost_tree" "model_spec"
##   .. .. .. ..$ fit         :List of 9
##   .. .. .. .. ..$ handle        :Class 'xgb.Booster.handle' <externalptr> 
##   .. .. .. .. ..$ raw           : raw [1:11538130] 7b 4c 00 00 ...
##   .. .. .. .. ..$ niter         : num 1000
##   .. .. .. .. ..$ evaluation_log:Classes 'data.table' and 'data.frame':  1000 obs. of  2 variables:
##   .. .. .. .. .. ..$ iter         : num [1:1000] 1 2 3 4 5 6 7 8 9 10 ...
##   .. .. .. .. .. ..$ training_rmse: num [1:1000] 9867 6916 4851 3406 2395 ...
##   .. .. .. .. .. ..- attr(*, ".internal.selfref")=<externalptr> 
##   .. .. .. .. ..$ call          : language xgboost::xgb.train(params = list(eta = 0.3, max_depth = 12, gamma = 0,      colsample_bytree = 1, colsample_bynod| __truncated__ ...
##   .. .. .. .. ..$ params        :List of 10
##   .. .. .. .. .. ..$ eta                : num 0.3
##   .. .. .. .. .. ..$ max_depth          : num 12
##   .. .. .. .. .. ..$ gamma              : num 0
##   .. .. .. .. .. ..$ colsample_bytree   : num 1
##   .. .. .. .. .. ..$ colsample_bynode   : num 1
##   .. .. .. .. .. ..$ min_child_weight   : num 2
##   .. .. .. .. .. ..$ subsample          : num 1
##   .. .. .. .. .. ..$ nthread            : num 1
##   .. .. .. .. .. ..$ objective          : chr "reg:squarederror"
##   .. .. .. .. .. ..$ validate_parameters: logi TRUE
##   .. .. .. .. ..$ callbacks     :List of 1
##   .. .. .. .. .. ..$ cb.evaluation.log:function (env = parent.frame(), finalize = FALSE)  
##   .. .. .. .. .. .. ..- attr(*, "call")= language cb.evaluation.log()
##   .. .. .. .. .. .. ..- attr(*, "name")= chr "cb.evaluation.log"
##   .. .. .. .. ..$ feature_names : chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. ..$ nfeatures     : int 17
##   .. .. .. .. ..- attr(*, "class")= chr "xgb.Booster"
##   .. .. .. ..$ preproc     :List of 1
##   .. .. .. .. ..$ y_var: chr(0) 
##   .. .. .. ..$ elapsed     :List of 1
##   .. .. .. .. ..$ elapsed: num NA
##   .. .. .. ..$ censor_probs: list()
##   .. .. .. ..- attr(*, "class")= chr [1:2] "_xgb.Booster" "model_fit"
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_fit" "stage"
##   .. ..$ post   :List of 1
##   .. .. ..$ actions: Named list()
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_post" "stage"
##   .. ..$ trained: logi TRUE
##   .. ..- attr(*, "class")= chr "workflow"
##   ..$ :List of 4
##   .. ..$ pre    :List of 3
##   .. .. ..$ actions     :List of 1
##   .. .. .. ..$ recipe:List of 2
##   .. .. .. .. ..$ recipe   :List of 7
##   .. .. .. .. .. ..$ var_info    : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info   : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ steps       :List of 4
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ columns: NULL
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 5
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ inputs :List of 1
##   .. .. .. .. .. .. .. .. ..$ time: language ~as.numeric(time)
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f274a92870> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "mutate_EoYnc"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_mutate" "step"
##   .. .. .. .. .. ..$ template    : tibble [1,535 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. .. .. ..$ levels      : NULL
##   .. .. .. .. .. ..$ retained    : logi NA
##   .. .. .. .. .. ..$ requirements:List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ blueprint:List of 8
##   .. .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. .. ..$ ptypes            : NULL
##   .. .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. .. ..$ recipe            : NULL
##   .. .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_recipe" "action_pre" "action"
##   .. .. ..$ mold        :List of 4
##   .. .. .. ..$ predictors: tibble [2,296 × 17] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ time          : num [1:2296] 16324 16325 16328 16329 16330 ...
##   .. .. .. .. ..$ time_index.num: num [1:2296] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. ..$ time_year     : int [1:2296] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##   .. .. .. .. ..$ time_half     : int [1:2296] 2 2 2 2 2 2 2 2 2 2 ...
##   .. .. .. .. ..$ time_quarter  : int [1:2296] 3 3 3 3 3 3 3 3 3 3 ...
##   .. .. .. .. ..$ time_month    : int [1:2296] 9 9 9 9 9 9 9 9 9 9 ...
##   .. .. .. .. ..$ time_day      : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_wday     : int [1:2296] 5 6 2 3 4 5 6 2 3 4 ...
##   .. .. .. .. ..$ time_mday     : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_qday     : int [1:2296] 73 74 77 78 79 80 81 84 85 86 ...
##   .. .. .. .. ..$ time_yday     : int [1:2296] 254 255 258 259 260 261 262 265 266 267 ...
##   .. .. .. .. ..$ time_mweek    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. ..$ time_week     : int [1:2296] 37 37 37 37 38 38 38 38 38 39 ...
##   .. .. .. .. ..$ time_week2    : int [1:2296] 1 1 1 1 0 0 0 0 0 1 ...
##   .. .. .. .. ..$ time_week3    : int [1:2296] 1 1 1 1 2 2 2 2 2 0 ...
##   .. .. .. .. ..$ time_week4    : int [1:2296] 1 1 1 1 2 2 2 2 2 3 ...
##   .. .. .. .. ..$ time_mday7    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. ..$ outcomes  : tibble [2,296 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ close: num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. ..$ blueprint :List of 8
##   .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. ..$ ptypes            :List of 2
##   .. .. .. .. .. ..$ predictors: tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time: 'Date' num(0) 
##   .. .. .. .. .. ..$ outcomes  : tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ close: num(0) 
##   .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. ..$ recipe            :List of 8
##   .. .. .. .. .. ..$ var_info      : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info     : tibble [18 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "close" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. ..$ type    :List of 18
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:18] "predictor" "outcome" "predictor" "predictor" ...
##   .. .. .. .. .. .. ..$ source  : chr [1:18] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. ..$ steps         :List of 4
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ columns: Named chr "time"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "time"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 5
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ inputs :List of 1
##   .. .. .. .. .. .. .. .. ..$ time: language ~as.numeric(time)
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f274a92870> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "mutate_EoYnc"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_mutate" "step"
##   .. .. .. .. .. ..$ retained      : logi FALSE
##   .. .. .. .. .. ..$ requirements  :List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..$ tr_info       :'data.frame':    1 obs. of  2 variables:
##   .. .. .. .. .. .. ..$ nrows    : int 2296
##   .. .. .. .. .. .. ..$ ncomplete: int 2296
##   .. .. .. .. .. ..$ orig_lvls     :List of 2
##   .. .. .. .. .. .. ..$ time :List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. ..$ close:List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. ..$ last_term_info: gropd_df [29 × 6] (S3: grouped_df/tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. ..$ type    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr "outcome"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. ..$ source  : chr [1:29] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. .. ..$ number  : num [1:29] 4 4 1 4 4 1 1 4 4 4 ...
##   .. .. .. .. .. .. ..$ skip    : logi [1:29] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. .. ..- attr(*, "groups")= tibble [29 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. .. ..$ .rows   : list<int> [1:29] 
##   .. .. .. .. .. .. .. .. ..$ : int 1
##   .. .. .. .. .. .. .. .. ..$ : int 2
##   .. .. .. .. .. .. .. .. ..$ : int 3
##   .. .. .. .. .. .. .. .. ..$ : int 4
##   .. .. .. .. .. .. .. .. ..$ : int 5
##   .. .. .. .. .. .. .. .. ..$ : int 6
##   .. .. .. .. .. .. .. .. ..$ : int 7
##   .. .. .. .. .. .. .. .. ..$ : int 8
##   .. .. .. .. .. .. .. .. ..$ : int 9
##   .. .. .. .. .. .. .. .. ..$ : int 10
##   .. .. .. .. .. .. .. .. ..$ : int 11
##   .. .. .. .. .. .. .. .. ..$ : int 12
##   .. .. .. .. .. .. .. .. ..$ : int 13
##   .. .. .. .. .. .. .. .. ..$ : int 14
##   .. .. .. .. .. .. .. .. ..$ : int 15
##   .. .. .. .. .. .. .. .. ..$ : int 16
##   .. .. .. .. .. .. .. .. ..$ : int 17
##   .. .. .. .. .. .. .. .. ..$ : int 18
##   .. .. .. .. .. .. .. .. ..$ : int 19
##   .. .. .. .. .. .. .. .. ..$ : int 20
##   .. .. .. .. .. .. .. .. ..$ : int 21
##   .. .. .. .. .. .. .. .. ..$ : int 22
##   .. .. .. .. .. .. .. .. ..$ : int 23
##   .. .. .. .. .. .. .. .. ..$ : int 24
##   .. .. .. .. .. .. .. .. ..$ : int 25
##   .. .. .. .. .. .. .. .. ..$ : int 26
##   .. .. .. .. .. .. .. .. ..$ : int 27
##   .. .. .. .. .. .. .. .. ..$ : int 28
##   .. .. .. .. .. .. .. .. ..$ : int 29
##   .. .. .. .. .. .. .. .. ..@ ptype: int(0) 
##   .. .. .. .. .. .. .. ..- attr(*, ".drop")= logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. ..$ extras    :List of 1
##   .. .. .. .. ..$ roles: NULL
##   .. .. ..$ case_weights: NULL
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_pre" "stage"
##   .. ..$ fit    :List of 2
##   .. .. ..$ actions:List of 1
##   .. .. .. ..$ model:List of 2
##   .. .. .. .. ..$ spec   :List of 7
##   .. .. .. .. .. ..$ args                 :List of 3
##   .. .. .. .. .. .. ..$ committees: language ~100
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ neighbors : language ~20
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ max_rules : language ~1000
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. .. ..$ user_specified_mode  : logi FALSE
##   .. .. .. .. .. ..$ method               : NULL
##   .. .. .. .. .. ..$ engine               : chr "Cubist"
##   .. .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "cubist_rules" "model_spec"
##   .. .. .. .. ..$ formula: NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_model" "action_fit" "action"
##   .. .. ..$ fit    :List of 6
##   .. .. .. ..$ lvl         : NULL
##   .. .. .. ..$ spec        :List of 7
##   .. .. .. .. ..$ args                 :List of 3
##   .. .. .. .. .. ..$ committees: language ~100
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ neighbors : language ~9L
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ max_rules : language ~1000
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. ..$ user_specified_mode  : logi FALSE
##   .. .. .. .. ..$ method               :List of 3
##   .. .. .. .. .. ..$ libs: chr [1:2] "Cubist" "rules"
##   .. .. .. .. .. ..$ fit :List of 5
##   .. .. .. .. .. .. ..$ interface: chr "data.frame"
##   .. .. .. .. .. .. ..$ protect  : chr [1:3] "x" "y" "weights"
##   .. .. .. .. .. .. ..$ func     : Named chr [1:2] "rules" "cubist_fit"
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "pkg" "fun"
##   .. .. .. .. .. .. ..$ defaults : list()
##   .. .. .. .. .. .. ..$ args     :List of 6
##   .. .. .. .. .. .. .. ..$ x         : language missing_arg()
##   .. .. .. .. .. .. .. ..$ y         : language missing_arg()
##   .. .. .. .. .. .. .. ..$ weights   : language missing_arg()
##   .. .. .. .. .. .. .. ..$ committees: language ~100
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ neighbors : language ~9L
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ max_rules : language ~1000
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ pred:List of 2
##   .. .. .. .. .. .. ..$ numeric:List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 3
##   .. .. .. .. .. .. .. .. ..$ object   : language object$fit
##   .. .. .. .. .. .. .. .. ..$ newdata  : symbol new_data
##   .. .. .. .. .. .. .. .. ..$ neighbors: language rules::get_neighbors(object$spec$args)
##   .. .. .. .. .. .. ..$ raw    :List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 3
##   .. .. .. .. .. .. .. .. ..$ object   : language object$fit
##   .. .. .. .. .. .. .. .. ..$ newdata  : symbol new_data
##   .. .. .. .. .. .. .. .. ..$ neighbors: language rules::get_neighbors(object$spec$args)
##   .. .. .. .. ..$ engine               : chr "Cubist"
##   .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "cubist_rules" "model_spec"
##   .. .. .. ..$ fit         :List of 15
##   .. .. .. .. ..$ data        : chr "11820,16324,1410393600,2014,2,3,9,11,5,11,73,254,2,37,1,1,1,2\n11818,16325,1410480000,2014,2,3,9,12,6,12,74,255"| __truncated__
##   .. .. .. .. ..$ names       : chr "| Generated using R version 4.2.1 (2022-06-23 ucrt)\n| on Sat Nov 25 13:07:21 2023\noutcome.\n\noutcome: contin"| __truncated__
##   .. .. .. .. ..$ caseWeights : logi FALSE
##   .. .. .. .. ..$ model       : chr "id=\"Cubist 2.07 GPL Edition 2023-11-25\"\nprec=\"0\" globalmean=\"14057.54\" extrap=\"1\" insts=\"0\" ceiling="| __truncated__
##   .. .. .. .. ..$ output      : chr "\nCubist [Release 2.07 GPL Edition]  Sat Nov 25 13:07:21 2023\n---------------------------------\n\n    Target "| __truncated__
##   .. .. .. .. ..$ control     :List of 6
##   .. .. .. .. .. ..$ unbiased     : logi FALSE
##   .. .. .. .. .. ..$ rules        : num 1000
##   .. .. .. .. .. ..$ extrapolation: num 1
##   .. .. .. .. .. ..$ sample       : num 0
##   .. .. .. .. .. ..$ label        : chr "outcome"
##   .. .. .. .. .. ..$ seed         : int 3539
##   .. .. .. .. ..$ committees  : num 100
##   .. .. .. .. ..$ maxd        : num 3.8
##   .. .. .. .. ..$ dims        : int [1:2] 2296 17
##   .. .. .. .. ..$ splits      :'data.frame': 13810 obs. of  8 variables:
##   .. .. .. .. .. ..$ committee : num [1:13810] 1 1 1 1 1 1 1 1 1 1 ...
##   .. .. .. .. .. ..$ rule      : num [1:13810] 1 2 2 2 2 3 3 4 4 5 ...
##   .. .. .. .. .. ..$ variable  : chr [1:13810] "time" "time" "time_yday" "time" ...
##   .. .. .. .. .. ..$ dir       : chr [1:13810] "<=" "<=" ">" ">" ...
##   .. .. .. .. .. ..$ value     : num [1:13810] 16359 16666 223 16359 347 ...
##   .. .. .. .. .. ..$ category  : chr [1:13810] "" "" "" "" ...
##   .. .. .. .. .. ..$ type      : chr [1:13810] "type2" "type2" "type2" "type2" ...
##   .. .. .. .. .. ..$ percentile: num [1:13810] 0.0113 0.1024 0.5936 0.0113 0.9517 ...
##   .. .. .. .. ..$ usage       :'data.frame': 17 obs. of  3 variables:
##   .. .. .. .. .. ..$ Conditions: num [1:17] 100 27 22 9 5 5 2 0 0 0 ...
##   .. .. .. .. .. ..$ Model     : num [1:17] 98 68 58 64 34 62 68 61 27 7 ...
##   .. .. .. .. .. ..$ Variable  : chr [1:17] "time" "time_yday" "time_qday" "time_month" ...
##   .. .. .. .. ..$ call        : language cubist.default(x = x, y = y, committees = 100, control = Cubist::cubistControl(rules = 1000))
##   .. .. .. .. ..$ coefficients:'data.frame': 4978 obs. of  20 variables:
##   .. .. .. .. .. ..$ (Intercept)   : num [1:4978] -183219 -82173 271899 79263 -13745 ...
##   .. .. .. .. .. ..$ time          : num [1:4978] 11.95 5.62 -15.79 -4.06 1.58 ...
##   .. .. .. .. .. ..$ time_index.num: num [1:4978] NA NA NA NA NA NA NA NA NA NA ...
##   .. .. .. .. .. ..$ time_year     : num [1:4978] NA NA NA NA NA ...
##   .. .. .. .. .. ..$ time_half     : num [1:4978] NA NA NA NA NA NA NA NA NA NA ...
##   .. .. .. .. .. ..$ time_quarter  : num [1:4978] NA NA NA NA NA 13 NA NA 426 NA ...
##   .. .. .. .. .. ..$ time_month    : num [1:4978] 17 2352 68 181 303 ...
##   .. .. .. .. .. ..$ time_day      : num [1:4978] NA 75.1 1.6 NA 2.7 17.1 6.5 NA 7.6 NA ...
##   .. .. .. .. .. ..$ time_wday     : num [1:4978] NA NA NA NA NA NA NA NA NA NA ...
##   .. .. .. .. .. ..$ time_mday     : num [1:4978] NA NA NA NA NA NA NA NA NA NA ...
##   .. .. .. .. .. ..$ time_qday     : num [1:4978] NA NA NA NA NA 1.5 1.2 NA 5 NA ...
##   .. .. .. .. .. ..$ time_yday     : num [1:4978] -0.52 -77.72 -2.34 -0.69 -3.82 ...
##   .. .. .. .. .. ..$ time_mweek    : num [1:4978] NA NA NA NA NA NA NA NA 9 NA ...
##   .. .. .. .. .. ..$ time_week     : num [1:4978] NA NA 0.7 NA 1.2 NA 3.6 NA -35.6 NA ...
##   .. .. .. .. .. ..$ time_week2    : num [1:4978] NA NA NA NA NA NA NA NA NA NA ...
##   .. .. .. .. .. ..$ time_week3    : num [1:4978] NA NA NA NA NA NA NA NA NA NA ...
##   .. .. .. .. .. ..$ time_week4    : num [1:4978] NA NA NA NA NA NA NA NA NA NA ...
##   .. .. .. .. .. ..$ time_mday7    : num [1:4978] NA NA NA NA NA NA NA 60 NA NA ...
##   .. .. .. .. .. ..$ committee     : chr [1:4978] "1" "1" "1" "1" ...
##   .. .. .. .. .. ..$ rule          : chr [1:4978] "1" "2" "3" "4" ...
##   .. .. .. .. .. ..- attr(*, "reshapeWide")=List of 5
##   .. .. .. .. .. .. ..$ v.names: chr "value"
##   .. .. .. .. .. .. ..$ timevar: chr "var"
##   .. .. .. .. .. .. ..$ idvar  : chr "tmp"
##   .. .. .. .. .. .. ..$ times  : chr [1:18] "(Intercept)" "time" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. ..$ varying: chr [1, 1:18] "value.(Intercept)" "value.time" "value.time_index.num" "value.time_year" ...
##   .. .. .. .. ..$ vars        :List of 2
##   .. .. .. .. .. ..$ all : chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. ..$ used: chr [1:15] "time" "time_year" "time_half" "time_quarter" ...
##   .. .. .. .. ..$ .neighbors  : int 9
##   .. .. .. .. ..- attr(*, "class")= chr "cubist"
##   .. .. .. ..$ preproc     :List of 1
##   .. .. .. .. ..$ y_var: chr(0) 
##   .. .. .. ..$ elapsed     :List of 1
##   .. .. .. .. ..$ elapsed: num NA
##   .. .. .. ..$ censor_probs: list()
##   .. .. .. ..- attr(*, "class")= chr [1:2] "_cubist" "model_fit"
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_fit" "stage"
##   .. ..$ post   :List of 1
##   .. .. ..$ actions: Named list()
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_post" "stage"
##   .. ..$ trained: logi TRUE
##   .. ..- attr(*, "class")= chr "workflow"
##   ..$ :List of 4
##   .. ..$ pre    :List of 3
##   .. .. ..$ actions     :List of 1
##   .. .. .. ..$ recipe:List of 2
##   .. .. .. .. ..$ recipe   :List of 7
##   .. .. .. .. .. ..$ var_info    : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info   : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ steps       :List of 3
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ columns: NULL
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. ..$ template    : tibble [1,535 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. .. .. ..$ levels      : NULL
##   .. .. .. .. .. ..$ retained    : logi NA
##   .. .. .. .. .. ..$ requirements:List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ blueprint:List of 8
##   .. .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. .. ..$ ptypes            : NULL
##   .. .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. .. ..$ recipe            : NULL
##   .. .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_recipe" "action_pre" "action"
##   .. .. ..$ mold        :List of 4
##   .. .. .. ..$ predictors: tibble [2,296 × 17] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ time          : Date[1:2296], format: "2014-09-11" ...
##   .. .. .. .. ..$ time_index.num: num [1:2296] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. ..$ time_year     : int [1:2296] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##   .. .. .. .. ..$ time_half     : int [1:2296] 2 2 2 2 2 2 2 2 2 2 ...
##   .. .. .. .. ..$ time_quarter  : int [1:2296] 3 3 3 3 3 3 3 3 3 3 ...
##   .. .. .. .. ..$ time_month    : int [1:2296] 9 9 9 9 9 9 9 9 9 9 ...
##   .. .. .. .. ..$ time_day      : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_wday     : int [1:2296] 5 6 2 3 4 5 6 2 3 4 ...
##   .. .. .. .. ..$ time_mday     : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_qday     : int [1:2296] 73 74 77 78 79 80 81 84 85 86 ...
##   .. .. .. .. ..$ time_yday     : int [1:2296] 254 255 258 259 260 261 262 265 266 267 ...
##   .. .. .. .. ..$ time_mweek    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. ..$ time_week     : int [1:2296] 37 37 37 37 38 38 38 38 38 39 ...
##   .. .. .. .. ..$ time_week2    : int [1:2296] 1 1 1 1 0 0 0 0 0 1 ...
##   .. .. .. .. ..$ time_week3    : int [1:2296] 1 1 1 1 2 2 2 2 2 0 ...
##   .. .. .. .. ..$ time_week4    : int [1:2296] 1 1 1 1 2 2 2 2 2 3 ...
##   .. .. .. .. ..$ time_mday7    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. ..$ outcomes  : tibble [2,296 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ close: num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. ..$ blueprint :List of 8
##   .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. ..$ ptypes            :List of 2
##   .. .. .. .. .. ..$ predictors: tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time: 'Date' num(0) 
##   .. .. .. .. .. ..$ outcomes  : tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ close: num(0) 
##   .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. ..$ recipe            :List of 8
##   .. .. .. .. .. ..$ var_info      : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info     : tibble [18 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "close" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. ..$ type    :List of 18
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:18] "predictor" "outcome" "predictor" "predictor" ...
##   .. .. .. .. .. .. ..$ source  : chr [1:18] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. ..$ steps         :List of 3
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ columns: Named chr "time"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "time"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. ..$ retained      : logi FALSE
##   .. .. .. .. .. ..$ requirements  :List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..$ tr_info       :'data.frame':    1 obs. of  2 variables:
##   .. .. .. .. .. .. ..$ nrows    : int 2296
##   .. .. .. .. .. .. ..$ ncomplete: int 2296
##   .. .. .. .. .. ..$ orig_lvls     :List of 2
##   .. .. .. .. .. .. ..$ time :List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. ..$ close:List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. ..$ last_term_info: gropd_df [29 × 6] (S3: grouped_df/tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. ..$ type    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr "outcome"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. ..$ source  : chr [1:29] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. .. ..$ number  : num [1:29] 3 3 1 3 3 1 1 3 3 3 ...
##   .. .. .. .. .. .. ..$ skip    : logi [1:29] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. .. ..- attr(*, "groups")= tibble [29 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. .. ..$ .rows   : list<int> [1:29] 
##   .. .. .. .. .. .. .. .. ..$ : int 1
##   .. .. .. .. .. .. .. .. ..$ : int 2
##   .. .. .. .. .. .. .. .. ..$ : int 3
##   .. .. .. .. .. .. .. .. ..$ : int 4
##   .. .. .. .. .. .. .. .. ..$ : int 5
##   .. .. .. .. .. .. .. .. ..$ : int 6
##   .. .. .. .. .. .. .. .. ..$ : int 7
##   .. .. .. .. .. .. .. .. ..$ : int 8
##   .. .. .. .. .. .. .. .. ..$ : int 9
##   .. .. .. .. .. .. .. .. ..$ : int 10
##   .. .. .. .. .. .. .. .. ..$ : int 11
##   .. .. .. .. .. .. .. .. ..$ : int 12
##   .. .. .. .. .. .. .. .. ..$ : int 13
##   .. .. .. .. .. .. .. .. ..$ : int 14
##   .. .. .. .. .. .. .. .. ..$ : int 15
##   .. .. .. .. .. .. .. .. ..$ : int 16
##   .. .. .. .. .. .. .. .. ..$ : int 17
##   .. .. .. .. .. .. .. .. ..$ : int 18
##   .. .. .. .. .. .. .. .. ..$ : int 19
##   .. .. .. .. .. .. .. .. ..$ : int 20
##   .. .. .. .. .. .. .. .. ..$ : int 21
##   .. .. .. .. .. .. .. .. ..$ : int 22
##   .. .. .. .. .. .. .. .. ..$ : int 23
##   .. .. .. .. .. .. .. .. ..$ : int 24
##   .. .. .. .. .. .. .. .. ..$ : int 25
##   .. .. .. .. .. .. .. .. ..$ : int 26
##   .. .. .. .. .. .. .. .. ..$ : int 27
##   .. .. .. .. .. .. .. .. ..$ : int 28
##   .. .. .. .. .. .. .. .. ..$ : int 29
##   .. .. .. .. .. .. .. .. ..@ ptype: int(0) 
##   .. .. .. .. .. .. .. ..- attr(*, ".drop")= logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. ..$ extras    :List of 1
##   .. .. .. .. ..$ roles: NULL
##   .. .. ..$ case_weights: NULL
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_pre" "stage"
##   .. ..$ fit    :List of 2
##   .. .. ..$ actions:List of 1
##   .. .. .. ..$ model:List of 2
##   .. .. .. .. ..$ spec   :List of 7
##   .. .. .. .. .. ..$ args                 :List of 7
##   .. .. .. .. .. .. ..$ seasonal_period: language ~NULL
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ non_seasonal_ar: language ~2
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ seasonal_ar    : language ~1
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ hidden_units   : language ~10
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ num_networks   : language ~10
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ penalty        : language ~10
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ epochs         : language ~50
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. .. ..$ method               : NULL
##   .. .. .. .. .. ..$ engine               : chr "nnetar"
##   .. .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "nnetar_reg" "model_spec"
##   .. .. .. .. ..$ formula: NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_model" "action_fit" "action"
##   .. .. ..$ fit    :List of 6
##   .. .. .. ..$ lvl         : NULL
##   .. .. .. ..$ spec        :List of 7
##   .. .. .. .. ..$ args                 :List of 7
##   .. .. .. .. .. ..$ seasonal_period: language ~NULL
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ non_seasonal_ar: language ~2
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ seasonal_ar    : language ~1
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ hidden_units   : language ~10
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ num_networks   : language ~10
