In this dataset, we’ll explore records of major storm data for the past 60 years (1950 - 2011) in United States to understand its impact to human, in general. The dataset that is used came from U.S. National Oceanic and Atmospheric Administration’s (NOAA). You can download this dataset here
Generally, we’ll explore fatalaties, injuries and property damages caused by major storms and weather events.
R is used as the tool to process this dataset.
library(R.utils)
library(dplyr)
Alternatively, data can be loaded in R using the following scripts
# Download file from URL
if (!file.exists("c:/coursera/storm.bz2")) {
download.file("https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2", "c:/coursera/storm.bz2")
}
# Unzip file
if (!file.exists("c:/coursera/storm.csv")) {
bunzip2("c:/coursera/storm.csv.bz2", "c:/coursera/storm.csv", remove = FALSE)
}
Load data into a data frame.
# Load data into R
data <- read.csv("c:/coursera/storm.csv")
Take a look at the structure of the dataset.
# Take a look at the data
str(data)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
## $ BGN_TIME : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
## $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
## $ STATE : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ EVTYPE : Factor w/ 985 levels " HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : Factor w/ 35 levels ""," N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_LOCATI: Factor w/ 54429 levels "","- 1 N Albion",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_DATE : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_TIME : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_LOCATI: Factor w/ 34506 levels "","- .5 NNW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ WFO : Factor w/ 542 levels ""," CI","$AC",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ ZONENAMES : Factor w/ 25112 levels ""," "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : Factor w/ 436774 levels "","-2 at Deer Park\n",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
head(data)
## STATE__ BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1 1 4/18/1950 0:00:00 0130 CST 97 MOBILE AL
## 2 1 4/18/1950 0:00:00 0145 CST 3 BALDWIN AL
## 3 1 2/20/1951 0:00:00 1600 CST 57 FAYETTE AL
## 4 1 6/8/1951 0:00:00 0900 CST 89 MADISON AL
## 5 1 11/15/1951 0:00:00 1500 CST 43 CULLMAN AL
## 6 1 11/15/1951 0:00:00 2000 CST 77 LAUDERDALE AL
## EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO 0 0
## 2 TORNADO 0 0
## 3 TORNADO 0 0
## 4 TORNADO 0 0
## 5 TORNADO 0 0
## 6 TORNADO 0 0
## COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1 NA 0 14.0 100 3 0 0
## 2 NA 0 2.0 150 2 0 0
## 3 NA 0 0.1 123 2 0 0
## 4 NA 0 0.0 100 2 0 0
## 5 NA 0 0.0 150 2 0 0
## 6 NA 0 1.5 177 2 0 0
## INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1 15 25.0 K 0
## 2 0 2.5 K 0
## 3 2 25.0 K 0
## 4 2 2.5 K 0
## 5 2 2.5 K 0
## 6 6 2.5 K 0
## LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1 3040 8812 3051 8806 1
## 2 3042 8755 0 0 2
## 3 3340 8742 0 0 3
## 4 3458 8626 0 0 4
## 5 3412 8642 0 0 5
## 6 3450 8748 0 0 6
# Subset the data
# Gather only the necessary columns
ReqCols <- c("EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP")
storm <- data[ReqCols]
# Remove original dataset to save memory
rm(data)
The exponent will be processed and combined with property damage value.
# Explore exponent values
unique(storm$PROPDMGEXP)
## [1] K M B m + 0 5 6 ? 4 2 3 h 7 H - 1 8
## Levels: - ? + 0 1 2 3 4 5 6 7 8 B h H K m M
# Sorting out property exponent data
storm$propexp[storm$PROPDMGEXP == "B"] <- 1e+09
storm$propexp[storm$PROPDMGEXP == "M"] <- 1e+06
storm$propexp[storm$PROPDMGEXP == "m"] <- 1e+06
storm$propexp[storm$PROPDMGEXP == "K"] <- 1000
storm$propexp[storm$PROPDMGEXP == "H"] <- 100
storm$propexp[storm$PROPDMGEXP == "h"] <- 100
storm$propexp[storm$PROPDMGEXP == ""] <- 1
storm$propexp[storm$PROPDMGEXP == "8"] <- 1e+08
storm$propexp[storm$PROPDMGEXP == "7"] <- 1e+07
storm$propexp[storm$PROPDMGEXP == "6"] <- 1e+06
storm$propexp[storm$PROPDMGEXP == "5"] <- 1e+05
storm$propexp[storm$PROPDMGEXP == "4"] <- 1e+04
storm$propexp[storm$PROPDMGEXP == "3"] <- 1000
storm$propexp[storm$PROPDMGEXP == "2"] <- 100
storm$propexp[storm$PROPDMGEXP == "1"] <- 10
storm$propexp[storm$PROPDMGEXP == "0"] <- 1
# Exclude invalid entries by assigning 0
storm$propexp[storm$PROPDMGEXP == "+"] <- 0
storm$propexp[storm$PROPDMGEXP == "-"] <- 0
storm$propexp[storm$PROPDMGEXP == "?"] <- 0
# Calculate property damage value
storm$PROPDMGvalue <- storm$PROPDMG * storm$propexp
The exponent will be processed and combined with crop damage value.