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ penalty        : language ~10
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ epochs         : language ~50
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. ..$ eng_args             : Named list()
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. ..$ method               :List of 3
##   .. .. .. .. .. ..$ libs: chr [1:2] "forecast" "modeltime"
##   .. .. .. .. .. ..$ fit :List of 5
##   .. .. .. .. .. .. ..$ interface: chr "data.frame"
##   .. .. .. .. .. .. ..$ protect  : chr [1:2] "x" "y"
##   .. .. .. .. .. .. ..$ func     : Named chr "nnetar_fit_impl"
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. ..$ defaults : list()
##   .. .. .. .. .. .. ..$ args     :List of 8
##   .. .. .. .. .. .. .. ..$ x      : language missing_arg()
##   .. .. .. .. .. .. .. ..$ y      : language missing_arg()
##   .. .. .. .. .. .. .. ..$ p      : language ~2
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ P      : language ~1
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ size   : language ~10
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ repeats: language ~10
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ decay  : language ~10
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ maxit  : language ~50
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ pred:List of 1
##   .. .. .. .. .. .. ..$ numeric:List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 2
##   .. .. .. .. .. .. .. .. ..$ object  : language object$fit
##   .. .. .. .. .. .. .. .. ..$ new_data: symbol new_data
##   .. .. .. .. ..$ engine               : chr "nnetar"
##   .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "nnetar_reg" "model_spec"
##   .. .. .. ..$ fit         :List of 4
##   .. .. .. .. ..$ models:List of 1
##   .. .. .. .. .. ..$ model_1:List of 17
##   .. .. .. .. .. .. ..$ x        : Time-Series [1:2296] from 1 to 460: 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. .. ..$ m        : num 5
##   .. .. .. .. .. .. ..$ p        : num 2
##   .. .. .. .. .. .. ..$ P        : num 1
##   .. .. .. .. .. .. ..$ scalex   :List of 2
##   .. .. .. .. .. .. .. ..$ center: num 14058
##   .. .. .. .. .. .. .. ..$ scale : num 814
##   .. .. .. .. .. .. ..$ scalexreg:List of 2
##   .. .. .. .. .. .. .. ..$ center: Named num [1:16] 1553657782.58 2018.73 1.52 2.54 6.61 ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:16] "time_index_num" "time_year" "time_half" "time_quarter" ...
##   .. .. .. .. .. .. .. ..$ scale : Named num [1:16] 83213750.87 2.65 0.5 1.13 3.46 ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:16] "time_index_num" "time_year" "time_half" "time_quarter" ...
##   .. .. .. .. .. .. ..$ size     : num 10
##   .. .. .. .. .. .. ..$ xreg     : num [1:2296, 1:16] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ : chr [1:16] "time_index_num" "time_year" "time_half" "time_quarter" ...
##   .. .. .. .. .. .. ..$ subset   : int [1:2296] 1 2 3 4 5 6 7 8 9 10 ...
##   .. .. .. .. .. .. ..$ model    :List of 10
##   .. .. .. .. .. .. .. ..$ :List of 15
##   .. .. .. .. .. .. .. .. ..$ n            : num [1:3] 19 10 1
##   .. .. .. .. .. .. .. .. ..$ nunits       : int 31
##   .. .. .. .. .. .. .. .. ..$ nconn        : num [1:32] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. .. ..$ conn         : num [1:211] 0 1 2 3 4 5 6 7 8 9 ...
##   .. .. .. .. .. .. .. .. ..$ nsunits      : num 30
##   .. .. .. .. .. .. .. .. ..$ decay        : num 10
##   .. .. .. .. .. .. .. .. ..$ entropy      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ softmax      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ censored     : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ value        : num 102
##   .. .. .. .. .. .. .. .. ..$ wts          : num [1:211] -0.0372 0.2984 0.2224 0.1187 0.0955 ...
##   .. .. .. .. .. .. .. .. ..$ convergence  : int 1
##   .. .. .. .. .. .. .. .. ..$ fitted.values: num [1:2291, 1] -2.18 -2.17 -2.15 -2.15 -2.15 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ residuals    : num [1:2291, 1] -0.385 -0.405 -0.41 -0.415 -0.443 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ call         : language nnet.default(x = x, y = y, size = ..1, linout = linout, decay = ..2, maxit = ..3,      trace = trace)
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr "nnet"
##   .. .. .. .. .. .. .. ..$ :List of 15
##   .. .. .. .. .. .. .. .. ..$ n            : num [1:3] 19 10 1
##   .. .. .. .. .. .. .. .. ..$ nunits       : int 31
##   .. .. .. .. .. .. .. .. ..$ nconn        : num [1:32] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. .. ..$ conn         : num [1:211] 0 1 2 3 4 5 6 7 8 9 ...
##   .. .. .. .. .. .. .. .. ..$ nsunits      : num 30
##   .. .. .. .. .. .. .. .. ..$ decay        : num 10
##   .. .. .. .. .. .. .. .. ..$ entropy      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ softmax      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ censored     : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ value        : num 150
##   .. .. .. .. .. .. .. .. ..$ wts          : num [1:211] -0.1195 -0.2502 -0.1771 -0.0993 0.0785 ...
##   .. .. .. .. .. .. .. .. ..$ convergence  : int 1
##   .. .. .. .. .. .. .. .. ..$ fitted.values: num [1:2291, 1] -2.3 -2.29 -2.27 -2.27 -2.32 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ residuals    : num [1:2291, 1] -0.256 -0.286 -0.292 -0.299 -0.266 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ call         : language nnet.default(x = x, y = y, size = ..1, linout = linout, decay = ..2, maxit = ..3,      trace = trace)
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr "nnet"
##   .. .. .. .. .. .. .. ..$ :List of 15
##   .. .. .. .. .. .. .. .. ..$ n            : num [1:3] 19 10 1
##   .. .. .. .. .. .. .. .. ..$ nunits       : int 31
##   .. .. .. .. .. .. .. .. ..$ nconn        : num [1:32] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. .. ..$ conn         : num [1:211] 0 1 2 3 4 5 6 7 8 9 ...
##   .. .. .. .. .. .. .. .. ..$ nsunits      : num 30
##   .. .. .. .. .. .. .. .. ..$ decay        : num 10
##   .. .. .. .. .. .. .. .. ..$ entropy      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ softmax      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ censored     : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ value        : num 128
##   .. .. .. .. .. .. .. .. ..$ wts          : num [1:211] 0.1312 -0.1972 -0.1359 -0.0443 -0.0448 ...
##   .. .. .. .. .. .. .. .. ..$ convergence  : int 1
##   .. .. .. .. .. .. .. .. ..$ fitted.values: num [1:2291, 1] -2.12 -2.11 -2.09 -2.08 -2.1 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ residuals    : num [1:2291, 1] -0.437 -0.458 -0.474 -0.482 -0.492 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ call         : language nnet.default(x = x, y = y, size = ..1, linout = linout, decay = ..2, maxit = ..3,      trace = trace)
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr "nnet"
##   .. .. .. .. .. .. .. ..$ :List of 15
##   .. .. .. .. .. .. .. .. ..$ n            : num [1:3] 19 10 1
##   .. .. .. .. .. .. .. .. ..$ nunits       : int 31
##   .. .. .. .. .. .. .. .. ..$ nconn        : num [1:32] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. .. ..$ conn         : num [1:211] 0 1 2 3 4 5 6 7 8 9 ...
##   .. .. .. .. .. .. .. .. ..$ nsunits      : num 30
##   .. .. .. .. .. .. .. .. ..$ decay        : num 10
##   .. .. .. .. .. .. .. .. ..$ entropy      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ softmax      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ censored     : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ value        : num 145
##   .. .. .. .. .. .. .. .. ..$ wts          : num [1:211] -0.0322 -0.2498 -0.2148 -0.1962 -0.2609 ...
##   .. .. .. .. .. .. .. .. ..$ convergence  : int 1
##   .. .. .. .. .. .. .. .. ..$ fitted.values: num [1:2291, 1] -2.21 -2.2 -2.18 -2.17 -2.13 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ residuals    : num [1:2291, 1] -0.348 -0.37 -0.381 -0.391 -0.462 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ call         : language nnet.default(x = x, y = y, size = ..1, linout = linout, decay = ..2, maxit = ..3,      trace = trace)
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr "nnet"
##   .. .. .. .. .. .. .. ..$ :List of 15
##   .. .. .. .. .. .. .. .. ..$ n            : num [1:3] 19 10 1
##   .. .. .. .. .. .. .. .. ..$ nunits       : int 31
##   .. .. .. .. .. .. .. .. ..$ nconn        : num [1:32] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. .. ..$ conn         : num [1:211] 0 1 2 3 4 5 6 7 8 9 ...
##   .. .. .. .. .. .. .. .. ..$ nsunits      : num 30
##   .. .. .. .. .. .. .. .. ..$ decay        : num 10
##   .. .. .. .. .. .. .. .. ..$ entropy      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ softmax      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ censored     : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ value        : num 208
##   .. .. .. .. .. .. .. .. ..$ wts          : num [1:211] 0.538 0.48 0.258 0.191 -0.194 ...
##   .. .. .. .. .. .. .. .. ..$ convergence  : int 1
##   .. .. .. .. .. .. .. .. ..$ fitted.values: num [1:2291, 1] -2.42 -2.41 -2.4 -2.4 -2.34 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ residuals    : num [1:2291, 1] -0.141 -0.159 -0.163 -0.165 -0.25 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ call         : language nnet.default(x = x, y = y, size = ..1, linout = linout, decay = ..2, maxit = ..3,      trace = trace)
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr "nnet"
##   .. .. .. .. .. .. .. ..$ :List of 15
##   .. .. .. .. .. .. .. .. ..$ n            : num [1:3] 19 10 1
##   .. .. .. .. .. .. .. .. ..$ nunits       : int 31
##   .. .. .. .. .. .. .. .. ..$ nconn        : num [1:32] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. .. ..$ conn         : num [1:211] 0 1 2 3 4 5 6 7 8 9 ...
##   .. .. .. .. .. .. .. .. ..$ nsunits      : num 30
##   .. .. .. .. .. .. .. .. ..$ decay        : num 10
##   .. .. .. .. .. .. .. .. ..$ entropy      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ softmax      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ censored     : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ value        : num 173
##   .. .. .. .. .. .. .. .. ..$ wts          : num [1:211] -0.0618 -0.2371 -0.1937 -0.1548 -0.1304 ...
##   .. .. .. .. .. .. .. .. ..$ convergence  : int 1
##   .. .. .. .. .. .. .. .. ..$ fitted.values: num [1:2291, 1] -2.19 -2.17 -2.15 -2.14 -2.17 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ residuals    : num [1:2291, 1] -0.373 -0.407 -0.415 -0.431 -0.422 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ call         : language nnet.default(x = x, y = y, size = ..1, linout = linout, decay = ..2, maxit = ..3,      trace = trace)
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr "nnet"
##   .. .. .. .. .. .. .. ..$ :List of 15
##   .. .. .. .. .. .. .. .. ..$ n            : num [1:3] 19 10 1
##   .. .. .. .. .. .. .. .. ..$ nunits       : int 31
##   .. .. .. .. .. .. .. .. ..$ nconn        : num [1:32] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. .. ..$ conn         : num [1:211] 0 1 2 3 4 5 6 7 8 9 ...
##   .. .. .. .. .. .. .. .. ..$ nsunits      : num 30
##   .. .. .. .. .. .. .. .. ..$ decay        : num 10
##   .. .. .. .. .. .. .. .. ..$ entropy      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ softmax      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ censored     : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ value        : num 241
##   .. .. .. .. .. .. .. .. ..$ wts          : num [1:211] 0.0375 -0.8322 -0.7897 -0.7633 -0.7688 ...
##   .. .. .. .. .. .. .. .. ..$ convergence  : int 1
##   .. .. .. .. .. .. .. .. ..$ fitted.values: num [1:2291, 1] -2.23 -2.21 -2.23 -2.23 -2.15 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ residuals    : num [1:2291, 1] -0.331 -0.36 -0.33 -0.34 -0.443 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ call         : language nnet.default(x = x, y = y, size = ..1, linout = linout, decay = ..2, maxit = ..3,      trace = trace)
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr "nnet"
##   .. .. .. .. .. .. .. ..$ :List of 15
##   .. .. .. .. .. .. .. .. ..$ n            : num [1:3] 19 10 1
##   .. .. .. .. .. .. .. .. ..$ nunits       : int 31
##   .. .. .. .. .. .. .. .. ..$ nconn        : num [1:32] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. .. ..$ conn         : num [1:211] 0 1 2 3 4 5 6 7 8 9 ...
##   .. .. .. .. .. .. .. .. ..$ nsunits      : num 30
##   .. .. .. .. .. .. .. .. ..$ decay        : num 10
##   .. .. .. .. .. .. .. .. ..$ entropy      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ softmax      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ censored     : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ value        : num 174
##   .. .. .. .. .. .. .. .. ..$ wts          : num [1:211] 0.348 0.366 0.336 0.09 -0.303 ...
##   .. .. .. .. .. .. .. .. ..$ convergence  : int 1
##   .. .. .. .. .. .. .. .. ..$ fitted.values: num [1:2291, 1] -2.2 -2.16 -2.25 -2.22 -2.2 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ residuals    : num [1:2291, 1] -0.364 -0.414 -0.316 -0.35 -0.388 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ call         : language nnet.default(x = x, y = y, size = ..1, linout = linout, decay = ..2, maxit = ..3,      trace = trace)
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr "nnet"
##   .. .. .. .. .. .. .. ..$ :List of 15
##   .. .. .. .. .. .. .. .. ..$ n            : num [1:3] 19 10 1
##   .. .. .. .. .. .. .. .. ..$ nunits       : int 31
##   .. .. .. .. .. .. .. .. ..$ nconn        : num [1:32] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. .. ..$ conn         : num [1:211] 0 1 2 3 4 5 6 7 8 9 ...
##   .. .. .. .. .. .. .. .. ..$ nsunits      : num 30
##   .. .. .. .. .. .. .. .. ..$ decay        : num 10
##   .. .. .. .. .. .. .. .. ..$ entropy      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ softmax      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ censored     : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ value        : num 92.9
##   .. .. .. .. .. .. .. .. ..$ wts          : num [1:211] 0.00767 0.42733 0.26537 0.06841 -0.04323 ...
##   .. .. .. .. .. .. .. .. ..$ convergence  : int 1
##   .. .. .. .. .. .. .. .. ..$ fitted.values: num [1:2291, 1] -2.22 -2.22 -2.19 -2.19 -2.2 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ residuals    : num [1:2291, 1] -0.336 -0.353 -0.371 -0.374 -0.393 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ call         : language nnet.default(x = x, y = y, size = ..1, linout = linout, decay = ..2, maxit = ..3,      trace = trace)
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr "nnet"
##   .. .. .. .. .. .. .. ..$ :List of 15
##   .. .. .. .. .. .. .. .. ..$ n            : num [1:3] 19 10 1
##   .. .. .. .. .. .. .. .. ..$ nunits       : int 31
##   .. .. .. .. .. .. .. .. ..$ nconn        : num [1:32] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. .. ..$ conn         : num [1:211] 0 1 2 3 4 5 6 7 8 9 ...
##   .. .. .. .. .. .. .. .. ..$ nsunits      : num 30
##   .. .. .. .. .. .. .. .. ..$ decay        : num 10
##   .. .. .. .. .. .. .. .. ..$ entropy      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ softmax      : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ censored     : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ value        : num 94.4
##   .. .. .. .. .. .. .. .. ..$ wts          : num [1:211] 0.0589 0.2389 0.1976 0.1385 0.0172 ...
##   .. .. .. .. .. .. .. .. ..$ convergence  : int 1
##   .. .. .. .. .. .. .. .. ..$ fitted.values: num [1:2291, 1] -2.26 -2.25 -2.22 -2.22 -2.23 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ residuals    : num [1:2291, 1] -0.304 -0.324 -0.342 -0.349 -0.361 ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. ..$ call         : language nnet.default(x = x, y = y, size = ..1, linout = linout, decay = ..2, maxit = ..3,      trace = trace)
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr "nnet"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr "nnetarmodels"
##   .. .. .. .. .. .. ..$ nnetargs :List of 2
##   .. .. .. .. .. .. .. ..$ decay: num 10
##   .. .. .. .. .. .. .. ..$ maxit: num 50
##   .. .. .. .. .. .. ..$ fitted   : Time-Series [1:2296] from 1 to 460: NA NA NA NA NA ...
##   .. .. .. .. .. .. ..$ residuals: Time-Series [1:2296] from 1 to 460: NA NA NA NA NA ...
##   .. .. .. .. .. .. ..$ lags     : num [1:3] 1 2 5
##   .. .. .. .. .. .. ..$ series   : chr "outcome"
##   .. .. .. .. .. .. ..$ method   : chr "NNAR(2,1,10)[5]"
##   .. .. .. .. .. .. ..$ call     : language forecast::nnetar(y = outcome, p = p, P = P, size = size, repeats = repeats,      xreg = xreg_matrix, decay = deca| __truncated__
##   .. .. .. .. .. .. ..- attr(*, "class")= chr "nnetar"
##   .. .. .. .. ..$ data  : tibble [2,296 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. ..$ time      : Date[1:2296], format: "2014-09-11" ...
##   .. .. .. .. .. ..$ .actual   : num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. ..$ .fitted   : num [1:2296] NA NA NA NA NA ...
##   .. .. .. .. .. ..$ .residuals: num [1:2296] NA NA NA NA NA ...
##   .. .. .. .. ..$ extras:List of 1
##   .. .. .. .. .. ..$ xreg_recipe:List of 9
##   .. .. .. .. .. .. ..$ var_info      : tibble [17 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. ..$ type    :List of 17
##   .. .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ role    : chr [1:17] "predictor" "predictor" "predictor" "predictor" ...
##   .. .. .. .. .. .. .. ..$ source  : chr [1:17] "original" "original" "original" "original" ...
##   .. .. .. .. .. .. ..$ term_info     : tibble [16 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:16] "time_index_num" "time_year" "time_half" "time_quarter" ...
##   .. .. .. .. .. .. .. ..$ type    :List of 16
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ role    : chr [1:16] "predictor" "predictor" "predictor" "predictor" ...
##   .. .. .. .. .. .. .. ..$ source  : chr [1:16] "derived" "original" "original" "original" ...
##   .. .. .. .. .. .. ..$ steps         :List of 3
##   .. .. .. .. .. .. .. ..$ :List of 7
##   .. .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. .. ..$ : language ~dplyr::everything()
##   .. .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f2042356c8> 
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. .. ..$ fn     :function (string, case = "snake", replace = c(`'` = "", `"` = "", `%` = "_percent_", 
##     `#` = "_number_"), ascii = TRUE, use_make_names = TRUE, allow_dupes = FALSE, 
##     sep_in = "\\.", transliterations = "Latin-ASCII", parsing_option = 1, 
##     numerals = "asis", ...)  
##   .. .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. .. ..$ inputs : Named chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ id     : chr "rename_at_Ivdkj"
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rename_at" "step"
##   .. .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. .. ..$ : language ~names_date
##   .. .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f2062ed408> 
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. .. ..$ removals: Named chr "time"
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "time"
##   .. .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ id      : chr "rm_07Mwj"
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. .. ..$ :List of 7
##   .. .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. .. ..$ : language ~recipes::all_predictors()
##   .. .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f20630a708> 
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. .. ..$ group   : NULL
##   .. .. .. .. .. .. .. .. ..$ removals: chr(0) 
##   .. .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ id      : chr "zv_reAf9"
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_zv" "step"
##   .. .. .. .. .. .. ..$ template      : tibble [2,296 × 16] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ time_index_num: num [1:2296] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. .. .. .. ..$ time_year     : int [1:2296] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##   .. .. .. .. .. .. .. ..$ time_half     : int [1:2296] 2 2 2 2 2 2 2 2 2 2 ...
##   .. .. .. .. .. .. .. ..$ time_quarter  : int [1:2296] 3 3 3 3 3 3 3 3 3 3 ...
##   .. .. .. .. .. .. .. ..$ time_month    : int [1:2296] 9 9 9 9 9 9 9 9 9 9 ...
##   .. .. .. .. .. .. .. ..$ time_day      : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. .. .. .. ..$ time_wday     : int [1:2296] 5 6 2 3 4 5 6 2 3 4 ...
##   .. .. .. .. .. .. .. ..$ time_mday     : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. .. .. .. ..$ time_qday     : int [1:2296] 73 74 77 78 79 80 81 84 85 86 ...
##   .. .. .. .. .. .. .. ..$ time_yday     : int [1:2296] 254 255 258 259 260 261 262 265 266 267 ...
##   .. .. .. .. .. .. .. ..$ time_mweek    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. .. .. .. ..$ time_week     : int [1:2296] 37 37 37 37 38 38 38 38 38 39 ...
##   .. .. .. .. .. .. .. ..$ time_week2    : int [1:2296] 1 1 1 1 0 0 0 0 0 1 ...
##   .. .. .. .. .. .. .. ..$ time_week3    : int [1:2296] 1 1 1 1 2 2 2 2 2 0 ...
##   .. .. .. .. .. .. .. ..$ time_week4    : int [1:2296] 1 1 1 1 2 2 2 2 2 3 ...
##   .. .. .. .. .. .. .. ..$ time_mday7    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. .. .. ..$ retained      : logi TRUE
##   .. .. .. .. .. .. ..$ requirements  :List of 1
##   .. .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. .. ..$ tr_info       :'data.frame': 1 obs. of  2 variables:
##   .. .. .. .. .. .. .. ..$ nrows    : int 2296
##   .. .. .. .. .. .. .. ..$ ncomplete: int 2296
##   .. .. .. .. .. .. ..$ orig_lvls     :List of 17
##   .. .. .. .. .. .. .. ..$ time          :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_index.num:List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_year     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_half     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_quarter  :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_month    :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_day      :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_wday     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_mday     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_qday     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_yday     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_mweek    :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_week     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_week2    :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_week3    :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_week4    :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_mday7    :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. ..$ last_term_info: gropd_df [18 × 6] (S3: grouped_df/tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "time_day" "time_half" "time_index.num" ...
##   .. .. .. .. .. .. .. ..$ type    :List of 18
##   .. .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ role    :List of 18
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ source  : chr [1:18] "original" "original" "original" "original" ...
##   .. .. .. .. .. .. .. ..$ number  : num [1:18] 1 3 3 0 3 3 3 3 3 3 ...
##   .. .. .. .. .. .. .. ..$ skip    : logi [1:18] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. .. .. ..- attr(*, "groups")= tibble [18 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "time_day" "time_half" "time_index.num" ...
##   .. .. .. .. .. .. .. .. ..$ .rows   : list<int> [1:18] 
##   .. .. .. .. .. .. .. .. .. ..$ : int 1
##   .. .. .. .. .. .. .. .. .. ..$ : int 2
##   .. .. .. .. .. .. .. .. .. ..$ : int 3
##   .. .. .. .. .. .. .. .. .. ..$ : int 4
##   .. .. .. .. .. .. .. .. .. ..$ : int 5
##   .. .. .. .. .. .. .. .. .. ..$ : int 6
##   .. .. .. .. .. .. .. .. .. ..$ : int 7
##   .. .. .. .. .. .. .. .. .. ..$ : int 8
##   .. .. .. .. .. .. .. .. .. ..$ : int 9
##   .. .. .. .. .. .. .. .. .. ..$ : int 10
##   .. .. .. .. .. .. .. .. .. ..$ : int 11
##   .. .. .. .. .. .. .. .. .. ..$ : int 12
##   .. .. .. .. .. .. .. .. .. ..$ : int 13
##   .. .. .. .. .. .. .. .. .. ..$ : int 14
##   .. .. .. .. .. .. .. .. .. ..$ : int 15
##   .. .. .. .. .. .. .. .. .. ..$ : int 16
##   .. .. .. .. .. .. .. .. .. ..$ : int 17
##   .. .. .. .. .. .. .. .. .. ..$ : int 18
##   .. .. .. .. .. .. .. .. .. ..@ ptype: int(0) 
##   .. .. .. .. .. .. .. .. ..- attr(*, ".drop")= logi TRUE
##   .. .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ desc  : chr "NNAR(2,1,10)[5]"
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "nnetar_fit_impl" "modeltime_bridge"
##   .. .. .. ..$ preproc     :List of 1
##   .. .. .. .. ..$ y_var: chr(0) 
##   .. .. .. ..$ elapsed     :List of 1
##   .. .. .. .. ..$ elapsed: num NA
##   .. .. .. ..$ censor_probs: list()
##   .. .. .. ..- attr(*, "class")= chr [1:2] "_nnetar_fit_impl" "model_fit"
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_fit" "stage"
##   .. ..$ post   :List of 1
##   .. .. ..$ actions: Named list()
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_post" "stage"
##   .. ..$ trained: logi TRUE
##   .. ..- attr(*, "class")= chr "workflow"
##   ..$ :List of 4
##   .. ..$ pre    :List of 3
##   .. .. ..$ actions     :List of 1
##   .. .. .. ..$ recipe:List of 2
##   .. .. .. .. ..$ recipe   :List of 7
##   .. .. .. .. .. ..$ var_info    : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info   : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ steps       :List of 3
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi FALSE
##   .. .. .. .. .. .. .. ..$ columns: NULL
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi FALSE
##   .. .. .. .. .. .. .. ..$ removals: NULL
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. ..$ template    : tibble [1,535 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. .. .. ..$ levels      : NULL
##   .. .. .. .. .. ..$ retained    : logi NA
##   .. .. .. .. .. ..$ requirements:List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ blueprint:List of 8
##   .. .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. .. ..$ ptypes            : NULL
##   .. .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. .. ..$ recipe            : NULL
##   .. .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_recipe" "action_pre" "action"
##   .. .. ..$ mold        :List of 4
##   .. .. .. ..$ predictors: tibble [2,296 × 17] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ time          : Date[1:2296], format: "2014-09-11" ...
##   .. .. .. .. ..$ time_index.num: num [1:2296] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. ..$ time_year     : int [1:2296] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##   .. .. .. .. ..$ time_half     : int [1:2296] 2 2 2 2 2 2 2 2 2 2 ...
##   .. .. .. .. ..$ time_quarter  : int [1:2296] 3 3 3 3 3 3 3 3 3 3 ...
##   .. .. .. .. ..$ time_month    : int [1:2296] 9 9 9 9 9 9 9 9 9 9 ...
##   .. .. .. .. ..$ time_day      : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_wday     : int [1:2296] 5 6 2 3 4 5 6 2 3 4 ...
##   .. .. .. .. ..$ time_mday     : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. ..$ time_qday     : int [1:2296] 73 74 77 78 79 80 81 84 85 86 ...
##   .. .. .. .. ..$ time_yday     : int [1:2296] 254 255 258 259 260 261 262 265 266 267 ...
##   .. .. .. .. ..$ time_mweek    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. ..$ time_week     : int [1:2296] 37 37 37 37 38 38 38 38 38 39 ...
##   .. .. .. .. ..$ time_week2    : int [1:2296] 1 1 1 1 0 0 0 0 0 1 ...
##   .. .. .. .. ..$ time_week3    : int [1:2296] 1 1 1 1 2 2 2 2 2 0 ...
##   .. .. .. .. ..$ time_week4    : int [1:2296] 1 1 1 1 2 2 2 2 2 3 ...
##   .. .. .. .. ..$ time_mday7    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. ..$ outcomes  : tibble [2,296 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ close: num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. ..$ blueprint :List of 8
##   .. .. .. .. ..$ intercept         : logi FALSE
##   .. .. .. .. ..$ allow_novel_levels: logi FALSE
##   .. .. .. .. ..$ composition       : chr "tibble"
##   .. .. .. .. ..$ ptypes            :List of 2
##   .. .. .. .. .. ..$ predictors: tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ time: 'Date' num(0) 
##   .. .. .. .. .. ..$ outcomes  : tibble [0 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ close: num(0) 
##   .. .. .. .. ..$ fresh             : logi TRUE
##   .. .. .. .. ..$ strings_as_factors: logi TRUE
##   .. .. .. .. ..$ recipe            :List of 8
##   .. .. .. .. .. ..$ var_info      : tibble [2 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:2] "time" "close"
##   .. .. .. .. .. .. ..$ type    :List of 2
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:2] "predictor" "outcome"
##   .. .. .. .. .. .. ..$ source  : chr [1:2] "original" "original"
##   .. .. .. .. .. ..$ term_info     : tibble [18 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "close" "time_index.num" "time_year" ...
##   .. .. .. .. .. .. ..$ type    :List of 18
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    : chr [1:18] "predictor" "outcome" "predictor" "predictor" ...
##   .. .. .. .. .. .. ..$ source  : chr [1:18] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. ..$ steps         :List of 3
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~time
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d864a0> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. ..$ columns: Named chr "time"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "time"
##   .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. ..$ id     : chr "timeseries_signature_rvkPi"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_timeseries_signature" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~matches("(iso)|(xts)|(hour)|(minute)|(second)|(am.pm)")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d863f8> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:9] "time_year.iso" "time_month.xts" "time_hour" "time_minute" ...
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_5LAWl"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. ..$ : language ~c("time_month.lbl", "time_wday.lbl")
##   .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f271d86350> 
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. ..$ removals: Named chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:2] "time_month.lbl" "time_wday.lbl"
##   .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. ..$ id      : chr "rm_edECx"
##   .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. ..$ retained      : logi FALSE
##   .. .. .. .. .. ..$ requirements  :List of 1
##   .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. ..$ tr_info       :'data.frame':    1 obs. of  2 variables:
##   .. .. .. .. .. .. ..$ nrows    : int 2296
##   .. .. .. .. .. .. ..$ ncomplete: int 2296
##   .. .. .. .. .. ..$ orig_lvls     :List of 2
##   .. .. .. .. .. .. ..$ time :List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. ..$ close:List of 2
##   .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. ..$ last_term_info: gropd_df [29 × 6] (S3: grouped_df/tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. ..$ type    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "ordered" "nominal"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. ..$ role    :List of 29
##   .. .. .. .. .. .. .. ..$ : chr "outcome"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. ..$ source  : chr [1:29] "original" "original" "derived" "derived" ...
##   .. .. .. .. .. .. ..$ number  : num [1:29] 3 3 1 3 3 1 1 3 3 3 ...
##   .. .. .. .. .. .. ..$ skip    : logi [1:29] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. .. ..- attr(*, "groups")= tibble [29 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:29] "close" "time" "time_am.pm" "time_day" ...
##   .. .. .. .. .. .. .. ..$ .rows   : list<int> [1:29] 
##   .. .. .. .. .. .. .. .. ..$ : int 1
##   .. .. .. .. .. .. .. .. ..$ : int 2
##   .. .. .. .. .. .. .. .. ..$ : int 3
##   .. .. .. .. .. .. .. .. ..$ : int 4
##   .. .. .. .. .. .. .. .. ..$ : int 5
##   .. .. .. .. .. .. .. .. ..$ : int 6
##   .. .. .. .. .. .. .. .. ..$ : int 7
##   .. .. .. .. .. .. .. .. ..$ : int 8
##   .. .. .. .. .. .. .. .. ..$ : int 9
##   .. .. .. .. .. .. .. .. ..$ : int 10
##   .. .. .. .. .. .. .. .. ..$ : int 11
##   .. .. .. .. .. .. .. .. ..$ : int 12
##   .. .. .. .. .. .. .. .. ..$ : int 13
##   .. .. .. .. .. .. .. .. ..$ : int 14
##   .. .. .. .. .. .. .. .. ..$ : int 15
##   .. .. .. .. .. .. .. .. ..$ : int 16
##   .. .. .. .. .. .. .. .. ..$ : int 17
##   .. .. .. .. .. .. .. .. ..$ : int 18
##   .. .. .. .. .. .. .. .. ..$ : int 19
##   .. .. .. .. .. .. .. .. ..$ : int 20
##   .. .. .. .. .. .. .. .. ..$ : int 21
##   .. .. .. .. .. .. .. .. ..$ : int 22
##   .. .. .. .. .. .. .. .. ..$ : int 23
##   .. .. .. .. .. .. .. .. ..$ : int 24
##   .. .. .. .. .. .. .. .. ..$ : int 25
##   .. .. .. .. .. .. .. .. ..$ : int 26
##   .. .. .. .. .. .. .. .. ..$ : int 27
##   .. .. .. .. .. .. .. .. ..$ : int 28
##   .. .. .. .. .. .. .. .. ..$ : int 29
##   .. .. .. .. .. .. .. .. ..@ ptype: int(0) 
##   .. .. .. .. .. .. .. ..- attr(*, ".drop")= logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. ..$ extra_role_ptypes : NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "default_recipe_blueprint" "recipe_blueprint" "hardhat_blueprint"
##   .. .. .. ..$ extras    :List of 1
##   .. .. .. .. ..$ roles: NULL
##   .. .. ..$ case_weights: NULL
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_pre" "stage"
##   .. ..$ fit    :List of 2
##   .. .. ..$ actions:List of 1
##   .. .. .. ..$ model:List of 2
##   .. .. .. .. ..$ spec   :List of 7
##   .. .. .. .. .. ..$ args                 :List of 20
##   .. .. .. .. .. .. ..$ growth                  : language ~NULL
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ changepoint_num         : language ~25
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ changepoint_range       : language ~0.8
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ seasonality_yearly      : language ~F
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. .. .. .. .. .. ..$ seasonality_weekly      : language ~F
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. .. .. .. .. .. ..$ seasonality_daily       : language ~F
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. .. .. .. .. .. ..$ season                  : language ~NULL
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ prior_scale_changepoints: language ~NULL
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ prior_scale_seasonality : language ~NULL
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ prior_scale_holidays    : language ~NULL
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ logistic_cap            : language ~NULL
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ logistic_floor          : language ~NULL
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ mtry                    : language ~0.75
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ trees                   : language ~300
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ min_n                   : language ~20
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ tree_depth              : language ~3
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ learn_rate              : language ~0.35
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ loss_reduction          : language ~0.15
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ sample_size             : language ~NULL
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. ..$ stop_iter               : language ~NULL
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ eng_args             :List of 1
##   .. .. .. .. .. .. ..$ counts: language ~F
##   .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f26d317f10> 
##   .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. .. ..$ method               : NULL
##   .. .. .. .. .. ..$ engine               : chr "prophet_xgboost"
##   .. .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "prophet_boost" "model_spec"
##   .. .. .. .. ..$ formula: NULL
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "action_model" "action_fit" "action"
##   .. .. ..$ fit    :List of 6
##   .. .. .. ..$ lvl         : NULL
##   .. .. .. ..$ spec        :List of 8
##   .. .. .. .. ..$ args                 :List of 20
##   .. .. .. .. .. ..$ growth                  : language ~NULL
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ changepoint_num         : language ~25
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ changepoint_range       : language ~0.8
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ seasonality_yearly      : language ~F
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. .. .. .. .. ..$ seasonality_weekly      : language ~F
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. .. .. .. .. ..$ seasonality_daily       : language ~F
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. .. .. .. .. ..$ season                  : language ~NULL
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ prior_scale_changepoints: language ~NULL
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ prior_scale_seasonality : language ~NULL
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ prior_scale_holidays    : language ~NULL
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ logistic_cap            : language ~NULL
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ logistic_floor          : language ~NULL
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ mtry                    : language ~0.75
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ trees                   : language ~300
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ min_n                   : language ~20
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ tree_depth              : language ~3
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ learn_rate              : language ~0.35
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ loss_reduction          : language ~0.15
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ sample_size             : language ~NULL
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. ..$ stop_iter               : language ~NULL
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. ..$ eng_args             :List of 1
##   .. .. .. .. .. ..$ counts: language ~F
##   .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f26d317f10> 
##   .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. ..$ mode                 : chr "regression"
##   .. .. .. .. ..$ user_specified_mode  : logi TRUE
##   .. .. .. .. ..$ method               :List of 3
##   .. .. .. .. .. ..$ libs: chr [1:3] "prophet" "xgboost" "modeltime"
##   .. .. .. .. .. ..$ fit :List of 5
##   .. .. .. .. .. .. ..$ interface: chr "data.frame"
##   .. .. .. .. .. .. ..$ protect  : chr [1:2] "x" "y"
##   .. .. .. .. .. .. ..$ func     : Named chr "prophet_xgboost_fit_impl"
##   .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. ..$ defaults :List of 4
##   .. .. .. .. .. .. .. ..$ uncertainty.samples: num 0
##   .. .. .. .. .. .. .. ..$ objective          : chr "reg:squarederror"
##   .. .. .. .. .. .. .. ..$ nthread            : num 1
##   .. .. .. .. .. .. .. ..$ verbose            : num 0
##   .. .. .. .. .. .. ..$ args     :List of 18
##   .. .. .. .. .. .. .. ..$ x                  : language missing_arg()
##   .. .. .. .. .. .. .. ..$ y                  : language missing_arg()
##   .. .. .. .. .. .. .. ..$ n.changepoints     : language ~25
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ changepoint.range  : language ~0.8
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ yearly.seasonality : language ~F
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. .. .. .. .. .. .. ..$ weekly.seasonality : language ~F
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. .. .. .. .. .. .. ..$ daily.seasonality  : language ~F
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
##   .. .. .. .. .. .. .. ..$ colsample_bynode   : language ~0.75
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ nrounds            : language ~300
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ min_child_weight   : language ~20
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ max_depth          : language ~3
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ eta                : language ~0.35
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ gamma              : language ~0.15
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> 
##   .. .. .. .. .. .. .. ..$ counts             : language ~F
##   .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f26d317f10> 
##   .. .. .. .. .. .. .. ..$ uncertainty.samples: num 0
##   .. .. .. .. .. .. .. ..$ objective          : chr "reg:squarederror"
##   .. .. .. .. .. .. .. ..$ nthread            : num 1
##   .. .. .. .. .. .. .. ..$ verbose            : num 0
##   .. .. .. .. .. ..$ pred:List of 1
##   .. .. .. .. .. .. ..$ numeric:List of 4
##   .. .. .. .. .. .. .. ..$ pre : NULL
##   .. .. .. .. .. .. .. ..$ post: NULL
##   .. .. .. .. .. .. .. ..$ func: Named chr "predict"
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "fun"
##   .. .. .. .. .. .. .. ..$ args:List of 2
##   .. .. .. .. .. .. .. .. ..$ object  : language object$fit
##   .. .. .. .. .. .. .. .. ..$ new_data: symbol new_data
##   .. .. .. .. ..$ engine               : chr "prophet_xgboost"
##   .. .. .. .. ..$ user_specified_engine: logi TRUE
##   .. .. .. .. ..$ defaults             :List of 4
##   .. .. .. .. .. ..$ uncertainty.samples: num 0
##   .. .. .. .. .. ..$ objective          : chr "reg:squarederror"
##   .. .. .. .. .. ..$ nthread            : num 1
##   .. .. .. .. .. ..$ verbose            : num 0
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "prophet_boost" "model_spec"
##   .. .. .. ..$ fit         :List of 4
##   .. .. .. .. ..$ models:List of 2
##   .. .. .. .. .. ..$ model_1:List of 32
##   .. .. .. .. .. .. ..$ growth                 : chr "linear"
##   .. .. .. .. .. .. ..$ changepoints           : POSIXct[1:25], format: "2014-12-23" ...
##   .. .. .. .. .. .. ..$ n.changepoints         : num 25
##   .. .. .. .. .. .. ..$ changepoint.range      : num 0.8
##   .. .. .. .. .. .. ..$ yearly.seasonality     : logi FALSE
##   .. .. .. .. .. .. ..$ weekly.seasonality     : logi FALSE
##   .. .. .. .. .. .. ..$ daily.seasonality      : logi FALSE
##   .. .. .. .. .. .. ..$ holidays               : NULL
##   .. .. .. .. .. .. ..$ seasonality.mode       : chr "additive"
##   .. .. .. .. .. .. ..$ seasonality.prior.scale: num 10
##   .. .. .. .. .. .. ..$ changepoint.prior.scale: num 0.05
##   .. .. .. .. .. .. ..$ holidays.prior.scale   : num 10
##   .. .. .. .. .. .. ..$ mcmc.samples           : num 0
##   .. .. .. .. .. .. ..$ interval.width         : num 0.8
##   .. .. .. .. .. .. ..$ uncertainty.samples    : num 0
##   .. .. .. .. .. .. ..$ specified.changepoints : logi FALSE
##   .. .. .. .. .. .. ..$ start                  : POSIXct[1:1], format: "2014-09-11"
##   .. .. .. .. .. .. ..$ y.scale                : num 16738
##   .. .. .. .. .. .. ..$ logistic.floor         : logi FALSE
##   .. .. .. .. .. .. ..$ t.scale                : num 288316800
##   .. .. .. .. .. .. ..$ changepoints.t         : num [1:25] 0.0309 0.0632 0.0965 0.128 0.1597 ...
##   .. .. .. .. .. .. ..$ seasonalities          : list()
##   .. .. .. .. .. .. ..$ extra_regressors       : list()
##   .. .. .. .. .. .. ..$ country_holidays       : NULL
##   .. .. .. .. .. .. ..$ stan.fit               :List of 4
##   .. .. .. .. .. .. .. ..$ par        :List of 6
##   .. .. .. .. .. .. .. .. ..$ k        : num 1.08
##   .. .. .. .. .. .. .. .. ..$ m        : num 0.711
##   .. .. .. .. .. .. .. .. ..$ delta    : num [1:25(1d)] -0.000000056 -0.0000000589 -0.7092995432 -0.9590451419 0.0000005216 ...
##   .. .. .. .. .. .. .. .. ..$ sigma_obs: num 0.0175
##   .. .. .. .. .. .. .. .. ..$ beta     : num [1(1d)] 0
##   .. .. .. .. .. .. .. .. ..$ trend    : num [1:2296(1d)] 0.711 0.712 0.713 0.713 0.713 ...
##   .. .. .. .. .. .. .. ..$ value      : num 7974
##   .. .. .. .. .. .. .. ..$ return_code: int 0
##   .. .. .. .. .. .. .. ..$ theta_tilde: num [1, 1:2325] 1.0812892901 0.7113190826 -0.000000056 -0.0000000589 -0.7092995432 ...
##   .. .. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2
##   .. .. .. .. .. .. .. .. .. ..$ : NULL
##   .. .. .. .. .. .. .. .. .. ..$ : chr [1:2325] "k" "m" "delta[1]" "delta[2]" ...
##   .. .. .. .. .. .. ..$ params                 :List of 6
##   .. .. .. .. .. .. .. ..$ k        : num 1.08
##   .. .. .. .. .. .. .. ..$ m        : num 0.711
##   .. .. .. .. .. .. .. ..$ delta    : num [1, 1:25] -0.000000056 -0.0000000589 -0.7092995432 -0.9590451419 0.0000005216 ...
##   .. .. .. .. .. .. .. ..$ sigma_obs: num 0.0175
##   .. .. .. .. .. .. .. ..$ beta     : num [1, 1] 0
##   .. .. .. .. .. .. .. ..$ trend    : num [1:2296(1d)] 0.711 0.712 0.713 0.713 0.713 ...
##   .. .. .. .. .. .. ..$ history                : tibble [2,296 × 5] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ y       : num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. .. .. ..$ ds      : POSIXct[1:2296], format: "2014-09-11" ...
##   .. .. .. .. .. .. .. ..$ floor   : num [1:2296] 0 0 0 0 0 0 0 0 0 0 ...
##   .. .. .. .. .. .. .. ..$ t       : num [1:2296] 0 0.0003 0.0012 0.0015 0.0018 ...
##   .. .. .. .. .. .. .. ..$ y_scaled: num [1:2296] 0.706 0.706 0.712 0.715 0.714 ...
##   .. .. .. .. .. .. ..$ history.dates          : POSIXct[1:2296], format: "2014-09-11" ...
##   .. .. .. .. .. .. ..$ train.holiday.names    : NULL
##   .. .. .. .. .. .. ..$ train.component.cols   :'data.frame':    1 obs. of  3 variables:
##   .. .. .. .. .. .. .. ..$ zeros               : int 1
##   .. .. .. .. .. .. .. ..$ additive_terms      : num 0
##   .. .. .. .. .. .. .. ..$ multiplicative_terms: num 0
##   .. .. .. .. .. .. ..$ component.modes        :List of 2
##   .. .. .. .. .. .. .. ..$ additive      : chr [1:3] "additive_terms" "extra_regressors_additive" "holidays"
##   .. .. .. .. .. .. .. ..$ multiplicative: chr [1:2] "multiplicative_terms" "extra_regressors_multiplicative"
##   .. .. .. .. .. .. ..$ fit.kwargs             : list()
##   .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "prophet" "list"
##   .. .. .. .. .. ..$ model_2:List of 9
##   .. .. .. .. .. .. ..$ handle        :Class 'xgb.Booster.handle' <externalptr> 
##   .. .. .. .. .. .. ..$ raw           : raw [1:333400] 7b 4c 00 00 ...
##   .. .. .. .. .. .. ..$ niter         : num 300
##   .. .. .. .. .. .. ..$ evaluation_log:Classes 'data.table' and 'data.frame':    300 obs. of  2 variables:
##   .. .. .. .. .. .. .. ..$ iter         : num [1:300] 1 2 3 4 5 6 7 8 9 10 ...
##   .. .. .. .. .. .. .. ..$ training_rmse: num [1:300] 273 258 252 218 211 ...
##   .. .. .. .. .. .. .. ..- attr(*, ".internal.selfref")=<externalptr> 
##   .. .. .. .. .. .. ..$ call          : language xgboost::xgb.train(params = list(eta = 0.35, max_depth = 3, gamma = 0.15,      colsample_bytree = 1, colsample_by| __truncated__ ...
##   .. .. .. .. .. .. ..$ params        :List of 10
##   .. .. .. .. .. .. .. ..$ eta                : num 0.35
##   .. .. .. .. .. .. .. ..$ max_depth          : num 3
##   .. .. .. .. .. .. .. ..$ gamma              : num 0.15
##   .. .. .. .. .. .. .. ..$ colsample_bytree   : num 1
##   .. .. .. .. .. .. .. ..$ colsample_bynode   : num 0.75
##   .. .. .. .. .. .. .. ..$ min_child_weight   : num 20
##   .. .. .. .. .. .. .. ..$ subsample          : num 1
##   .. .. .. .. .. .. .. ..$ objective          : chr "reg:squarederror"
##   .. .. .. .. .. .. .. ..$ nthread            : num 1
##   .. .. .. .. .. .. .. ..$ validate_parameters: logi TRUE
##   .. .. .. .. .. .. ..$ callbacks     :List of 1
##   .. .. .. .. .. .. .. ..$ cb.evaluation.log:function (env = parent.frame(), finalize = FALSE)  
##   .. .. .. .. .. .. .. .. ..- attr(*, "call")= language cb.evaluation.log()
##   .. .. .. .. .. .. .. .. ..- attr(*, "name")= chr "cb.evaluation.log"
##   .. .. .. .. .. .. ..$ feature_names : chr [1:16] "time_index_num" "time_year" "time_half" "time_quarter" ...
##   .. .. .. .. .. .. ..$ nfeatures     : int 16
##   .. .. .. .. .. .. ..- attr(*, "class")= chr "xgb.Booster"
##   .. .. .. .. ..$ data  : tibble [2,296 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. ..$ time      : Date[1:2296], format: "2014-09-11" ...
##   .. .. .. .. .. ..$ .actual   : num [1:2296] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. .. ..$ .fitted   : num [1:2296] 11854 11847 11938 11958 11974 ...
##   .. .. .. .. .. ..$ .residuals: num [1:2296] -33.59 -28.68 -12.91 1.59 -23.75 ...
##   .. .. .. .. ..$ extras:List of 2
##   .. .. .. .. .. ..$ xreg_recipe    :List of 9
##   .. .. .. .. .. .. ..$ var_info      : tibble [17 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. ..$ type    :List of 17
##   .. .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ role    : chr [1:17] "predictor" "predictor" "predictor" "predictor" ...
##   .. .. .. .. .. .. .. ..$ source  : chr [1:17] "original" "original" "original" "original" ...
##   .. .. .. .. .. .. ..$ term_info     : tibble [16 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:16] "time_index_num" "time_year" "time_half" "time_quarter" ...
##   .. .. .. .. .. .. .. ..$ type    :List of 16
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ role    : chr [1:16] "predictor" "predictor" "predictor" "predictor" ...
##   .. .. .. .. .. .. .. ..$ source  : chr [1:16] "derived" "original" "original" "original" ...
##   .. .. .. .. .. .. ..$ steps         :List of 3
##   .. .. .. .. .. .. .. ..$ :List of 7
##   .. .. .. .. .. .. .. .. ..$ terms  :List of 1
##   .. .. .. .. .. .. .. .. .. ..$ : language ~dplyr::everything()
##   .. .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f26e986e90> 
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. .. ..$ fn     :function (string, case = "snake", replace = c(`'` = "", `"` = "", `%` = "_percent_", 
##     `#` = "_number_"), ascii = TRUE, use_make_names = TRUE, allow_dupes = FALSE, 
##     sep_in = "\\.", transliterations = "Latin-ASCII", parsing_option = 1, 
##     numerals = "asis", ...)  
##   .. .. .. .. .. .. .. .. ..$ role   : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ trained: logi TRUE
##   .. .. .. .. .. .. .. .. ..$ inputs : Named chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr [1:17] "time" "time_index.num" "time_year" "time_half" ...
##   .. .. .. .. .. .. .. .. ..$ skip   : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ id     : chr "rename_at_zDLEq"
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rename_at" "step"
##   .. .. .. .. .. .. .. ..$ :List of 6
##   .. .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. .. ..$ : language ~names_date
##   .. .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f20bf389d8> 
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. .. ..$ removals: Named chr "time"
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr "time"
##   .. .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ id      : chr "rm_CZ24j"
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_rm" "step"