# Explore exponent values
unique(storm$CROPDMGEXP)
## [1] M K m B ? 0 k 2
## Levels: ? 0 2 B k K m M
# Sorting out property exponent data
storm$cropexp[storm$CROPDMGEXP == "B"] <- 1e+09
storm$cropexp[storm$CROPDMGEXP == "M"] <- 1e+06
storm$cropexp[storm$CROPDMGEXP == "m"] <- 1e+06
storm$cropexp[storm$CROPDMGEXP == "K"] <- 1000
storm$cropexp[storm$CROPDMGEXP == "k"] <- 1000
storm$cropexp[storm$CROPDMGEXP == ""] <- 1
storm$cropexp[storm$CROPDMGEXP == "2"] <- 100
storm$cropexp[storm$CROPDMGEXP == "0"] <- 1
# Exclude invalid entries by assigning 0
storm$cropexp[storm$CROPDMGEXP == "?"] <- 0
# Calculate property damage value
storm$CROPDMGvalue <- storm$CROPDMG * storm$cropexp
Count Total Impact to Human (Fatalities + Injuries) & Total Economic Impact (Property Damage + Crop Damage)
storm$HumanImpact <- storm$FATALITIES + storm$INJURIES
storm$TotalDamage <- storm$PROPDMGvalue + storm$CROPDMGvalue
To see the biggest impact of weather events, the top 10 rows will be taken for each type of impact
# Top 10 Fatalities
TopFatalities <- storm %>% group_by(EVTYPE) %>% summarise(Fatalities=sum(FATALITIES)) %>% top_n(10) %>% arrange(desc(Fatalities))
## Selecting by Fatalities
print(TopFatalities)
## Source: local data frame [10 x 2]
##
## EVTYPE Fatalities
## 1 TORNADO 5633
## 2 EXCESSIVE HEAT 1903
## 3 FLASH FLOOD 978
## 4 HEAT 937
## 5 LIGHTNING 816
## 6 TSTM WIND 504
## 7 FLOOD 470
## 8 RIP CURRENT 368
## 9 HIGH WIND 248
## 10 AVALANCHE 224
# Top 10 Injuries
TopInjuries <- storm %>% group_by(EVTYPE) %>% summarise(Injuries=sum(INJURIES)) %>% top_n(10) %>% arrange(desc(Injuries))
## Selecting by Injuries
print(TopInjuries)
## Source: local data frame [10 x 2]
##
## EVTYPE Injuries
## 1 TORNADO 91346
## 2 TSTM WIND 6957
## 3 FLOOD 6789
## 4 EXCESSIVE HEAT 6525
## 5 LIGHTNING 5230
## 6 HEAT 2100
## 7 ICE STORM 1975
## 8 FLASH FLOOD 1777
## 9 THUNDERSTORM WIND 1488
## 10 HAIL 1361
# Top 10 Total Human Impact
TopTotalHumanImpact <- storm %>% group_by(EVTYPE) %>% summarise(HumanImpact=sum(HumanImpact)) %>% top_n(10) %>% arrange(desc(HumanImpact))
## Selecting by HumanImpact
print(TopTotalHumanImpact)
## Source: local data frame [10 x 2]
##
## EVTYPE HumanImpact
## 1 TORNADO 96979
## 2 EXCESSIVE HEAT 8428
## 3 TSTM WIND 7461
## 4 FLOOD 7259
## 5 LIGHTNING 6046
## 6 HEAT 3037
## 7 FLASH FLOOD 2755
## 8 ICE STORM 2064
## 9 THUNDERSTORM WIND 1621
## 10 WINTER STORM 1527
# Top 10 Property Damage
TopPropertyDamage <- storm %>% group_by(EVTYPE) %>% summarise(PropertyDamage=sum(PROPDMGvalue)) %>% top_n(10) %>% arrange(desc(PropertyDamage))
## Selecting by PropertyDamage
print(TopPropertyDamage)