##   .. .. .. .. .. .. .. ..$ :List of 7
##   .. .. .. .. .. .. .. .. ..$ terms   :List of 1
##   .. .. .. .. .. .. .. .. .. ..$ : language ~recipes::all_predictors()
##   .. .. .. .. .. .. .. .. .. .. ..- attr(*, ".Environment")=<environment: 0x000001f20bf3bdb8> 
##   .. .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "quosures" "list"
##   .. .. .. .. .. .. .. .. ..$ role    : logi NA
##   .. .. .. .. .. .. .. .. ..$ trained : logi TRUE
##   .. .. .. .. .. .. .. .. ..$ group   : NULL
##   .. .. .. .. .. .. .. .. ..$ removals: chr(0) 
##   .. .. .. .. .. .. .. .. ..$ skip    : logi FALSE
##   .. .. .. .. .. .. .. .. ..$ id      : chr "zv_Jk38Z"
##   .. .. .. .. .. .. .. .. ..- attr(*, "class")= chr [1:2] "step_zv" "step"
##   .. .. .. .. .. .. ..$ template      : tibble [2,296 × 16] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ time_index_num: num [1:2296] 1410393600 1410480000 1410739200 1410825600 1410912000 ...
##   .. .. .. .. .. .. .. ..$ time_year     : int [1:2296] 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 ...
##   .. .. .. .. .. .. .. ..$ time_half     : int [1:2296] 2 2 2 2 2 2 2 2 2 2 ...
##   .. .. .. .. .. .. .. ..$ time_quarter  : int [1:2296] 3 3 3 3 3 3 3 3 3 3 ...
##   .. .. .. .. .. .. .. ..$ time_month    : int [1:2296] 9 9 9 9 9 9 9 9 9 9 ...
##   .. .. .. .. .. .. .. ..$ time_day      : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. .. .. .. ..$ time_wday     : int [1:2296] 5 6 2 3 4 5 6 2 3 4 ...
##   .. .. .. .. .. .. .. ..$ time_mday     : int [1:2296] 11 12 15 16 17 18 19 22 23 24 ...
##   .. .. .. .. .. .. .. ..$ time_qday     : int [1:2296] 73 74 77 78 79 80 81 84 85 86 ...
##   .. .. .. .. .. .. .. ..$ time_yday     : int [1:2296] 254 255 258 259 260 261 262 265 266 267 ...
##   .. .. .. .. .. .. .. ..$ time_mweek    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. .. .. .. ..$ time_week     : int [1:2296] 37 37 37 37 38 38 38 38 38 39 ...
##   .. .. .. .. .. .. .. ..$ time_week2    : int [1:2296] 1 1 1 1 0 0 0 0 0 1 ...
##   .. .. .. .. .. .. .. ..$ time_week3    : int [1:2296] 1 1 1 1 2 2 2 2 2 0 ...
##   .. .. .. .. .. .. .. ..$ time_week4    : int [1:2296] 1 1 1 1 2 2 2 2 2 3 ...
##   .. .. .. .. .. .. .. ..$ time_mday7    : int [1:2296] 2 2 3 3 3 3 3 4 4 4 ...
##   .. .. .. .. .. .. ..$ retained      : logi TRUE
##   .. .. .. .. .. .. ..$ requirements  :List of 1
##   .. .. .. .. .. .. .. ..$ bake: Named logi(0) 
##   .. .. .. .. .. .. .. .. ..- attr(*, "names")= chr(0) 
##   .. .. .. .. .. .. ..$ tr_info       :'data.frame': 1 obs. of  2 variables:
##   .. .. .. .. .. .. .. ..$ nrows    : int 2296
##   .. .. .. .. .. .. .. ..$ ncomplete: int 2296
##   .. .. .. .. .. .. ..$ orig_lvls     :List of 17
##   .. .. .. .. .. .. .. ..$ time          :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_index.num:List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_year     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_half     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_quarter  :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_month    :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_day      :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_wday     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_mday     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_qday     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_yday     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_mweek    :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_week     :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_week2    :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_week3    :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_week4    :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. .. ..$ time_mday7    :List of 2
##   .. .. .. .. .. .. .. .. ..$ values : logi NA
##   .. .. .. .. .. .. .. .. ..$ ordered: logi NA
##   .. .. .. .. .. .. ..$ last_term_info: gropd_df [18 × 6] (S3: grouped_df/tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "time_day" "time_half" "time_index.num" ...
##   .. .. .. .. .. .. .. ..$ type    :List of 18
##   .. .. .. .. .. .. .. .. ..$ : chr "date"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "double" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. .. ..$ : chr [1:2] "integer" "numeric"
##   .. .. .. .. .. .. .. ..$ role    :List of 18
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. .. ..$ : chr "predictor"
##   .. .. .. .. .. .. .. ..$ source  : chr [1:18] "original" "original" "original" "original" ...
##   .. .. .. .. .. .. .. ..$ number  : num [1:18] 1 3 3 0 3 3 3 3 3 3 ...
##   .. .. .. .. .. .. .. ..$ skip    : logi [1:18] FALSE FALSE FALSE FALSE FALSE FALSE ...
##   .. .. .. .. .. .. .. ..- attr(*, "groups")= tibble [18 × 2] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. .. .. .. .. ..$ variable: chr [1:18] "time" "time_day" "time_half" "time_index.num" ...
##   .. .. .. .. .. .. .. .. ..$ .rows   : list<int> [1:18] 
##   .. .. .. .. .. .. .. .. .. ..$ : int 1
##   .. .. .. .. .. .. .. .. .. ..$ : int 2
##   .. .. .. .. .. .. .. .. .. ..$ : int 3
##   .. .. .. .. .. .. .. .. .. ..$ : int 4
##   .. .. .. .. .. .. .. .. .. ..$ : int 5
##   .. .. .. .. .. .. .. .. .. ..$ : int 6
##   .. .. .. .. .. .. .. .. .. ..$ : int 7
##   .. .. .. .. .. .. .. .. .. ..$ : int 8
##   .. .. .. .. .. .. .. .. .. ..$ : int 9
##   .. .. .. .. .. .. .. .. .. ..$ : int 10
##   .. .. .. .. .. .. .. .. .. ..$ : int 11
##   .. .. .. .. .. .. .. .. .. ..$ : int 12
##   .. .. .. .. .. .. .. .. .. ..$ : int 13
##   .. .. .. .. .. .. .. .. .. ..$ : int 14
##   .. .. .. .. .. .. .. .. .. ..$ : int 15
##   .. .. .. .. .. .. .. .. .. ..$ : int 16
##   .. .. .. .. .. .. .. .. .. ..$ : int 17
##   .. .. .. .. .. .. .. .. .. ..$ : int 18
##   .. .. .. .. .. .. .. .. .. ..@ ptype: int(0) 
##   .. .. .. .. .. .. .. .. ..- attr(*, ".drop")= logi TRUE
##   .. .. .. .. .. .. ..- attr(*, "class")= chr "recipe"
##   .. .. .. .. .. ..$ logistic_params:List of 3
##   .. .. .. .. .. .. ..$ growth        : chr "linear"
##   .. .. .. .. .. .. ..$ logistic_cap  : NULL
##   .. .. .. .. .. .. ..$ logistic_floor: NULL
##   .. .. .. .. ..$ desc  : chr "PROPHET w/ XGBoost Errors"
##   .. .. .. .. ..- attr(*, "class")= chr [1:2] "prophet_xgboost_fit_impl" "modeltime_bridge"
##   .. .. .. ..$ preproc     :List of 1
##   .. .. .. .. ..$ y_var: chr(0) 
##   .. .. .. ..$ elapsed     :List of 1
##   .. .. .. .. ..$ elapsed: num NA
##   .. .. .. ..$ censor_probs: list()
##   .. .. .. ..- attr(*, "class")= chr [1:2] "_prophet_xgboost_fit_impl" "model_fit"
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_fit" "stage"
##   .. ..$ post   :List of 1
##   .. .. ..$ actions: Named list()
##   .. .. ..- attr(*, "class")= chr [1:2] "stage_post" "stage"
##   .. ..$ trained: logi TRUE
##   .. ..- attr(*, "class")= chr "workflow"
##  $ .model_desc      : chr [1:10] "PROPHET" "GLMNET" "KERNLAB" "KERNLAB" ...
##  $ .type            : chr [1:10] "Test" "Test" "Test" "Test" ...
##  $ .calibration_data:List of 10
##   ..$ : tibble [761 × 4] (S3: tbl_df/tbl/data.frame)
##   .. ..$ time       : Date[1:761], format: "2020-10-02" "2020-10-05" ...
##   .. ..$ .actual    : num [1:761] 14885 14780 14710 14780 14745 ...
##   .. ..$ .prediction: num [1:761] 14914 14914 14913 14906 14902 ...
##   .. ..$ .residuals : num [1:761] -29.1 -134.1 -203.4 -126.4 -157.1 ...
##   ..$ : tibble [761 × 4] (S3: tbl_df/tbl/data.frame)
##   .. ..$ time       : Date[1:761], format: "2020-10-02" "2020-10-05" ...
##   .. ..$ .actual    : num [1:761] 14885 14780 14710 14780 14745 ...
##   .. ..$ .prediction: num [1:761] 14696 14703 14700 14699 14695 ...
##   .. ..$ .residuals : num [1:761] 188.9 76.6 10.5 80.7 49.6 ...
##   ..$ : tibble [761 × 4] (S3: tbl_df/tbl/data.frame)
##   .. ..$ time       : Date[1:761], format: "2020-10-02" "2020-10-05" ...
##   .. ..$ .actual    : num [1:761] 14885 14780 14710 14780 14745 ...
##   .. ..$ .prediction: num [1:761] 14476 14485 14481 14496 14493 ...
##   .. ..$ .residuals : num [1:761] 409 295 229 284 252 ...
##   ..$ : tibble [761 × 4] (S3: tbl_df/tbl/data.frame)
##   .. ..$ time       : Date[1:761], format: "2020-10-02" "2020-10-05" ...
##   .. ..$ .actual    : num [1:761] 14885 14780 14710 14780 14745 ...
##   .. ..$ .prediction: num [1:761] 14481 14508 14527 14534 14527 ...
##   .. ..$ .residuals : num [1:761] 404 272 183 246 218 ...
##   ..$ : tibble [761 × 4] (S3: tbl_df/tbl/data.frame)
##   .. ..$ time       : Date[1:761], format: "2020-10-02" "2020-10-05" ...
##   .. ..$ .actual    : num [1:761] 14885 14780 14710 14780 14745 ...
##   .. ..$ .prediction: num [1:761] 14403 14376 14412 14413 14379 ...
##   .. ..$ .residuals : num [1:761] 482 404 298 367 366 ...
##   ..$ : tibble [761 × 4] (S3: tbl_df/tbl/data.frame)
##   .. ..$ time       : Date[1:761], format: "2020-10-02" "2020-10-05" ...
##   .. ..$ .actual    : num [1:761] 14885 14780 14710 14780 14745 ...
##   .. ..$ .prediction: num [1:761] 14826 14825 14825 14810 14810 ...
##   .. ..$ .residuals : num [1:761] 59 -44.7 -114.8 -30 -65.3 ...
##   ..$ : tibble [761 × 4] (S3: tbl_df/tbl/data.frame)
##   .. ..$ time       : Date[1:761], format: "2020-10-02" "2020-10-05" ...
##   .. ..$ .actual    : num [1:761] 14885 14780 14710 14780 14745 ...
##   .. ..$ .prediction: num [1:761] 14909 14916 14914 14854 14880 ...
##   .. ..$ .residuals : num [1:761] -23.5 -136.2 -204 -73.7 -134.5 ...
##   ..$ : tibble [761 × 4] (S3: tbl_df/tbl/data.frame)
##   .. ..$ time       : Date[1:761], format: "2020-10-02" "2020-10-05" ...
##   .. ..$ .actual    : num [1:761] 14885 14780 14710 14780 14745 ...
##   .. ..$ .prediction: num [1:761] 14940 14942 14981 15063 15082 ...
##   .. ..$ .residuals : num [1:761] -54.5 -161.5 -271 -283.4 -336.9 ...
##   ..$ : tibble [761 × 4] (S3: tbl_df/tbl/data.frame)
##   .. ..$ time       : Date[1:761], format: "2020-10-02" "2020-10-05" ...
##   .. ..$ .actual    : num [1:761] 14885 14780 14710 14780 14745 ...
##   .. ..$ .prediction: num [1:761] 14830 14831 14817 14801 14782 ...
##   .. ..$ .residuals : num [1:761] 54.7 -51.4 -107.2 -21.2 -37.5 ...
##   ..$ : tibble [761 × 4] (S3: tbl_df/tbl/data.frame)
##   .. ..$ time       : Date[1:761], format: "2020-10-02" "2020-10-05" ...
##   .. ..$ .actual    : num [1:761] 14885 14780 14710 14780 14745 ...
##   .. ..$ .prediction: num [1:761] 14948 14912 14925 14912 14958 ...
##   .. ..$ .residuals : num [1:761] -63 -132 -215 -132 -213 ...
##  $ .resample_results:List of 10
##   ..$ : rsmp[+] (S3: resample_results/tune_results/tbl_df/tbl/data.frame)
##   .. ..$ splits      :List of 5
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ out_id: int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice1"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ out_id: int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice2"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ out_id: int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice3"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ out_id: int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice4"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 216 217 218 219 220 221 222 223 224 225 ...
##   .. .. .. ..$ out_id: int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice5"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. ..$ id          : chr [1:5] "Slice1" "Slice2" "Slice3" "Slice4" ...
##   .. ..$ .metrics    :List of 5
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 465
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 332
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 176
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 148
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 458
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. ..$ .notes      :List of 5
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. ..$ .predictions:List of 5
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14236 14255 14241 14253 14255 ...
##   .. .. .. ..$ .row   : int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ close  : num [1:65] 14365 14365 14342 14365 14563 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14146 14151 14138 14145 14134 ...
##   .. .. .. ..$ .row   : int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ close  : num [1:65] 14110 14135 14115 14135 14080 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14225 14255 14286 14385 14418 ...
##   .. .. .. ..$ .row   : int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ close  : num [1:65] 14173 14385 14325 14375 14375 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13387 13394 13405 13405 13405 ...
##   .. .. .. ..$ .row   : int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ close  : num [1:65] 13348 13369 13315 13285 13323 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 12944 12932 12897 12864 12817 ...
##   .. .. .. ..$ .row   : int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ close  : num [1:65] 13088 13105 13095 13107 13135 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. ..- attr(*, "parameters")= paramtrs [0 × 6] (S3: parameters/tbl_df/tbl/data.frame)
##   .. .. ..$ name        : chr(0) 
##   .. .. ..$ id          : chr(0) 
##   .. .. ..$ source      : chr(0) 
##   .. .. ..$ component   : chr(0) 
##   .. .. ..$ component_id: chr(0) 
##   .. .. ..$ object      : list()
##   .. ..- attr(*, "metrics")=function (data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)  
##   .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric_set" "metric_set" "function"
##   .. .. ..- attr(*, "metrics")=List of 1
##   .. .. .. ..$ rmse:function (data, ...)  
##   .. .. .. .. ..- attr(*, "direction")= chr "minimize"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric" "metric" "function"
##   .. ..- attr(*, "outcomes")= chr "close"
##   .. ..- attr(*, "rset_info")=List of 2
##   .. .. ..$ att  :List of 8
##   .. .. .. ..$ class      : chr "time_series_cv"
##   .. .. .. ..$ initial    : num 251
##   .. .. .. ..$ assess     : num 65
##   .. .. .. ..$ cumulative : logi FALSE
##   .. .. .. ..$ skip       : num 251
##   .. .. .. ..$ lag        : num 0
##   .. .. .. ..$ slice_limit: num 5
##   .. .. .. ..$ fingerprint: chr "69185f45d78e939117e6684b3a926dce"
##   .. .. ..$ label: chr NA
##   ..$ : rsmp[+] (S3: resample_results/tune_results/tbl_df/tbl/data.frame)
##   .. ..$ splits      :List of 5
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ out_id: int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice1"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ out_id: int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice2"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ out_id: int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice3"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ out_id: int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice4"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 216 217 218 219 220 221 222 223 224 225 ...
##   .. .. .. ..$ out_id: int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice5"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. ..$ id          : chr [1:5] "Slice1" "Slice2" "Slice3" "Slice4" ...
##   .. ..$ .metrics    :List of 5
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 308
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 410
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 526
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 122
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 80
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. ..$ .notes      :List of 5
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. ..$ .predictions:List of 5
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14820 14805 14960 14946 14931 ...
##   .. .. .. ..$ .row   : int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ close  : num [1:65] 14365 14365 14342 14365 14563 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14532 14522 14521 14521 14520 ...
##   .. .. .. ..$ .row   : int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ close  : num [1:65] 14110 14135 14115 14135 14080 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13978 13987 13988 13972 13973 ...
##   .. .. .. ..$ .row   : int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ close  : num [1:65] 14173 14385 14325 14375 14375 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13354 13355 13356 13375 13363 ...
##   .. .. .. ..$ .row   : int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ close  : num [1:65] 13348 13369 13315 13285 13323 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13135 13132 13136 13101 13103 ...
##   .. .. .. ..$ .row   : int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ close  : num [1:65] 13088 13105 13095 13107 13135 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. ..- attr(*, "parameters")= paramtrs [0 × 6] (S3: parameters/tbl_df/tbl/data.frame)
##   .. .. ..$ name        : chr(0) 
##   .. .. ..$ id          : chr(0) 
##   .. .. ..$ source      : chr(0) 
##   .. .. ..$ component   : chr(0) 
##   .. .. ..$ component_id: chr(0) 
##   .. .. ..$ object      : list()
##   .. ..- attr(*, "metrics")=function (data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)  
##   .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric_set" "metric_set" "function"
##   .. .. ..- attr(*, "metrics")=List of 1
##   .. .. .. ..$ rmse:function (data, ...)  
##   .. .. .. .. ..- attr(*, "direction")= chr "minimize"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric" "metric" "function"
##   .. ..- attr(*, "outcomes")= chr "close"
##   .. ..- attr(*, "rset_info")=List of 2
##   .. .. ..$ att  :List of 8
##   .. .. .. ..$ class      : chr "time_series_cv"
##   .. .. .. ..$ initial    : num 251
##   .. .. .. ..$ assess     : num 65
##   .. .. .. ..$ cumulative : logi FALSE
##   .. .. .. ..$ skip       : num 251
##   .. .. .. ..$ lag        : num 0
##   .. .. .. ..$ slice_limit: num 5
##   .. .. .. ..$ fingerprint: chr "69185f45d78e939117e6684b3a926dce"
##   .. .. ..$ label: chr NA
##   ..$ : rsmp[+] (S3: resample_results/tune_results/tbl_df/tbl/data.frame)
##   .. ..$ splits      :List of 5
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ out_id: int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice1"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ out_id: int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice2"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ out_id: int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice3"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ out_id: int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice4"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 216 217 218 219 220 221 222 223 224 225 ...
##   .. .. .. ..$ out_id: int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice5"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. ..$ id          : chr [1:5] "Slice1" "Slice2" "Slice3" "Slice4" ...
##   .. ..$ .metrics    :List of 5
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 1364
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 488
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 986
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 119
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 111
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. ..$ .notes      :List of 5
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. ..$ .predictions:List of 5
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14293 14293 13359 13358 13358 ...
##   .. .. .. ..$ .row   : int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ close  : num [1:65] 14365 14365 14342 14365 14563 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14504 14516 14499 14482 14465 ...
##   .. .. .. ..$ .row   : int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ close  : num [1:65] 14110 14135 14115 14135 14080 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13949 13969 13969 13513 13513 ...
##   .. .. .. ..$ .row   : int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ close  : num [1:65] 14173 14385 14325 14375 14375 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13379 13381 13384 13384 13387 ...
##   .. .. .. ..$ .row   : int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ close  : num [1:65] 13348 13369 13315 13285 13323 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13091 13091 13096 13081 13058 ...
##   .. .. .. ..$ .row   : int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ close  : num [1:65] 13088 13105 13095 13107 13135 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. ..- attr(*, "parameters")= paramtrs [0 × 6] (S3: parameters/tbl_df/tbl/data.frame)
##   .. .. ..$ name        : chr(0) 
##   .. .. ..$ id          : chr(0) 
##   .. .. ..$ source      : chr(0) 
##   .. .. ..$ component   : chr(0) 
##   .. .. ..$ component_id: chr(0) 
##   .. .. ..$ object      : list()
##   .. ..- attr(*, "metrics")=function (data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)  
##   .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric_set" "metric_set" "function"
##   .. .. ..- attr(*, "metrics")=List of 1
##   .. .. .. ..$ rmse:function (data, ...)  
##   .. .. .. .. ..- attr(*, "direction")= chr "minimize"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric" "metric" "function"
##   .. ..- attr(*, "outcomes")= chr "close"
##   .. ..- attr(*, "rset_info")=List of 2
##   .. .. ..$ att  :List of 8
##   .. .. .. ..$ class      : chr "time_series_cv"
##   .. .. .. ..$ initial    : num 251
##   .. .. .. ..$ assess     : num 65
##   .. .. .. ..$ cumulative : logi FALSE
##   .. .. .. ..$ skip       : num 251
##   .. .. .. ..$ lag        : num 0
##   .. .. .. ..$ slice_limit: num 5
##   .. .. .. ..$ fingerprint: chr "69185f45d78e939117e6684b3a926dce"
##   .. .. ..$ label: chr NA
##   ..$ : rsmp[+] (S3: resample_results/tune_results/tbl_df/tbl/data.frame)
##   .. ..$ splits      :List of 5
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ out_id: int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice1"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ out_id: int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice2"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ out_id: int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice3"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ out_id: int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice4"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 216 217 218 219 220 221 222 223 224 225 ...
##   .. .. .. ..$ out_id: int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice5"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. ..$ id          : chr [1:5] "Slice1" "Slice2" "Slice3" "Slice4" ...
##   .. ..$ .metrics    :List of 5
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 246
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 301
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 582
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 87.9
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 125
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. ..$ .notes      :List of 5
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. ..$ .predictions:List of 5
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14572 14575 14565 14542 14511 ...
##   .. .. .. ..$ .row   : int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ close  : num [1:65] 14365 14365 14342 14365 14563 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14406 14361 14359 14355 14349 ...
##   .. .. .. ..$ .row   : int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ close  : num [1:65] 14110 14135 14115 14135 14080 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14022 14024 14018 13886 13894 ...
##   .. .. .. ..$ .row   : int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ close  : num [1:65] 14173 14385 14325 14375 14375 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13312 13314 13317 13325 13328 ...
##   .. .. .. ..$ .row   : int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ close  : num [1:65] 13348 13369 13315 13285 13323 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13099 13098 13101 13112 13128 ...
##   .. .. .. ..$ .row   : int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ close  : num [1:65] 13088 13105 13095 13107 13135 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. ..- attr(*, "parameters")= paramtrs [0 × 6] (S3: parameters/tbl_df/tbl/data.frame)
##   .. .. ..$ name        : chr(0) 
##   .. .. ..$ id          : chr(0) 
##   .. .. ..$ source      : chr(0) 
##   .. .. ..$ component   : chr(0) 
##   .. .. ..$ component_id: chr(0) 
##   .. .. ..$ object      : list()
##   .. ..- attr(*, "metrics")=function (data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)  
##   .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric_set" "metric_set" "function"
##   .. .. ..- attr(*, "metrics")=List of 1
##   .. .. .. ..$ rmse:function (data, ...)  
##   .. .. .. .. ..- attr(*, "direction")= chr "minimize"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric" "metric" "function"
##   .. ..- attr(*, "outcomes")= chr "close"
##   .. ..- attr(*, "rset_info")=List of 2
##   .. .. ..$ att  :List of 8
##   .. .. .. ..$ class      : chr "time_series_cv"
##   .. .. .. ..$ initial    : num 251
##   .. .. .. ..$ assess     : num 65
##   .. .. .. ..$ cumulative : logi FALSE
##   .. .. .. ..$ skip       : num 251
##   .. .. .. ..$ lag        : num 0
##   .. .. .. ..$ slice_limit: num 5
##   .. .. .. ..$ fingerprint: chr "69185f45d78e939117e6684b3a926dce"
##   .. .. ..$ label: chr NA
##   ..$ : rsmp[+] (S3: resample_results/tune_results/tbl_df/tbl/data.frame)
##   .. ..$ splits      :List of 5
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ out_id: int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice1"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ out_id: int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice2"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ out_id: int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice3"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ out_id: int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice4"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 216 217 218 219 220 221 222 223 224 225 ...
##   .. .. .. ..$ out_id: int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice5"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. ..$ id          : chr [1:5] "Slice1" "Slice2" "Slice3" "Slice4" ...
##   .. ..$ .metrics    :List of 5
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 241
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 160
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 716
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 76.6
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 202
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. ..$ .notes      :List of 5
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. ..$ .predictions:List of 5
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14462 14459 14668 14579 14471 ...
##   .. .. .. ..$ .row   : int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ close  : num [1:65] 14365 14365 14342 14365 14563 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14245 14205 14202 14198 14217 ...
##   .. .. .. ..$ .row   : int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ close  : num [1:65] 14110 14135 14115 14135 14080 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13875 13850 13810 13704 13726 ...
##   .. .. .. ..$ .row   : int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ close  : num [1:65] 14173 14385 14325 14375 14375 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13324 13324 13322 13324 13323 ...
##   .. .. .. ..$ .row   : int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ close  : num [1:65] 13348 13369 13315 13285 13323 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13236 13225 13247 13296 13347 ...
##   .. .. .. ..$ .row   : int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ close  : num [1:65] 13088 13105 13095 13107 13135 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. ..- attr(*, "parameters")= paramtrs [0 × 6] (S3: parameters/tbl_df/tbl/data.frame)
##   .. .. ..$ name        : chr(0) 
##   .. .. ..$ id          : chr(0) 
##   .. .. ..$ source      : chr(0) 
##   .. .. ..$ component   : chr(0) 
##   .. .. ..$ component_id: chr(0) 
##   .. .. ..$ object      : list()
##   .. ..- attr(*, "metrics")=function (data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)  
##   .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric_set" "metric_set" "function"
##   .. .. ..- attr(*, "metrics")=List of 1
##   .. .. .. ..$ rmse:function (data, ...)  
##   .. .. .. .. ..- attr(*, "direction")= chr "minimize"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric" "metric" "function"
##   .. ..- attr(*, "outcomes")= chr "close"
##   .. ..- attr(*, "rset_info")=List of 2
##   .. .. ..$ att  :List of 8
##   .. .. .. ..$ class      : chr "time_series_cv"
##   .. .. .. ..$ initial    : num 251
##   .. .. .. ..$ assess     : num 65
##   .. .. .. ..$ cumulative : logi FALSE
##   .. .. .. ..$ skip       : num 251
##   .. .. .. ..$ lag        : num 0
##   .. .. .. ..$ slice_limit: num 5
##   .. .. .. ..$ fingerprint: chr "69185f45d78e939117e6684b3a926dce"
##   .. .. ..$ label: chr NA
##   ..$ : rsmp[+] (S3: resample_results/tune_results/tbl_df/tbl/data.frame)
##   .. ..$ splits      :List of 5
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ out_id: int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice1"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ out_id: int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice2"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ out_id: int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice3"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ out_id: int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice4"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 216 217 218 219 220 221 222 223 224 225 ...
##   .. .. .. ..$ out_id: int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice5"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. ..$ id          : chr [1:5] "Slice1" "Slice2" "Slice3" "Slice4" ...
##   .. ..$ .metrics    :List of 5
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 492
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 391
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 594
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 83.7
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 258
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. ..$ .notes      :List of 5
##   .. .. ..$ : tibble [1 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr "preprocessor 1/1, model 1/1"
##   .. .. .. ..$ type    : chr "warning"
##   .. .. .. ..$ note    : chr "25 columns were requested but there were 17 predictors in the data. 17 will be used."
##   .. .. ..$ : tibble [1 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr "preprocessor 1/1, model 1/1"
##   .. .. .. ..$ type    : chr "warning"
##   .. .. .. ..$ note    : chr "25 columns were requested but there were 17 predictors in the data. 17 will be used."
##   .. .. ..$ : tibble [1 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr "preprocessor 1/1, model 1/1"
##   .. .. .. ..$ type    : chr "warning"
##   .. .. .. ..$ note    : chr "25 columns were requested but there were 17 predictors in the data. 17 will be used."
##   .. .. ..$ : tibble [1 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr "preprocessor 1/1, model 1/1"
##   .. .. .. ..$ type    : chr "warning"
##   .. .. .. ..$ note    : chr "25 columns were requested but there were 17 predictors in the data. 17 will be used."
##   .. .. ..$ : tibble [1 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr "preprocessor 1/1, model 1/1"
##   .. .. .. ..$ type    : chr "warning"
##   .. .. .. ..$ note    : chr "25 columns were requested but there were 17 predictors in the data. 17 will be used."
##   .. ..$ .predictions:List of 5
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14162 14162 14307 14307 14305 ...
##   .. .. .. ..$ .row   : int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ close  : num [1:65] 14365 14365 14342 14365 14563 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14299 14298 14298 14298 14298 ...
##   .. .. .. ..$ .row   : int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ close  : num [1:65] 14110 14135 14115 14135 14080 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14054 14051 14051 13977 13977 ...
##   .. .. .. ..$ .row   : int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ close  : num [1:65] 14173 14385 14325 14375 14375 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13374 13374 13374 13374 13374 ...
##   .. .. .. ..$ .row   : int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ close  : num [1:65] 13348 13369 13315 13285 13323 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13101 13101 13101 13109 13112 ...
##   .. .. .. ..$ .row   : int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ close  : num [1:65] 13088 13105 13095 13107 13135 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. ..- attr(*, "parameters")= paramtrs [0 × 6] (S3: parameters/tbl_df/tbl/data.frame)
##   .. .. ..$ name        : chr(0) 
##   .. .. ..$ id          : chr(0) 
##   .. .. ..$ source      : chr(0) 
##   .. .. ..$ component   : chr(0) 
##   .. .. ..$ component_id: chr(0) 
##   .. .. ..$ object      : list()
##   .. ..- attr(*, "metrics")=function (data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)  
##   .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric_set" "metric_set" "function"
##   .. .. ..- attr(*, "metrics")=List of 1
##   .. .. .. ..$ rmse:function (data, ...)  
##   .. .. .. .. ..- attr(*, "direction")= chr "minimize"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric" "metric" "function"
##   .. ..- attr(*, "outcomes")= chr "close"
##   .. ..- attr(*, "rset_info")=List of 2
##   .. .. ..$ att  :List of 8
##   .. .. .. ..$ class      : chr "time_series_cv"
##   .. .. .. ..$ initial    : num 251
##   .. .. .. ..$ assess     : num 65
##   .. .. .. ..$ cumulative : logi FALSE
##   .. .. .. ..$ skip       : num 251
##   .. .. .. ..$ lag        : num 0
##   .. .. .. ..$ slice_limit: num 5
##   .. .. .. ..$ fingerprint: chr "69185f45d78e939117e6684b3a926dce"
##   .. .. ..$ label: chr NA
##   ..$ : rsmp[+] (S3: resample_results/tune_results/tbl_df/tbl/data.frame)
##   .. ..$ splits      :List of 5
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ out_id: int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice1"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ out_id: int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice2"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ out_id: int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice3"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ out_id: int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice4"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 216 217 218 219 220 221 222 223 224 225 ...
##   .. .. .. ..$ out_id: int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice5"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. ..$ id          : chr [1:5] "Slice1" "Slice2" "Slice3" "Slice4" ...
##   .. ..$ .metrics    :List of 5
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 524
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 252
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 569
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 106
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 92.7
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. ..$ .notes      :List of 5
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. ..$ .predictions:List of 5
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14209 14226 14677 14766 14528 ...
##   .. .. .. ..$ .row   : int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ close  : num [1:65] 14365 14365 14342 14365 14563 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14280 14269 14261 14266 14273 ...
##   .. .. .. ..$ .row   : int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ close  : num [1:65] 14110 14135 14115 14135 14080 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14096 14071 14066 13953 13957 ...
##   .. .. .. ..$ .row   : int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ close  : num [1:65] 14173 14385 14325 14375 14375 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13395 13396 13396 13396 13394 ...
##   .. .. .. ..$ .row   : int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ close  : num [1:65] 13348 13369 13315 13285 13323 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13081 13093 13114 13126 13138 ...
##   .. .. .. ..$ .row   : int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ close  : num [1:65] 13088 13105 13095 13107 13135 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. ..- attr(*, "parameters")= paramtrs [0 × 6] (S3: parameters/tbl_df/tbl/data.frame)
##   .. .. ..$ name        : chr(0) 
##   .. .. ..$ id          : chr(0) 
##   .. .. ..$ source      : chr(0) 
##   .. .. ..$ component   : chr(0) 
##   .. .. ..$ component_id: chr(0) 
##   .. .. ..$ object      : list()
##   .. ..- attr(*, "metrics")=function (data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)  
##   .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric_set" "metric_set" "function"
##   .. .. ..- attr(*, "metrics")=List of 1
##   .. .. .. ..$ rmse:function (data, ...)  
##   .. .. .. .. ..- attr(*, "direction")= chr "minimize"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric" "metric" "function"
##   .. ..- attr(*, "outcomes")= chr "close"
##   .. ..- attr(*, "rset_info")=List of 2
##   .. .. ..$ att  :List of 8
##   .. .. .. ..$ class      : chr "time_series_cv"
##   .. .. .. ..$ initial    : num 251
##   .. .. .. ..$ assess     : num 65
##   .. .. .. ..$ cumulative : logi FALSE
##   .. .. .. ..$ skip       : num 251
##   .. .. .. ..$ lag        : num 0
##   .. .. .. ..$ slice_limit: num 5
##   .. .. .. ..$ fingerprint: chr "69185f45d78e939117e6684b3a926dce"
##   .. .. ..$ label: chr NA
##   ..$ : rsmp[+] (S3: resample_results/tune_results/tbl_df/tbl/data.frame)
##   .. ..$ splits      :List of 5
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ out_id: int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice1"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ out_id: int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice2"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ out_id: int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice3"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ out_id: int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice4"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 216 217 218 219 220 221 222 223 224 225 ...
##   .. .. .. ..$ out_id: int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice5"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. ..$ id          : chr [1:5] "Slice1" "Slice2" "Slice3" "Slice4" ...
##   .. ..$ .metrics    :List of 5
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 699
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 154
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 434
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 99.7
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 177
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. ..$ .notes      :List of 5
##   .. .. ..$ : tibble [1 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr "preprocessor 1/1, model 1/1"
##   .. .. .. ..$ type    : chr "warning"
##   .. .. .. ..$ note    : chr "The number of neighbors should be >= 0 and <= 9. Truncating the value."
##   .. .. ..$ : tibble [1 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr "preprocessor 1/1, model 1/1"
##   .. .. .. ..$ type    : chr "warning"
##   .. .. .. ..$ note    : chr "The number of neighbors should be >= 0 and <= 9. Truncating the value."
##   .. .. ..$ : tibble [1 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr "preprocessor 1/1, model 1/1"
##   .. .. .. ..$ type    : chr "warning"
##   .. .. .. ..$ note    : chr "The number of neighbors should be >= 0 and <= 9. Truncating the value."
##   .. .. ..$ : tibble [1 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr "preprocessor 1/1, model 1/1"
##   .. .. .. ..$ type    : chr "warning"
##   .. .. .. ..$ note    : chr "The number of neighbors should be >= 0 and <= 9. Truncating the value."
##   .. .. ..$ : tibble [1 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr "preprocessor 1/1, model 1/1"
##   .. .. .. ..$ type    : chr "warning"
##   .. .. .. ..$ note    : chr "The number of neighbors should be >= 0 and <= 9. Truncating the value."
##   .. ..$ .predictions:List of 5
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14244 14246 14160 14168 14169 ...
##   .. .. .. ..$ .row   : int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ close  : num [1:65] 14365 14365 14342 14365 14563 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14174 14178 14165 14162 14156 ...
##   .. .. .. ..$ .row   : int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ close  : num [1:65] 14110 14135 14115 14135 14080 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14146 14125 14132 13969 13972 ...
##   .. .. .. ..$ .row   : int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ close  : num [1:65] 14173 14385 14325 14375 14375 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13373 13374 13377 13376 13382 ...
##   .. .. .. ..$ .row   : int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ close  : num [1:65] 13348 13369 13315 13285 13323 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13068 13066 13063 13076 13063 ...
##   .. .. .. ..$ .row   : int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ close  : num [1:65] 13088 13105 13095 13107 13135 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. ..- attr(*, "parameters")= paramtrs [0 × 6] (S3: parameters/tbl_df/tbl/data.frame)
##   .. .. ..$ name        : chr(0) 
##   .. .. ..$ id          : chr(0) 
##   .. .. ..$ source      : chr(0) 
##   .. .. ..$ component   : chr(0) 
##   .. .. ..$ component_id: chr(0) 
##   .. .. ..$ object      : list()
##   .. ..- attr(*, "metrics")=function (data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)  
##   .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric_set" "metric_set" "function"
##   .. .. ..- attr(*, "metrics")=List of 1
##   .. .. .. ..$ rmse:function (data, ...)  
##   .. .. .. .. ..- attr(*, "direction")= chr "minimize"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric" "metric" "function"
##   .. ..- attr(*, "outcomes")= chr "close"
##   .. ..- attr(*, "rset_info")=List of 2
##   .. .. ..$ att  :List of 8
##   .. .. .. ..$ class      : chr "time_series_cv"
##   .. .. .. ..$ initial    : num 251
##   .. .. .. ..$ assess     : num 65
##   .. .. .. ..$ cumulative : logi FALSE
##   .. .. .. ..$ skip       : num 251
##   .. .. .. ..$ lag        : num 0
##   .. .. .. ..$ slice_limit: num 5
##   .. .. .. ..$ fingerprint: chr "69185f45d78e939117e6684b3a926dce"
##   .. .. ..$ label: chr NA
##   ..$ : rsmp[+] (S3: resample_results/tune_results/tbl_df/tbl/data.frame)
##   .. ..$ splits      :List of 5
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ out_id: int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice1"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ out_id: int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice2"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ out_id: int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice3"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ out_id: int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice4"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 216 217 218 219 220 221 222 223 224 225 ...
##   .. .. .. ..$ out_id: int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice5"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. ..$ id          : chr [1:5] "Slice1" "Slice2" "Slice3" "Slice4" ...
##   .. ..$ .metrics    :List of 5
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 468
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 306
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 677
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 94.5
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 115
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. ..$ .notes      :List of 5
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. ..$ .predictions:List of 5
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14300 14330 14230 14207 14165 ...
##   .. .. .. ..$ .row   : int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ close  : num [1:65] 14365 14365 14342 14365 14563 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14212 14228 14264 14273 14283 ...
##   .. .. .. ..$ .row   : int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ close  : num [1:65] 14110 14135 14115 14135 14080 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14009 14005 13977 13956 13950 ...
##   .. .. .. ..$ .row   : int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ close  : num [1:65] 14173 14385 14325 14375 14375 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13381 13376 13377 13382 13380 ...
##   .. .. .. ..$ .row   : int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ close  : num [1:65] 13348 13369 13315 13285 13323 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13113 13119 13128 13157 13181 ...
##   .. .. .. ..$ .row   : int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ close  : num [1:65] 13088 13105 13095 13107 13135 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. ..- attr(*, "parameters")= paramtrs [0 × 6] (S3: parameters/tbl_df/tbl/data.frame)
##   .. .. ..$ name        : chr(0) 
##   .. .. ..$ id          : chr(0) 
##   .. .. ..$ source      : chr(0) 
##   .. .. ..$ component   : chr(0) 
##   .. .. ..$ component_id: chr(0) 
##   .. .. ..$ object      : list()
##   .. ..- attr(*, "metrics")=function (data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)  
##   .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric_set" "metric_set" "function"
##   .. .. ..- attr(*, "metrics")=List of 1
##   .. .. .. ..$ rmse:function (data, ...)  
##   .. .. .. .. ..- attr(*, "direction")= chr "minimize"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric" "metric" "function"
##   .. ..- attr(*, "outcomes")= chr "close"
##   .. ..- attr(*, "rset_info")=List of 2
##   .. .. ..$ att  :List of 8
##   .. .. .. ..$ class      : chr "time_series_cv"
##   .. .. .. ..$ initial    : num 251
##   .. .. .. ..$ assess     : num 65
##   .. .. .. ..$ cumulative : logi FALSE
##   .. .. .. ..$ skip       : num 251
##   .. .. .. ..$ lag        : num 0
##   .. .. .. ..$ slice_limit: num 5
##   .. .. .. ..$ fingerprint: chr "69185f45d78e939117e6684b3a926dce"
##   .. .. ..$ label: chr NA
##   ..$ : rsmp[+] (S3: resample_results/tune_results/tbl_df/tbl/data.frame)
##   .. ..$ splits      :List of 5
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ out_id: int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice1"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ out_id: int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice2"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ out_id: int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice3"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ out_id: int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice4"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. .. ..$ :List of 4
##   .. .. .. ..$ data  :'data.frame':  1535 obs. of  2 variables:
##   .. .. .. .. ..$ time : Date[1:1535], format: "2014-09-11" ...
##   .. .. .. .. ..$ close: num [1:1535] 11820 11818 11925 11960 11950 ...
##   .. .. .. .. ..- attr(*, "na.action")= 'omit' Named int 667
##   .. .. .. .. .. ..- attr(*, "names")= chr "667"
##   .. .. .. ..$ in_id : int [1:251] 216 217 218 219 220 221 222 223 224 225 ...
##   .. .. .. ..$ out_id: int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ id    : tibble [1 × 1] (S3: tbl_df/tbl/data.frame)
##   .. .. .. .. ..$ id: chr "Slice5"
##   .. .. .. ..- attr(*, "class")= chr [1:2] "ts_cv_split" "rsplit"
##   .. ..$ id          : chr [1:5] "Slice1" "Slice2" "Slice3" "Slice4" ...
##   .. ..$ .metrics    :List of 5
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 2427
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 221
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 443
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 83.9
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. .. ..$ : tibble [1 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .metric   : chr "rmse"
##   .. .. .. ..$ .estimator: chr "standard"
##   .. .. .. ..$ .estimate : num 131
##   .. .. .. ..$ .config   : chr "Preprocessor1_Model1"
##   .. ..$ .notes      :List of 5
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. .. ..$ : tibble [0 × 3] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ location: chr(0) 
##   .. .. .. ..$ type    : chr(0) 
##   .. .. .. ..$ note    : chr(0) 
##   .. ..$ .predictions:List of 5
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14087 14073 13616 13591 13535 ...
##   .. .. .. ..$ .row   : int [1:65] 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 ...
##   .. .. .. ..$ close  : num [1:65] 14365 14365 14342 14365 14563 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14218 14261 14262 14266 14260 ...
##   .. .. .. ..$ .row   : int [1:65] 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 ...
##   .. .. .. ..$ close  : num [1:65] 14110 14135 14115 14135 14080 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 14148 14136 14138 14026 14025 ...
##   .. .. .. ..$ .row   : int [1:65] 969 970 971 972 973 974 975 976 977 978 ...
##   .. .. .. ..$ close  : num [1:65] 14173 14385 14325 14375 14375 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13387 13382 13384 13380 13357 ...
##   .. .. .. ..$ .row   : int [1:65] 718 719 720 721 722 723 724 725 726 727 ...
##   .. .. .. ..$ close  : num [1:65] 13348 13369 13315 13285 13323 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. .. ..$ : tibble [65 × 4] (S3: tbl_df/tbl/data.frame)
##   .. .. .. ..$ .pred  : num [1:65] 13095 13108 13117 13102 13088 ...
##   .. .. .. ..$ .row   : int [1:65] 467 468 469 470 471 472 473 474 475 476 ...
##   .. .. .. ..$ close  : num [1:65] 13088 13105 13095 13107 13135 ...
##   .. .. .. ..$ .config: chr [1:65] "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" "Preprocessor1_Model1" ...
##   .. ..- attr(*, "parameters")= paramtrs [0 × 6] (S3: parameters/tbl_df/tbl/data.frame)
##   .. .. ..$ name        : chr(0) 
##   .. .. ..$ id          : chr(0) 
##   .. .. ..$ source      : chr(0) 
##   .. .. ..$ component   : chr(0) 
##   .. .. ..$ component_id: chr(0) 
##   .. .. ..$ object      : list()
##   .. ..- attr(*, "metrics")=function (data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)  
##   .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric_set" "metric_set" "function"
##   .. .. ..- attr(*, "metrics")=List of 1
##   .. .. .. ..$ rmse:function (data, ...)  
##   .. .. .. .. ..- attr(*, "direction")= chr "minimize"
##   .. .. .. .. ..- attr(*, "class")= chr [1:3] "numeric_metric" "metric" "function"
##   .. ..- attr(*, "outcomes")= chr "close"
##   .. ..- attr(*, "rset_info")=List of 2
##   .. .. ..$ att  :List of 8
##   .. .. .. ..$ class      : chr "time_series_cv"
##   .. .. .. ..$ initial    : num 251
##   .. .. .. ..$ assess     : num 65
##   .. .. .. ..$ cumulative : logi FALSE
##   .. .. .. ..$ skip       : num 251
##   .. .. .. ..$ lag        : num 0
##   .. .. .. ..$ slice_limit: num 5
##   .. .. .. ..$ fingerprint: chr "69185f45d78e939117e6684b3a926dce"
##   .. .. ..$ label: chr NA