## Source: local data frame [10 x 2]
##
## EVTYPE PropertyDamage
## 1 FLOOD 144657709807
## 2 HURRICANE/TYPHOON 69305840000
## 3 TORNADO 56947380617
## 4 STORM SURGE 43323536000
## 5 FLASH FLOOD 16822673979
## 6 HAIL 15735267513
## 7 HURRICANE 11868319010
## 8 TROPICAL STORM 7703890550
## 9 WINTER STORM 6688497251
## 10 HIGH WIND 5270046260
# Top 10 Crop Damage
TopCropDamage <- storm %>% group_by(EVTYPE) %>% summarise(CropDamage=sum(CROPDMGvalue)) %>% top_n(10) %>% arrange(desc(CropDamage))
## Selecting by CropDamage
print(TopCropDamage)
## Source: local data frame [10 x 2]
##
## EVTYPE CropDamage
## 1 DROUGHT 13972566000
## 2 FLOOD 5661968450
## 3 RIVER FLOOD 5029459000
## 4 ICE STORM 5022113500
## 5 HAIL 3025954473
## 6 HURRICANE 2741910000
## 7 HURRICANE/TYPHOON 2607872800
## 8 FLASH FLOOD 1421317100
## 9 EXTREME COLD 1292973000
## 10 FROST/FREEZE 1094086000
# Top 10 Total Damage
TopTotalDamage <- storm %>% group_by(EVTYPE) %>% summarise(TotalDamage=sum(TotalDamage)) %>% top_n(10) %>% arrange(desc(TotalDamage))
## Selecting by TotalDamage
print(TopTotalDamage)
## Source: local data frame [10 x 2]
##
## EVTYPE TotalDamage
## 1 FLOOD 150319678257
## 2 HURRICANE/TYPHOON 71913712800
## 3 TORNADO 57362333887
## 4 STORM SURGE 43323541000
## 5 HAIL 18761221986
## 6 FLASH FLOOD 18243991079
## 7 DROUGHT 15018672000
## 8 HURRICANE 14610229010
## 9 RIVER FLOOD 10148404500
## 10 ICE STORM 8967041360
par(mfrow = c(1, 3), mar = c(11, 2, 3, 1), mgp = c(3, 1, 0), cex = 0.6)
barplot(TopFatalities$Fatalities, las = 3, names.arg = TopFatalities$EVTYPE, main = "Top 10 Highest Fatalities", ylab = "Number of Fatalities", col = "blue")
barplot(TopInjuries$Injuries, las = 3, names.arg = TopInjuries$EVTYPE, main = "Top 10 Highest Injuries", ylab = "Number of Injuries", col = "blue")
barplot(TopTotalHumanImpact$HumanImpact, las = 3, names.arg = TopTotalHumanImpact$EVTYPE, main = "Top 10 Highest Human Impact", ylab = "Total Fatalities & Injuries", col = "grey")
Summary
Tornado is the highest impact weather phenomenon in the United States to the human population.
par(mfrow = c(1, 3), mar = c(11, 2, 3, 1), mgp = c(3, 1, 0), cex = 0.6)
barplot(TopPropertyDamage$PropertyDamage, las = 3, names.arg = TopPropertyDamage$EVTYPE, main = "Top 10 Highest Property Damage", ylab = "Damage (USD)", col = "blue")
barplot(TopCropDamage$CropDamage, las = 3, names.arg = TopCropDamage$EVTYPE, main = "Top 10 Highest Crop Damage", ylab = "Damage (USD)", col = "blue")
barplot(TopTotalDamage$TotalDamage, las = 3, names.arg = TopTotalDamage$EVTYPE, main = "Top 10 Highest Total Damage", ylab = "Damage (USD)", col = "grey")
Summary
From this plot, we can know that overall, flood cause most economic damage. The biggest contributor to crop damage is drought.