Cubist Stacking

set.seed(123)
ensemble_fit_cubist_tscv <- submodels_resample %>%
    ensemble_model_spec(
        model_spec = cubist_rules(mode = "regression",
            committees = tune(), 
            neighbors  = tune(),
            max_rules  = tune()
        ) %>%
            set_engine("Cubist"),
        # kfold = 10,
        grid  = 10, 
        control = control_grid(
            verbose = TRUE, 
            allow_par = TRUE
        )
    )
## ── Tuning Model Specification ───────────────────────────────────
## ℹ Performing 5-Fold Cross Validation.
## i Fold1: preprocessor 1/1
## ✓ Fold1: preprocessor 1/1
## i Fold1: preprocessor 1/1, model 1/10
## ✓ Fold1: preprocessor 1/1, model 1/10
## i Fold1: preprocessor 1/1, model 1/10 (predictions)
## i Fold1: preprocessor 1/1, model 2/10
## ✓ Fold1: preprocessor 1/1, model 2/10
## i Fold1: preprocessor 1/1, model 2/10 (predictions)
## i Fold1: preprocessor 1/1, model 3/10
## ✓ Fold1: preprocessor 1/1, model 3/10
## i Fold1: preprocessor 1/1, model 3/10 (predictions)
## i Fold1: preprocessor 1/1, model 4/10
## ✓ Fold1: preprocessor 1/1, model 4/10
## i Fold1: preprocessor 1/1, model 4/10 (predictions)
## i Fold1: preprocessor 1/1, model 5/10
## ✓ Fold1: preprocessor 1/1, model 5/10
## i Fold1: preprocessor 1/1, model 5/10 (predictions)
## i Fold1: preprocessor 1/1, model 6/10
## ✓ Fold1: preprocessor 1/1, model 6/10
## i Fold1: preprocessor 1/1, model 6/10 (predictions)
## i Fold1: preprocessor 1/1, model 7/10
## ✓ Fold1: preprocessor 1/1, model 7/10
## i Fold1: preprocessor 1/1, model 7/10 (predictions)
## i Fold1: preprocessor 1/1, model 8/10
## ✓ Fold1: preprocessor 1/1, model 8/10
## i Fold1: preprocessor 1/1, model 8/10 (predictions)
## i Fold1: preprocessor 1/1, model 9/10
## ✓ Fold1: preprocessor 1/1, model 9/10
## i Fold1: preprocessor 1/1, model 9/10 (predictions)
## i Fold1: preprocessor 1/1, model 10/10
## ✓ Fold1: preprocessor 1/1, model 10/10
## i Fold1: preprocessor 1/1, model 10/10 (predictions)
## i Fold2: preprocessor 1/1
## ✓ Fold2: preprocessor 1/1
## i Fold2: preprocessor 1/1, model 1/10
## ✓ Fold2: preprocessor 1/1, model 1/10
## i Fold2: preprocessor 1/1, model 1/10 (predictions)
## i Fold2: preprocessor 1/1, model 2/10
## ✓ Fold2: preprocessor 1/1, model 2/10
## i Fold2: preprocessor 1/1, model 2/10 (predictions)
## i Fold2: preprocessor 1/1, model 3/10
## ✓ Fold2: preprocessor 1/1, model 3/10
## i Fold2: preprocessor 1/1, model 3/10 (predictions)
## i Fold2: preprocessor 1/1, model 4/10
## ✓ Fold2: preprocessor 1/1, model 4/10
## i Fold2: preprocessor 1/1, model 4/10 (predictions)
## i Fold2: preprocessor 1/1, model 5/10
## ✓ Fold2: preprocessor 1/1, model 5/10
## i Fold2: preprocessor 1/1, model 5/10 (predictions)
## i Fold2: preprocessor 1/1, model 6/10
## ✓ Fold2: preprocessor 1/1, model 6/10
## i Fold2: preprocessor 1/1, model 6/10 (predictions)
## i Fold2: preprocessor 1/1, model 7/10
## ✓ Fold2: preprocessor 1/1, model 7/10
## i Fold2: preprocessor 1/1, model 7/10 (predictions)
## i Fold2: preprocessor 1/1, model 8/10
## ✓ Fold2: preprocessor 1/1, model 8/10
## i Fold2: preprocessor 1/1, model 8/10 (predictions)
## i Fold2: preprocessor 1/1, model 9/10
## ✓ Fold2: preprocessor 1/1, model 9/10
## i Fold2: preprocessor 1/1, model 9/10 (predictions)
## i Fold2: preprocessor 1/1, model 10/10
## ✓ Fold2: preprocessor 1/1, model 10/10
## i Fold2: preprocessor 1/1, model 10/10 (predictions)
## i Fold3: preprocessor 1/1
## ✓ Fold3: preprocessor 1/1
## i Fold3: preprocessor 1/1, model 1/10
## ✓ Fold3: preprocessor 1/1, model 1/10
## i Fold3: preprocessor 1/1, model 1/10 (predictions)
## i Fold3: preprocessor 1/1, model 2/10
## ✓ Fold3: preprocessor 1/1, model 2/10
## i Fold3: preprocessor 1/1, model 2/10 (predictions)
## i Fold3: preprocessor 1/1, model 3/10
## ✓ Fold3: preprocessor 1/1, model 3/10
## i Fold3: preprocessor 1/1, model 3/10 (predictions)
## i Fold3: preprocessor 1/1, model 4/10
## ✓ Fold3: preprocessor 1/1, model 4/10
## i Fold3: preprocessor 1/1, model 4/10 (predictions)
## i Fold3: preprocessor 1/1, model 5/10
## ✓ Fold3: preprocessor 1/1, model 5/10
## i Fold3: preprocessor 1/1, model 5/10 (predictions)
## i Fold3: preprocessor 1/1, model 6/10
## ✓ Fold3: preprocessor 1/1, model 6/10
## i Fold3: preprocessor 1/1, model 6/10 (predictions)
## i Fold3: preprocessor 1/1, model 7/10
## ✓ Fold3: preprocessor 1/1, model 7/10
## i Fold3: preprocessor 1/1, model 7/10 (predictions)
## i Fold3: preprocessor 1/1, model 8/10
## ✓ Fold3: preprocessor 1/1, model 8/10
## i Fold3: preprocessor 1/1, model 8/10 (predictions)
## i Fold3: preprocessor 1/1, model 9/10
## ✓ Fold3: preprocessor 1/1, model 9/10
## i Fold3: preprocessor 1/1, model 9/10 (predictions)
## i Fold3: preprocessor 1/1, model 10/10
## ✓ Fold3: preprocessor 1/1, model 10/10
## i Fold3: preprocessor 1/1, model 10/10 (predictions)
## i Fold4: preprocessor 1/1
## ✓ Fold4: preprocessor 1/1
## i Fold4: preprocessor 1/1, model 1/10
## ✓ Fold4: preprocessor 1/1, model 1/10
## i Fold4: preprocessor 1/1, model 1/10 (predictions)
## i Fold4: preprocessor 1/1, model 2/10
## ✓ Fold4: preprocessor 1/1, model 2/10
## i Fold4: preprocessor 1/1, model 2/10 (predictions)
## i Fold4: preprocessor 1/1, model 3/10
## ✓ Fold4: preprocessor 1/1, model 3/10
## i Fold4: preprocessor 1/1, model 3/10 (predictions)
## i Fold4: preprocessor 1/1, model 4/10
## ✓ Fold4: preprocessor 1/1, model 4/10
## i Fold4: preprocessor 1/1, model 4/10 (predictions)
## i Fold4: preprocessor 1/1, model 5/10
## ✓ Fold4: preprocessor 1/1, model 5/10
## i Fold4: preprocessor 1/1, model 5/10 (predictions)
## i Fold4: preprocessor 1/1, model 6/10
## ✓ Fold4: preprocessor 1/1, model 6/10
## i Fold4: preprocessor 1/1, model 6/10 (predictions)
## i Fold4: preprocessor 1/1, model 7/10
## ✓ Fold4: preprocessor 1/1, model 7/10
## i Fold4: preprocessor 1/1, model 7/10 (predictions)
## i Fold4: preprocessor 1/1, model 8/10
## ✓ Fold4: preprocessor 1/1, model 8/10
## i Fold4: preprocessor 1/1, model 8/10 (predictions)
## i Fold4: preprocessor 1/1, model 9/10
## ✓ Fold4: preprocessor 1/1, model 9/10
## i Fold4: preprocessor 1/1, model 9/10 (predictions)
## i Fold4: preprocessor 1/1, model 10/10
## ✓ Fold4: preprocessor 1/1, model 10/10
## i Fold4: preprocessor 1/1, model 10/10 (predictions)
## i Fold5: preprocessor 1/1
## ✓ Fold5: preprocessor 1/1
## i Fold5: preprocessor 1/1, model 1/10
## ✓ Fold5: preprocessor 1/1, model 1/10
## i Fold5: preprocessor 1/1, model 1/10 (predictions)
## i Fold5: preprocessor 1/1, model 2/10
## ✓ Fold5: preprocessor 1/1, model 2/10
## i Fold5: preprocessor 1/1, model 2/10 (predictions)
## i Fold5: preprocessor 1/1, model 3/10
## ✓ Fold5: preprocessor 1/1, model 3/10
## i Fold5: preprocessor 1/1, model 3/10 (predictions)
## i Fold5: preprocessor 1/1, model 4/10
## ✓ Fold5: preprocessor 1/1, model 4/10
## i Fold5: preprocessor 1/1, model 4/10 (predictions)
## i Fold5: preprocessor 1/1, model 5/10
## ✓ Fold5: preprocessor 1/1, model 5/10
## i Fold5: preprocessor 1/1, model 5/10 (predictions)
## i Fold5: preprocessor 1/1, model 6/10
## ✓ Fold5: preprocessor 1/1, model 6/10
## i Fold5: preprocessor 1/1, model 6/10 (predictions)
## i Fold5: preprocessor 1/1, model 7/10
## ✓ Fold5: preprocessor 1/1, model 7/10
## i Fold5: preprocessor 1/1, model 7/10 (predictions)
## i Fold5: preprocessor 1/1, model 8/10
## ✓ Fold5: preprocessor 1/1, model 8/10
## i Fold5: preprocessor 1/1, model 8/10 (predictions)
## i Fold5: preprocessor 1/1, model 9/10
## ✓ Fold5: preprocessor 1/1, model 9/10
## i Fold5: preprocessor 1/1, model 9/10 (predictions)
## i Fold5: preprocessor 1/1, model 10/10
## ✓ Fold5: preprocessor 1/1, model 10/10
## i Fold5: preprocessor 1/1, model 10/10 (predictions)
## ✔ Finished tuning Model Specification.
## ℹ Model Parameters:
## # A tibble: 1 × 9
##   committees neighbors max_rules .metric .estimator  mean     n std_err .config 
##        <int>     <int>     <int> <chr>   <chr>      <dbl> <int>   <dbl> <chr>   
## 1         35         5       404 rmse    standard    63.5     5    6.17 Preproc…
## ℹ Prediction Error Comparison:
## # A tibble: 11 × 3
##    .model_id   rmse .model_desc              
##    <chr>      <dbl> <chr>                    
##  1 1          343.  PROPHET                  
##  2 10        1110.  PROPHET W/ XGBOOST ERRORS
##  3 2          335.  GLMNET                   
##  4 3          787.  KERNLAB                  
##  5 4          320.  KERNLAB                  
##  6 5          358.  KKNN                     
##  7 6          405.  RANDOMFOREST             
##  8 7          369.  XGBOOST                  
##  9 8          385.  CUBIST                   
## 10 9          398.  NNAR(2,1,10)[5]          
## 11 ensemble    29.6 ENSEMBLE (MODEL SPEC)    
## 
## ── Final Model ──────────────────────────────────────────────────
## ℹ Model Workflow:
## ══ Workflow [trained] ══════════════════════════════════════════════════════════
## Preprocessor: Recipe
## Model: cubist_rules()
## 
## ── Preprocessor ────────────────────────────────────────────────────────────────
## 0 Recipe Steps
## 
## ── Model ───────────────────────────────────────────────────────────────────────
## 
## Call:
## cubist.default(x = x, y = y, committees = 35L, control
##  = Cubist::cubistControl(rules = 404L))
## 
## Number of samples: 325 
## Number of predictors: 10 
## 
## Number of committees: 35 
## Number of rules per committee: 8, 5, 6, 7, 6, 8, 4, 7, 7, 7, 5, 7, 6, 8, 12, 7, 11, 9, 11, 11 ... 
## 
## 
## 32.16 sec elapsed
modeltime_table(
    ensemble_fit_cubist_tscv
) %>%
    modeltime_accuracy(testing(splits))
## # A tibble: 1 × 9
##   .model_id .model_desc              .type   mae  mape  mase smape  rmse     rsq
##       <int> <chr>                    <chr> <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl>
## 1         1 ENSEMBLE (CUBIST STACK)… Test   723.  4.81  21.4  4.98  871. 0.00352

XGBOOST Stack

set.seed(123)
ensemble_fit_xgboost_tscv <- submodels_resample %>%
    ensemble_model_spec(boost_tree(mode = "regression", 
                               # mtry = tune(), 
                               trees = tune(), 
                               min_n = tune(), 
                               tree_depth = tune(), 
                               learn_rate = tune(), 
                               loss_reduction = tune()) %>% 
  set_engine("xgboost"),
        grid  = 10, 
        control = control_grid(
            verbose = TRUE, 
            allow_par = TRUE
        )
    )
## ── Tuning Model Specification ───────────────────────────────────
## ℹ Performing 5-Fold Cross Validation.
## i Fold1: preprocessor 1/1
## ✓ Fold1: preprocessor 1/1
## i Fold1: preprocessor 1/1, model 1/10
## ✓ Fold1: preprocessor 1/1, model 1/10
## i Fold1: preprocessor 1/1, model 1/10 (predictions)
## i Fold1: preprocessor 1/1, model 2/10
## ✓ Fold1: preprocessor 1/1, model 2/10
## i Fold1: preprocessor 1/1, model 2/10 (predictions)
## i Fold1: preprocessor 1/1, model 3/10
## ✓ Fold1: preprocessor 1/1, model 3/10
## i Fold1: preprocessor 1/1, model 3/10 (predictions)
## i Fold1: preprocessor 1/1, model 4/10
## ✓ Fold1: preprocessor 1/1, model 4/10
## i Fold1: preprocessor 1/1, model 4/10 (predictions)
## i Fold1: preprocessor 1/1, model 5/10
## ✓ Fold1: preprocessor 1/1, model 5/10
## i Fold1: preprocessor 1/1, model 5/10 (predictions)
## i Fold1: preprocessor 1/1, model 6/10
## ✓ Fold1: preprocessor 1/1, model 6/10
## i Fold1: preprocessor 1/1, model 6/10 (predictions)
## i Fold1: preprocessor 1/1, model 7/10
## ✓ Fold1: preprocessor 1/1, model 7/10
## i Fold1: preprocessor 1/1, model 7/10 (predictions)
## i Fold1: preprocessor 1/1, model 8/10
## ✓ Fold1: preprocessor 1/1, model 8/10
## i Fold1: preprocessor 1/1, model 8/10 (predictions)
## i Fold1: preprocessor 1/1, model 9/10
## ✓ Fold1: preprocessor 1/1, model 9/10
## i Fold1: preprocessor 1/1, model 9/10 (predictions)
## i Fold1: preprocessor 1/1, model 10/10
## ✓ Fold1: preprocessor 1/1, model 10/10
## i Fold1: preprocessor 1/1, model 10/10 (predictions)
## i Fold2: preprocessor 1/1
## ✓ Fold2: preprocessor 1/1
## i Fold2: preprocessor 1/1, model 1/10
## ✓ Fold2: preprocessor 1/1, model 1/10
## i Fold2: preprocessor 1/1, model 1/10 (predictions)
## i Fold2: preprocessor 1/1, model 2/10
## ✓ Fold2: preprocessor 1/1, model 2/10
## i Fold2: preprocessor 1/1, model 2/10 (predictions)
## i Fold2: preprocessor 1/1, model 3/10
## ✓ Fold2: preprocessor 1/1, model 3/10
## i Fold2: preprocessor 1/1, model 3/10 (predictions)
## i Fold2: preprocessor 1/1, model 4/10
## ✓ Fold2: preprocessor 1/1, model 4/10
## i Fold2: preprocessor 1/1, model 4/10 (predictions)
## i Fold2: preprocessor 1/1, model 5/10
## ✓ Fold2: preprocessor 1/1, model 5/10
## i Fold2: preprocessor 1/1, model 5/10 (predictions)
## i Fold2: preprocessor 1/1, model 6/10
## ✓ Fold2: preprocessor 1/1, model 6/10
## i Fold2: preprocessor 1/1, model 6/10 (predictions)
## i Fold2: preprocessor 1/1, model 7/10
## ✓ Fold2: preprocessor 1/1, model 7/10
## i Fold2: preprocessor 1/1, model 7/10 (predictions)
## i Fold2: preprocessor 1/1, model 8/10
## ✓ Fold2: preprocessor 1/1, model 8/10
## i Fold2: preprocessor 1/1, model 8/10 (predictions)
## i Fold2: preprocessor 1/1, model 9/10
## ✓ Fold2: preprocessor 1/1, model 9/10
## i Fold2: preprocessor 1/1, model 9/10 (predictions)
## i Fold2: preprocessor 1/1, model 10/10
## ✓ Fold2: preprocessor 1/1, model 10/10
## i Fold2: preprocessor 1/1, model 10/10 (predictions)
## i Fold3: preprocessor 1/1
## ✓ Fold3: preprocessor 1/1
## i Fold3: preprocessor 1/1, model 1/10
## ✓ Fold3: preprocessor 1/1, model 1/10
## i Fold3: preprocessor 1/1, model 1/10 (predictions)
## i Fold3: preprocessor 1/1, model 2/10
## ✓ Fold3: preprocessor 1/1, model 2/10
## i Fold3: preprocessor 1/1, model 2/10 (predictions)
## i Fold3: preprocessor 1/1, model 3/10
## ✓ Fold3: preprocessor 1/1, model 3/10
## i Fold3: preprocessor 1/1, model 3/10 (predictions)
## i Fold3: preprocessor 1/1, model 4/10
## ✓ Fold3: preprocessor 1/1, model 4/10
## i Fold3: preprocessor 1/1, model 4/10 (predictions)
## i Fold3: preprocessor 1/1, model 5/10
## ✓ Fold3: preprocessor 1/1, model 5/10
## i Fold3: preprocessor 1/1, model 5/10 (predictions)
## i Fold3: preprocessor 1/1, model 6/10
## ✓ Fold3: preprocessor 1/1, model 6/10
## i Fold3: preprocessor 1/1, model 6/10 (predictions)
## i Fold3: preprocessor 1/1, model 7/10
## ✓ Fold3: preprocessor 1/1, model 7/10
## i Fold3: preprocessor 1/1, model 7/10 (predictions)
## i Fold3: preprocessor 1/1, model 8/10
## ✓ Fold3: preprocessor 1/1, model 8/10
## i Fold3: preprocessor 1/1, model 8/10 (predictions)
## i Fold3: preprocessor 1/1, model 9/10
## ✓ Fold3: preprocessor 1/1, model 9/10
## i Fold3: preprocessor 1/1, model 9/10 (predictions)
## i Fold3: preprocessor 1/1, model 10/10
## ✓ Fold3: preprocessor 1/1, model 10/10
## i Fold3: preprocessor 1/1, model 10/10 (predictions)
## i Fold4: preprocessor 1/1
## ✓ Fold4: preprocessor 1/1
## i Fold4: preprocessor 1/1, model 1/10
## ✓ Fold4: preprocessor 1/1, model 1/10
## i Fold4: preprocessor 1/1, model 1/10 (predictions)
## i Fold4: preprocessor 1/1, model 2/10
## ✓ Fold4: preprocessor 1/1, model 2/10
## i Fold4: preprocessor 1/1, model 2/10 (predictions)
## i Fold4: preprocessor 1/1, model 3/10
## ✓ Fold4: preprocessor 1/1, model 3/10
## i Fold4: preprocessor 1/1, model 3/10 (predictions)
## i Fold4: preprocessor 1/1, model 4/10
## ✓ Fold4: preprocessor 1/1, model 4/10
## i Fold4: preprocessor 1/1, model 4/10 (predictions)
## i Fold4: preprocessor 1/1, model 5/10
## ✓ Fold4: preprocessor 1/1, model 5/10
## i Fold4: preprocessor 1/1, model 5/10 (predictions)
## i Fold4: preprocessor 1/1, model 6/10
## ✓ Fold4: preprocessor 1/1, model 6/10
## i Fold4: preprocessor 1/1, model 6/10 (predictions)
## i Fold4: preprocessor 1/1, model 7/10
## ✓ Fold4: preprocessor 1/1, model 7/10
## i Fold4: preprocessor 1/1, model 7/10 (predictions)
## i Fold4: preprocessor 1/1, model 8/10
## ✓ Fold4: preprocessor 1/1, model 8/10
## i Fold4: preprocessor 1/1, model 8/10 (predictions)
## i Fold4: preprocessor 1/1, model 9/10
## ✓ Fold4: preprocessor 1/1, model 9/10
## i Fold4: preprocessor 1/1, model 9/10 (predictions)
## i Fold4: preprocessor 1/1, model 10/10
## ✓ Fold4: preprocessor 1/1, model 10/10
## i Fold4: preprocessor 1/1, model 10/10 (predictions)
## i Fold5: preprocessor 1/1
## ✓ Fold5: preprocessor 1/1
## i Fold5: preprocessor 1/1, model 1/10
## ✓ Fold5: preprocessor 1/1, model 1/10
## i Fold5: preprocessor 1/1, model 1/10 (predictions)
## i Fold5: preprocessor 1/1, model 2/10
## ✓ Fold5: preprocessor 1/1, model 2/10
## i Fold5: preprocessor 1/1, model 2/10 (predictions)
## i Fold5: preprocessor 1/1, model 3/10
## ✓ Fold5: preprocessor 1/1, model 3/10
## i Fold5: preprocessor 1/1, model 3/10 (predictions)
## i Fold5: preprocessor 1/1, model 4/10
## ✓ Fold5: preprocessor 1/1, model 4/10
## i Fold5: preprocessor 1/1, model 4/10 (predictions)
## i Fold5: preprocessor 1/1, model 5/10
## ✓ Fold5: preprocessor 1/1, model 5/10
## i Fold5: preprocessor 1/1, model 5/10 (predictions)
## i Fold5: preprocessor 1/1, model 6/10
## ✓ Fold5: preprocessor 1/1, model 6/10
## i Fold5: preprocessor 1/1, model 6/10 (predictions)
## i Fold5: preprocessor 1/1, model 7/10
## ✓ Fold5: preprocessor 1/1, model 7/10
## i Fold5: preprocessor 1/1, model 7/10 (predictions)
## i Fold5: preprocessor 1/1, model 8/10
## ✓ Fold5: preprocessor 1/1, model 8/10
## i Fold5: preprocessor 1/1, model 8/10 (predictions)
## i Fold5: preprocessor 1/1, model 9/10
## ✓ Fold5: preprocessor 1/1, model 9/10
## i Fold5: preprocessor 1/1, model 9/10 (predictions)
## i Fold5: preprocessor 1/1, model 10/10
## ✓ Fold5: preprocessor 1/1, model 10/10
## i Fold5: preprocessor 1/1, model 10/10 (predictions)
## ✔ Finished tuning Model Specification.
## ℹ Model Parameters:
## # A tibble: 1 × 11
##   trees min_n tree_depth learn_rate loss_reduction .metric .estimator  mean
##   <int> <int>      <int>      <dbl>          <dbl> <chr>   <chr>      <dbl>
## 1  1291    12         11      0.230       0.000130 rmse    standard    59.6
## # ℹ 3 more variables: n <int>, std_err <dbl>, .config <chr>
## ℹ Prediction Error Comparison:
## # A tibble: 11 × 3
##    .model_id      rmse .model_desc              
##    <chr>         <dbl> <chr>                    
##  1 1          343.     PROPHET                  
##  2 10        1110.     PROPHET W/ XGBOOST ERRORS
##  3 2          335.     GLMNET                   
##  4 3          787.     KERNLAB                  
##  5 4          320.     KERNLAB                  
##  6 5          358.     KKNN                     
##  7 6          405.     RANDOMFOREST             
##  8 7          369.     XGBOOST                  
##  9 8          385.     CUBIST                   
## 10 9          398.     NNAR(2,1,10)[5]          
## 11 ensemble     0.0115 ENSEMBLE (MODEL SPEC)    
## 
## ── Final Model ──────────────────────────────────────────────────
## ℹ Model Workflow:
## ══ Workflow [trained] ══════════════════════════════════════════════════════════
## Preprocessor: Recipe
## Model: boost_tree()
## 
## ── Preprocessor ────────────────────────────────────────────────────────────────
## 0 Recipe Steps
## 
## ── Model ───────────────────────────────────────────────────────────────────────
## ##### xgb.Booster
## raw: 2.1 Mb 
## call:
##   xgboost::xgb.train(params = list(eta = 0.229923571462474, max_depth = 11L, 
##     gamma = 0.000130024971167041, colsample_bytree = 1, colsample_bynode = 1, 
##     min_child_weight = 12L, subsample = 1), data = x$data, nrounds = 1291L, 
##     watchlist = x$watchlist, verbose = 0, nthread = 1, objective = "reg:squarederror")
## params (as set within xgb.train):
##   eta = "0.229923571462474", max_depth = "11", gamma = "0.000130024971167041", colsample_bytree = "1", colsample_bynode = "1", min_child_weight = "12", subsample = "1", nthread = "1", objective = "reg:squarederror", validate_parameters = "TRUE"
## xgb.attributes:
##   niter
## callbacks:
##   cb.evaluation.log()
## # of features: 10 
## niter: 1291
## nfeatures : 10 
## evaluation_log:
##     iter  training_rmse
##        1 10783.70555521
##        2  8320.57807311
## ---                    
##     1290     0.01154862
##     1291     0.01154862
## 
## 45.41 sec elapsed
modeltime_table(
    ensemble_fit_xgboost_tscv
) %>%
    modeltime_accuracy(testing(splits))
## # A tibble: 1 × 9
##   .model_id .model_desc                .type   mae  mape  mase smape  rmse   rsq
##       <int> <chr>                      <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1         1 ENSEMBLE (XGBOOST STACK):… Test   584.  3.87  17.3  3.99  744. 0.137

GLMNET Stack

set.seed(123)
ensemble_fit_glmnet_tscv <- submodels_resample %>%
    ensemble_model_spec(
        model_spec = linear_reg(
            penalty = tune(),
            mixture = tune()
        ) %>% 
            set_engine("glmnet"),
        # kfolds  = 10,
        grid    = 10,
        control = control_grid(
            verbose   = TRUE, 
            allow_par = TRUE
        )
    )
## ── Tuning Model Specification ───────────────────────────────────
## ℹ Performing 5-Fold Cross Validation.
## i Fold1: preprocessor 1/1
## ✓ Fold1: preprocessor 1/1
## i Fold1: preprocessor 1/1, model 1/10
## ✓ Fold1: preprocessor 1/1, model 1/10
## i Fold1: preprocessor 1/1, model 1/10 (predictions)
## i Fold1: preprocessor 1/1, model 2/10
## ✓ Fold1: preprocessor 1/1, model 2/10
## i Fold1: preprocessor 1/1, model 2/10 (predictions)
## i Fold1: preprocessor 1/1, model 3/10
## ✓ Fold1: preprocessor 1/1, model 3/10
## i Fold1: preprocessor 1/1, model 3/10 (predictions)
## i Fold1: preprocessor 1/1, model 4/10
## ✓ Fold1: preprocessor 1/1, model 4/10
## i Fold1: preprocessor 1/1, model 4/10 (predictions)
## i Fold1: preprocessor 1/1, model 5/10
## ✓ Fold1: preprocessor 1/1, model 5/10
## i Fold1: preprocessor 1/1, model 5/10 (predictions)
## i Fold1: preprocessor 1/1, model 6/10
## ✓ Fold1: preprocessor 1/1, model 6/10
## i Fold1: preprocessor 1/1, model 6/10 (predictions)
## i Fold1: preprocessor 1/1, model 7/10
## ✓ Fold1: preprocessor 1/1, model 7/10
## i Fold1: preprocessor 1/1, model 7/10 (predictions)
## i Fold1: preprocessor 1/1, model 8/10
## ✓ Fold1: preprocessor 1/1, model 8/10
## i Fold1: preprocessor 1/1, model 8/10 (predictions)
## i Fold1: preprocessor 1/1, model 9/10
## ✓ Fold1: preprocessor 1/1, model 9/10
## i Fold1: preprocessor 1/1, model 9/10 (predictions)
## i Fold1: preprocessor 1/1, model 10/10
## ✓ Fold1: preprocessor 1/1, model 10/10
## i Fold1: preprocessor 1/1, model 10/10 (predictions)
## i Fold2: preprocessor 1/1
## ✓ Fold2: preprocessor 1/1
## i Fold2: preprocessor 1/1, model 1/10
## ✓ Fold2: preprocessor 1/1, model 1/10
## i Fold2: preprocessor 1/1, model 1/10 (predictions)
## i Fold2: preprocessor 1/1, model 2/10
## ✓ Fold2: preprocessor 1/1, model 2/10
## i Fold2: preprocessor 1/1, model 2/10 (predictions)
## i Fold2: preprocessor 1/1, model 3/10
## ✓ Fold2: preprocessor 1/1, model 3/10
## i Fold2: preprocessor 1/1, model 3/10 (predictions)
## i Fold2: preprocessor 1/1, model 4/10
## ✓ Fold2: preprocessor 1/1, model 4/10
## i Fold2: preprocessor 1/1, model 4/10 (predictions)
## i Fold2: preprocessor 1/1, model 5/10
## ✓ Fold2: preprocessor 1/1, model 5/10
## i Fold2: preprocessor 1/1, model 5/10 (predictions)
## i Fold2: preprocessor 1/1, model 6/10
## ✓ Fold2: preprocessor 1/1, model 6/10
## i Fold2: preprocessor 1/1, model 6/10 (predictions)
## i Fold2: preprocessor 1/1, model 7/10
## ✓ Fold2: preprocessor 1/1, model 7/10
## i Fold2: preprocessor 1/1, model 7/10 (predictions)
## i Fold2: preprocessor 1/1, model 8/10
## ✓ Fold2: preprocessor 1/1, model 8/10
## i Fold2: preprocessor 1/1, model 8/10 (predictions)
## i Fold2: preprocessor 1/1, model 9/10
## ✓ Fold2: preprocessor 1/1, model 9/10
## i Fold2: preprocessor 1/1, model 9/10 (predictions)
## i Fold2: preprocessor 1/1, model 10/10
## ✓ Fold2: preprocessor 1/1, model 10/10
## i Fold2: preprocessor 1/1, model 10/10 (predictions)
## i Fold3: preprocessor 1/1
## ✓ Fold3: preprocessor 1/1
## i Fold3: preprocessor 1/1, model 1/10
## ✓ Fold3: preprocessor 1/1, model 1/10
## i Fold3: preprocessor 1/1, model 1/10 (predictions)
## i Fold3: preprocessor 1/1, model 2/10
## ✓ Fold3: preprocessor 1/1, model 2/10
## i Fold3: preprocessor 1/1, model 2/10 (predictions)
## i Fold3: preprocessor 1/1, model 3/10
## ✓ Fold3: preprocessor 1/1, model 3/10
## i Fold3: preprocessor 1/1, model 3/10 (predictions)
## i Fold3: preprocessor 1/1, model 4/10
## ✓ Fold3: preprocessor 1/1, model 4/10
## i Fold3: preprocessor 1/1, model 4/10 (predictions)
## i Fold3: preprocessor 1/1, model 5/10
## ✓ Fold3: preprocessor 1/1, model 5/10
## i Fold3: preprocessor 1/1, model 5/10 (predictions)
## i Fold3: preprocessor 1/1, model 6/10
## ✓ Fold3: preprocessor 1/1, model 6/10
## i Fold3: preprocessor 1/1, model 6/10 (predictions)
## i Fold3: preprocessor 1/1, model 7/10
## ✓ Fold3: preprocessor 1/1, model 7/10
## i Fold3: preprocessor 1/1, model 7/10 (predictions)
## i Fold3: preprocessor 1/1, model 8/10
## ✓ Fold3: preprocessor 1/1, model 8/10
## i Fold3: preprocessor 1/1, model 8/10 (predictions)
## i Fold3: preprocessor 1/1, model 9/10
## ✓ Fold3: preprocessor 1/1, model 9/10
## i Fold3: preprocessor 1/1, model 9/10 (predictions)
## i Fold3: preprocessor 1/1, model 10/10
## ✓ Fold3: preprocessor 1/1, model 10/10
## i Fold3: preprocessor 1/1, model 10/10 (predictions)
## i Fold4: preprocessor 1/1
## ✓ Fold4: preprocessor 1/1
## i Fold4: preprocessor 1/1, model 1/10
## ✓ Fold4: preprocessor 1/1, model 1/10
## i Fold4: preprocessor 1/1, model 1/10 (predictions)
## i Fold4: preprocessor 1/1, model 2/10
## ✓ Fold4: preprocessor 1/1, model 2/10
## i Fold4: preprocessor 1/1, model 2/10 (predictions)
## i Fold4: preprocessor 1/1, model 3/10
## ✓ Fold4: preprocessor 1/1, model 3/10
## i Fold4: preprocessor 1/1, model 3/10 (predictions)
## i Fold4: preprocessor 1/1, model 4/10
## ✓ Fold4: preprocessor 1/1, model 4/10
## i Fold4: preprocessor 1/1, model 4/10 (predictions)
## i Fold4: preprocessor 1/1, model 5/10
## ✓ Fold4: preprocessor 1/1, model 5/10
## i Fold4: preprocessor 1/1, model 5/10 (predictions)
## i Fold4: preprocessor 1/1, model 6/10
## ✓ Fold4: preprocessor 1/1, model 6/10
## i Fold4: preprocessor 1/1, model 6/10 (predictions)
## i Fold4: preprocessor 1/1, model 7/10
## ✓ Fold4: preprocessor 1/1, model 7/10
## i Fold4: preprocessor 1/1, model 7/10 (predictions)
## i Fold4: preprocessor 1/1, model 8/10
## ✓ Fold4: preprocessor 1/1, model 8/10
## i Fold4: preprocessor 1/1, model 8/10 (predictions)
## i Fold4: preprocessor 1/1, model 9/10
## ✓ Fold4: preprocessor 1/1, model 9/10
## i Fold4: preprocessor 1/1, model 9/10 (predictions)
## i Fold4: preprocessor 1/1, model 10/10
## ✓ Fold4: preprocessor 1/1, model 10/10
## i Fold4: preprocessor 1/1, model 10/10 (predictions)
## i Fold5: preprocessor 1/1
## ✓ Fold5: preprocessor 1/1
## i Fold5: preprocessor 1/1, model 1/10
## ✓ Fold5: preprocessor 1/1, model 1/10
## i Fold5: preprocessor 1/1, model 1/10 (predictions)
## i Fold5: preprocessor 1/1, model 2/10
## ✓ Fold5: preprocessor 1/1, model 2/10
## i Fold5: preprocessor 1/1, model 2/10 (predictions)
## i Fold5: preprocessor 1/1, model 3/10
## ✓ Fold5: preprocessor 1/1, model 3/10
## i Fold5: preprocessor 1/1, model 3/10 (predictions)
## i Fold5: preprocessor 1/1, model 4/10
## ✓ Fold5: preprocessor 1/1, model 4/10
## i Fold5: preprocessor 1/1, model 4/10 (predictions)
## i Fold5: preprocessor 1/1, model 5/10
## ✓ Fold5: preprocessor 1/1, model 5/10
## i Fold5: preprocessor 1/1, model 5/10 (predictions)
## i Fold5: preprocessor 1/1, model 6/10
## ✓ Fold5: preprocessor 1/1, model 6/10
## i Fold5: preprocessor 1/1, model 6/10 (predictions)
## i Fold5: preprocessor 1/1, model 7/10
## ✓ Fold5: preprocessor 1/1, model 7/10
## i Fold5: preprocessor 1/1, model 7/10 (predictions)
## i Fold5: preprocessor 1/1, model 8/10
## ✓ Fold5: preprocessor 1/1, model 8/10
## i Fold5: preprocessor 1/1, model 8/10 (predictions)
## i Fold5: preprocessor 1/1, model 9/10
## ✓ Fold5: preprocessor 1/1, model 9/10
## i Fold5: preprocessor 1/1, model 9/10 (predictions)
## i Fold5: preprocessor 1/1, model 10/10
## ✓ Fold5: preprocessor 1/1, model 10/10
## i Fold5: preprocessor 1/1, model 10/10 (predictions)
## ✔ Finished tuning Model Specification.
## ℹ Model Parameters:
## # A tibble: 1 × 8
##   penalty mixture .metric .estimator  mean     n std_err .config              
##     <dbl>   <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>                
## 1   0.852  0.0524 rmse    standard    130.     5    3.94 Preprocessor1_Model01
## ℹ Prediction Error Comparison:
## # A tibble: 11 × 3
##    .model_id  rmse .model_desc              
##    <chr>     <dbl> <chr>                    
##  1 1          343. PROPHET                  
##  2 10        1110. PROPHET W/ XGBOOST ERRORS
##  3 2          335. GLMNET                   
##  4 3          787. KERNLAB                  
##  5 4          320. KERNLAB                  
##  6 5          358. KKNN                     
##  7 6          405. RANDOMFOREST             
##  8 7          369. XGBOOST                  
##  9 8          385. CUBIST                   
## 10 9          398. NNAR(2,1,10)[5]          
## 11 ensemble   124. ENSEMBLE (MODEL SPEC)    
## 
## ── Final Model ──────────────────────────────────────────────────
## ℹ Model Workflow:
## ══ Workflow [trained] ══════════════════════════════════════════════════════════
## Preprocessor: Recipe
## Model: linear_reg()
## 
## ── Preprocessor ────────────────────────────────────────────────────────────────
## 0 Recipe Steps
## 
## ── Model ───────────────────────────────────────────────────────────────────────
## 
## Call:  glmnet::glmnet(x = maybe_matrix(x), y = y, family = "gaussian",      alpha = ~0.052367567793699) 
## 
##     Df  %Dev  Lambda
## 1    0  0.00 11310.0
## 2    6  2.39 10300.0
## 3    8  6.88  9387.0
## 4    8 11.68  8553.0
## 5    8 16.44  7793.0
## 6    8 21.13  7101.0
## 7    8 25.72  6470.0
## 8    8 30.18  5895.0
## 9    8 34.49  5372.0
## 10   8 38.64  4894.0
## 11   8 42.60  4460.0
## 12   8 46.36  4063.0
## 13   8 49.90  3702.0
## 14   8 53.22  3374.0
## 15   8 56.32  3074.0
## 16   8 59.19  2801.0
## 17   8 61.83  2552.0
## 18   8 64.26  2325.0
## 19   8 66.48  2119.0
## 20   8 68.49  1930.0
## 21   8 70.32  1759.0
## 22   8 71.98  1603.0
## 23   8 73.47  1460.0
## 24   8 74.81  1331.0
## 25   8 76.02  1212.0
## 26   9 77.13  1105.0
## 27   9 78.42  1007.0
## 28  10 79.64   917.1
## 29  10 80.80   835.7
## 30  10 81.89   761.4
## 31  10 82.91   693.8
## 32  10 83.87   632.1
## 33  10 84.76   576.0
## 34  10 85.59   524.8
## 35  10 86.38   478.2
## 36  10 87.11   435.7
## 37  10 87.79   397.0
## 38  10 88.43   361.7
## 39  10 89.03   329.6
## 40  10 89.58   300.3
## 41  10 90.10   273.6
## 42  10 90.57   249.3
## 43  10 91.02   227.2
## 44  10 91.43   207.0
## 45  10 91.81   188.6
## 46  10 92.15   171.9
## 
## ...
## and 54 more lines.
## 
## 5.27 sec elapsed
modeltime_table(
    ensemble_fit_glmnet_tscv
) %>%
    modeltime_accuracy(testing(splits))
## # A tibble: 1 × 9
##   .model_id .model_desc                .type   mae  mape  mase smape  rmse   rsq
##       <int> <chr>                      <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1         1 ENSEMBLE (GLMNET STACK): … Test   374.  2.57  11.1  2.53  420. 0.906

RANDOM FOREST Stack

set.seed(123)
ensemble_fit_ranger_tscv <- submodels_resample %>%
    ensemble_model_spec(
        model_spec = rand_forest(
            mode = "regression",
            trees = tune(),
            min_n = tune()
        )  %>%
            set_engine("ranger"),
        # kfolds  = 10,
        grid    = 10,
        control = control_grid(verbose = TRUE, allow_par = TRUE)
    )
## ── Tuning Model Specification ───────────────────────────────────
## ℹ Performing 5-Fold Cross Validation.
## i Fold1: preprocessor 1/1
## ✓ Fold1: preprocessor 1/1
## i Fold1: preprocessor 1/1, model 1/10
## ✓ Fold1: preprocessor 1/1, model 1/10
## i Fold1: preprocessor 1/1, model 1/10 (predictions)
## i Fold1: preprocessor 1/1, model 2/10
## ✓ Fold1: preprocessor 1/1, model 2/10
## i Fold1: preprocessor 1/1, model 2/10 (predictions)
## i Fold1: preprocessor 1/1, model 3/10
## ✓ Fold1: preprocessor 1/1, model 3/10
## i Fold1: preprocessor 1/1, model 3/10 (predictions)
## i Fold1: preprocessor 1/1, model 4/10
## ✓ Fold1: preprocessor 1/1, model 4/10
## i Fold1: preprocessor 1/1, model 4/10 (predictions)
## i Fold1: preprocessor 1/1, model 5/10
## ✓ Fold1: preprocessor 1/1, model 5/10
## i Fold1: preprocessor 1/1, model 5/10 (predictions)
## i Fold1: preprocessor 1/1, model 6/10
## ✓ Fold1: preprocessor 1/1, model 6/10
## i Fold1: preprocessor 1/1, model 6/10 (predictions)
## i Fold1: preprocessor 1/1, model 7/10
## ✓ Fold1: preprocessor 1/1, model 7/10
## i Fold1: preprocessor 1/1, model 7/10 (predictions)
## i Fold1: preprocessor 1/1, model 8/10
## ✓ Fold1: preprocessor 1/1, model 8/10
## i Fold1: preprocessor 1/1, model 8/10 (predictions)
## i Fold1: preprocessor 1/1, model 9/10
## ✓ Fold1: preprocessor 1/1, model 9/10
## i Fold1: preprocessor 1/1, model 9/10 (predictions)
## i Fold1: preprocessor 1/1, model 10/10
## ✓ Fold1: preprocessor 1/1, model 10/10
## i Fold1: preprocessor 1/1, model 10/10 (predictions)
## i Fold2: preprocessor 1/1
## ✓ Fold2: preprocessor 1/1
## i Fold2: preprocessor 1/1, model 1/10
## ✓ Fold2: preprocessor 1/1, model 1/10
## i Fold2: preprocessor 1/1, model 1/10 (predictions)
## i Fold2: preprocessor 1/1, model 2/10
## ✓ Fold2: preprocessor 1/1, model 2/10
## i Fold2: preprocessor 1/1, model 2/10 (predictions)
## i Fold2: preprocessor 1/1, model 3/10
## ✓ Fold2: preprocessor 1/1, model 3/10
## i Fold2: preprocessor 1/1, model 3/10 (predictions)
## i Fold2: preprocessor 1/1, model 4/10
## ✓ Fold2: preprocessor 1/1, model 4/10
## i Fold2: preprocessor 1/1, model 4/10 (predictions)
## i Fold2: preprocessor 1/1, model 5/10
## ✓ Fold2: preprocessor 1/1, model 5/10
## i Fold2: preprocessor 1/1, model 5/10 (predictions)
## i Fold2: preprocessor 1/1, model 6/10
## ✓ Fold2: preprocessor 1/1, model 6/10
## i Fold2: preprocessor 1/1, model 6/10 (predictions)
## i Fold2: preprocessor 1/1, model 7/10
## ✓ Fold2: preprocessor 1/1, model 7/10
## i Fold2: preprocessor 1/1, model 7/10 (predictions)
## i Fold2: preprocessor 1/1, model 8/10
## ✓ Fold2: preprocessor 1/1, model 8/10
## i Fold2: preprocessor 1/1, model 8/10 (predictions)
## i Fold2: preprocessor 1/1, model 9/10
## ✓ Fold2: preprocessor 1/1, model 9/10
## i Fold2: preprocessor 1/1, model 9/10 (predictions)
## i Fold2: preprocessor 1/1, model 10/10
## ✓ Fold2: preprocessor 1/1, model 10/10
## i Fold2: preprocessor 1/1, model 10/10 (predictions)
## i Fold3: preprocessor 1/1
## ✓ Fold3: preprocessor 1/1
## i Fold3: preprocessor 1/1, model 1/10
## ✓ Fold3: preprocessor 1/1, model 1/10
## i Fold3: preprocessor 1/1, model 1/10 (predictions)
## i Fold3: preprocessor 1/1, model 2/10
## ✓ Fold3: preprocessor 1/1, model 2/10
## i Fold3: preprocessor 1/1, model 2/10 (predictions)
## i Fold3: preprocessor 1/1, model 3/10
## ✓ Fold3: preprocessor 1/1, model 3/10
## i Fold3: preprocessor 1/1, model 3/10 (predictions)
## i Fold3: preprocessor 1/1, model 4/10
## ✓ Fold3: preprocessor 1/1, model 4/10
## i Fold3: preprocessor 1/1, model 4/10 (predictions)
## i Fold3: preprocessor 1/1, model 5/10
## ✓ Fold3: preprocessor 1/1, model 5/10
## i Fold3: preprocessor 1/1, model 5/10 (predictions)
## i Fold3: preprocessor 1/1, model 6/10
## ✓ Fold3: preprocessor 1/1, model 6/10
## i Fold3: preprocessor 1/1, model 6/10 (predictions)
## i Fold3: preprocessor 1/1, model 7/10
## ✓ Fold3: preprocessor 1/1, model 7/10
## i Fold3: preprocessor 1/1, model 7/10 (predictions)
## i Fold3: preprocessor 1/1, model 8/10
## ✓ Fold3: preprocessor 1/1, model 8/10
## i Fold3: preprocessor 1/1, model 8/10 (predictions)
## i Fold3: preprocessor 1/1, model 9/10
## ✓ Fold3: preprocessor 1/1, model 9/10
## i Fold3: preprocessor 1/1, model 9/10 (predictions)
## i Fold3: preprocessor 1/1, model 10/10
## ✓ Fold3: preprocessor 1/1, model 10/10
## i Fold3: preprocessor 1/1, model 10/10 (predictions)
## i Fold4: preprocessor 1/1
## ✓ Fold4: preprocessor 1/1
## i Fold4: preprocessor 1/1, model 1/10
## ✓ Fold4: preprocessor 1/1, model 1/10
## i Fold4: preprocessor 1/1, model 1/10 (predictions)
## i Fold4: preprocessor 1/1, model 2/10
## ✓ Fold4: preprocessor 1/1, model 2/10
## i Fold4: preprocessor 1/1, model 2/10 (predictions)
## i Fold4: preprocessor 1/1, model 3/10
## ✓ Fold4: preprocessor 1/1, model 3/10
## i Fold4: preprocessor 1/1, model 3/10 (predictions)
## i Fold4: preprocessor 1/1, model 4/10
## ✓ Fold4: preprocessor 1/1, model 4/10
## i Fold4: preprocessor 1/1, model 4/10 (predictions)
## i Fold4: preprocessor 1/1, model 5/10
## ✓ Fold4: preprocessor 1/1, model 5/10
## i Fold4: preprocessor 1/1, model 5/10 (predictions)
## i Fold4: preprocessor 1/1, model 6/10
## ✓ Fold4: preprocessor 1/1, model 6/10
## i Fold4: preprocessor 1/1, model 6/10 (predictions)
## i Fold4: preprocessor 1/1, model 7/10
## ✓ Fold4: preprocessor 1/1, model 7/10
## i Fold4: preprocessor 1/1, model 7/10 (predictions)
## i Fold4: preprocessor 1/1, model 8/10
## ✓ Fold4: preprocessor 1/1, model 8/10
## i Fold4: preprocessor 1/1, model 8/10 (predictions)
## i Fold4: preprocessor 1/1, model 9/10
## ✓ Fold4: preprocessor 1/1, model 9/10
## i Fold4: preprocessor 1/1, model 9/10 (predictions)
## i Fold4: preprocessor 1/1, model 10/10
## ✓ Fold4: preprocessor 1/1, model 10/10
## i Fold4: preprocessor 1/1, model 10/10 (predictions)
## i Fold5: preprocessor 1/1
## ✓ Fold5: preprocessor 1/1
## i Fold5: preprocessor 1/1, model 1/10
## ✓ Fold5: preprocessor 1/1, model 1/10
## i Fold5: preprocessor 1/1, model 1/10 (predictions)
## i Fold5: preprocessor 1/1, model 2/10
## ✓ Fold5: preprocessor 1/1, model 2/10
## i Fold5: preprocessor 1/1, model 2/10 (predictions)
## i Fold5: preprocessor 1/1, model 3/10
## ✓ Fold5: preprocessor 1/1, model 3/10
## i Fold5: preprocessor 1/1, model 3/10 (predictions)
## i Fold5: preprocessor 1/1, model 4/10
## ✓ Fold5: preprocessor 1/1, model 4/10
## i Fold5: preprocessor 1/1, model 4/10 (predictions)
## i Fold5: preprocessor 1/1, model 5/10
## ✓ Fold5: preprocessor 1/1, model 5/10
## i Fold5: preprocessor 1/1, model 5/10 (predictions)
## i Fold5: preprocessor 1/1, model 6/10
## ✓ Fold5: preprocessor 1/1, model 6/10
## i Fold5: preprocessor 1/1, model 6/10 (predictions)
## i Fold5: preprocessor 1/1, model 7/10
## ✓ Fold5: preprocessor 1/1, model 7/10
## i Fold5: preprocessor 1/1, model 7/10 (predictions)
## i Fold5: preprocessor 1/1, model 8/10
## ✓ Fold5: preprocessor 1/1, model 8/10
## i Fold5: preprocessor 1/1, model 8/10 (predictions)
## i Fold5: preprocessor 1/1, model 9/10
## ✓ Fold5: preprocessor 1/1, model 9/10
## i Fold5: preprocessor 1/1, model 9/10 (predictions)
## i Fold5: preprocessor 1/1, model 10/10
## ✓ Fold5: preprocessor 1/1, model 10/10
## i Fold5: preprocessor 1/1, model 10/10 (predictions)
## ✔ Finished tuning Model Specification.
## ℹ Model Parameters:
## # A tibble: 1 × 8
##   trees min_n .metric .estimator  mean     n std_err .config              
##   <int> <int> <chr>   <chr>      <dbl> <int>   <dbl> <chr>                
## 1  1986     2 rmse    standard    58.6     5    2.93 Preprocessor1_Model09
## ℹ Prediction Error Comparison:
## # A tibble: 11 × 3
##    .model_id   rmse .model_desc              
##    <chr>      <dbl> <chr>                    
##  1 1          343.  PROPHET                  
##  2 10        1110.  PROPHET W/ XGBOOST ERRORS
##  3 2          335.  GLMNET                   
##  4 3          787.  KERNLAB                  
##  5 4          320.  KERNLAB                  
##  6 5          358.  KKNN                     
##  7 6          405.  RANDOMFOREST             
##  8 7          369.  XGBOOST                  
##  9 8          385.  CUBIST                   
## 10 9          398.  NNAR(2,1,10)[5]          
## 11 ensemble    21.0 ENSEMBLE (MODEL SPEC)    
## 
## ── Final Model ──────────────────────────────────────────────────
## ℹ Model Workflow:
## ══ Workflow [trained] ══════════════════════════════════════════════════════════
## Preprocessor: Recipe
## Model: rand_forest()
## 
## ── Preprocessor ────────────────────────────────────────────────────────────────
## 0 Recipe Steps
## 
## ── Model ───────────────────────────────────────────────────────────────────────
## Ranger result
## 
## Call:
##  ranger::ranger(x = maybe_data_frame(x), y = y, num.trees = ~1986L,      min.node.size = min_rows(~2L, x), num.threads = 1, verbose = FALSE,      seed = sample.int(10^5, 1)) 
## 
## Type:                             Regression 
## Number of trees:                  1986 
## Sample size:                      325 
## Number of independent variables:  10 
## Mtry:                             3 
## Target node size:                 2 
## Variable importance mode:         none 
## Splitrule:                        variance 
## OOB prediction error (MSE):       3104.022 
## R squared (OOB):                  0.9927881 
## 
## 15.72 sec elapsed
modeltime_table(
    ensemble_fit_ranger_tscv
) %>%
    modeltime_accuracy(testing(splits))
## # A tibble: 1 × 9
##   .model_id .model_desc               .type   mae  mape  mase smape  rmse    rsq
##       <int> <chr>                     <chr> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
## 1         1 ENSEMBLE (RANGER STACK):… Test   541.  3.58  16.0  3.68  695. 0.0482

Multiple Stack

model_stack_level_2_accuracy_tbl <- modeltime_table(
    ensemble_fit_glmnet_tscv,
  ensemble_fit_xgboost_tscv,
  ensemble_fit_cubist_tscv,
  ensemble_fit_ranger_tscv
) %>%
    modeltime_accuracy(testing(splits))

model_stack_level_2_accuracy_tbl %>% write_rds("model_stack_level_2_accuracy_tbl")

model_stack_level_2_accuracy_tbl %>% table_modeltime_accuracy()
model_stack_level_3_tbl <- modeltime_table(
  ensemble_fit_glmnet_tscv,
  ensemble_fit_xgboost_tscv
) %>%
    ensemble_weighted(loadings = c(1,2)) %>%
    modeltime_table()

model_stack_level_3_tbl %>% write_rds("model_stack_level_3_tbl")

model_stack_level_3_tbl %>%
    modeltime_accuracy(testing(splits)) # RMSE 1074
## # A tibble: 1 × 9
##   .model_id .model_desc                .type   mae  mape  mase smape  rmse   rsq
##       <int> <chr>                      <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1         1 ENSEMBLE (WEIGHTED): 2 MO… Test   362.  2.40  10.7  2.44  467. 0.599

Calibration

calibration_ensemble_tbl <- model_stack_level_3_tbl %>% 
    modeltime_calibrate(testing(splits))

calibration_ensemble_tbl
## # Modeltime Table
## # A tibble: 1 × 5
##   .model_id .model         .model_desc                   .type .calibration_data
##       <int> <list>         <chr>                         <chr> <list>           
## 1         1 <ensemble [2]> ENSEMBLE (WEIGHTED): 2 MODELS Test  <tibble>
calibration_ensemble_tbl %>% write_rds("calibration_ensemble_tbl")

calibration_ensemble_tbl %>% 
  modeltime_accuracy()
## # A tibble: 1 × 9
##   .model_id .model_desc                .type   mae  mape  mase smape  rmse   rsq
##       <int> <chr>                      <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1         1 ENSEMBLE (WEIGHTED): 2 MO… Test   362.  2.40  10.7  2.44  467. 0.599

Test Forecast

forecast_test_tbl <- calibration_ensemble_tbl %>%
    modeltime_forecast(
        new_data    = testing(splits),
        actual_data = rupiah
    )

forecast_test_tbl %>%
    plot_modeltime_forecast()

Refit Forecast

set.seed(123)
refit_ensemble_superlearner_tbl_no_resample <- calibration_ensemble_tbl %>% 
  modeltime_refit(data = rupiah)
## frequency = 5 observations per 1 week
## frequency = 5 observations per 1 week
## Warning: There was 1 warning in `dplyr::mutate()`.
## ℹ In argument: `.model = purrr::map2(...)`.
## Caused by warning:
## ! There were 4 warnings in `dplyr::mutate()`.
## The first warning was:
## ℹ In argument: `.model = purrr::map2(...)`.
## Caused by warning in `mdl_time_refit.mdl_time_ensemble_model_spec()`:
## ! 'resamples' not provided during refitting. Submodels will be refit, but the meta-learner will *not* be refit. You can provide 'resamples' via `modeltime_refit(object, data, resamples, control)`. Proceeding by refitting the submodels only.
## ℹ Run ]8;;ide:run:dplyr::last_dplyr_warnings()dplyr::last_dplyr_warnings()]8;; to see the 3 remaining warnings.
set.seed(123)
refit_ensemble_superlearner_tbl_resample <- calibration_ensemble_tbl %>% 
  modeltime_refit(data = rupiah, 
                  resample = resamples_tscv_no_acum %>% drop_na())
## frequency = 5 observations per 1 week
## frequency = 5 observations per 1 week
## Warning: There was 1 warning in `dplyr::mutate()`.
## ℹ In argument: `.model = purrr::map2(...)`.
## Caused by warning:
## ! There were 4 warnings in `dplyr::mutate()`.
## The first warning was:
## ℹ In argument: `.model = purrr::map2(...)`.
## Caused by warning in `mdl_time_refit.mdl_time_ensemble_model_spec()`:
## ! 'resamples' not provided during refitting. Submodels will be refit, but the meta-learner will *not* be refit. You can provide 'resamples' via `modeltime_refit(object, data, resamples, control)`. Proceeding by refitting the submodels only.
## ℹ Run ]8;;ide:run:dplyr::last_dplyr_warnings()dplyr::last_dplyr_warnings()]8;; to see the 3 remaining warnings.
forecast_superlearner_tbl_no_resample <- refit_ensemble_superlearner_tbl_no_resample %>%
    modeltime_forecast(h = "1 year", actual_data = rupiah)

forecast_superlearner_tbl_no_resample %>%
    plot_modeltime_forecast()
forecast_superlearner_tbl_resample <- refit_ensemble_superlearner_tbl_resample %>%
    modeltime_forecast(h = "1 year", actual_data = rupiah)
    
forecast_superlearner_tbl_resample %>%
    plot_modeltime_forecast()