1 PREPARATION

1.1 Loading Data

#Week 1
data.M=rio::import("BWGra3.ABBA.sav")%>%as.data.table()
## Delete for making 12,11
#data=data[!(W.Day==13|W.Day==14|W.Day==15)]
## Delete for making 14,11
#data=data[!(W.Day==13|W.Day==12|W.Day==15)]
## Delete for making 12,11,14
#data=data[!(W.Day==13|W.Day==15)]
#data=rio::import("BWGra3.sav")%>%as.data.table()
#data=data[!(W.Day==13)]#|W.Day==13)]
#names(data.M)

#Week 2
data.D=rio::import("BWReflect2.ESMw2.sav")#%>%as.data.table()
mean_to_impute <- vars(contains("_mean"))
#Describe(data[, grepl("_mean", names(data))])
data.D <- data.D %>%
  mutate_at(mean_to_impute, ~ ifelse(is.na(.), round(mean(., na.rm = TRUE), 0), .))
#Describe(data[, grepl("_mean", names(data))])
data.D=as.data.table(data.D)
columns_to_impute <- vars(B.ConscientiousnessV:Manipulation_sd,B.FemaleFaceScore:B.Tenure)
#Describe(data[,c(224:274,147:154)])
data.D <- data.D %>%
  mutate_at(columns_to_impute, ~ ifelse(is.na(.), round(mean(., na.rm = TRUE), 0), .))
#Describe(data[,c(224:274,147:154)])


data.D$B.CompetitiveClimateV.GraC=scale(data.D$B.CompetitiveClimateV, center = TRUE, scale = FALSE)
##-Choose X
#data.D=data.D[,!"Manipulation"]
#data <- rename(data, c(WA.GraceV = "Manipulation"))
cor_multilevel(data.D[,.(B.ID, WP.ObservationalLearningV,WP.AdviceSeekingV)],"B.ID")
## Correlations below and above the diagonal represent
## within-level and between-level correlations, respectively:
## ──────────────────────────────────────────────────────────────────────
##                            WP.ObservationalLearningV WP.AdviceSeekingV
## ──────────────────────────────────────────────────────────────────────
## WP.ObservationalLearningV                      1.000             0.778
## WP.AdviceSeekingV                              0.440             1.000
## ──────────────────────────────────────────────────────────────────────
## 
## Within-Level Correlation [95% CI]:
## ───────────────────────────────────────────
##                  r       [95% CI]     p    
## ───────────────────────────────────────────
## WP.OL-WP.AS  0.440 [0.378, 0.498] <.001 ***
## ───────────────────────────────────────────
## 
## Between-Level Correlation [95% CI]:
## ───────────────────────────────────────────
##                  r       [95% CI]     p    
## ───────────────────────────────────────────
## WP.OL-WP.AS  0.778 [0.709, 0.832] <.001 ***
## ───────────────────────────────────────────
## 
## Intraclass Correlation:
## ─────────────────────────────────────────────────
##       WP.ObservationalLearningV WP.AdviceSeekingV
## ─────────────────────────────────────────────────
## ICC1                      0.706             0.572
## ICC2                      0.911             0.850
## ─────────────────────────────────────────────────
cor_multilevel(data.M[,.(B.ID, WP.ObservationalLearningV,WP.AdviceSeekingV)],"B.ID")
## Correlations below and above the diagonal represent
## within-level and between-level correlations, respectively:
## ──────────────────────────────────────────────────────────────────────
##                            WP.ObservationalLearningV WP.AdviceSeekingV
## ──────────────────────────────────────────────────────────────────────
## WP.ObservationalLearningV                      1.000             0.672
## WP.AdviceSeekingV                              0.266             1.000
## ──────────────────────────────────────────────────────────────────────
## 
## Within-Level Correlation [95% CI]:
## ───────────────────────────────────────────
##                  r       [95% CI]     p    
## ───────────────────────────────────────────
## WP.OL-WP.AS  0.266 [0.182, 0.346] <.001 ***
## ───────────────────────────────────────────
## 
## Between-Level Correlation [95% CI]:
## ───────────────────────────────────────────
##                  r       [95% CI]     p    
## ───────────────────────────────────────────
## WP.OL-WP.AS  0.672 [0.572, 0.752] <.001 ***
## ───────────────────────────────────────────
## 
## Intraclass Correlation:
## ─────────────────────────────────────────────────
##       WP.ObservationalLearningV WP.AdviceSeekingV
## ─────────────────────────────────────────────────
## ICC1                      0.721             0.679
## ICC2                      0.897             0.877
## ─────────────────────────────────────────────────

1.2 Theoretical model

#covar=list(names=c("C"),site=list(c("M","Y")))
pmacroModel(14,labels=list(X="Gratitude", M="Creative Process Engagement", Y="Outcomes", W="Competitive Climate"))#covar=covar,

2 SUPPLEMENTARY ANALYSIS

3 LONGITUDINAL FIELD EXPERIMENT STUDY

3.1 Primary analysis

3.1.1 Frequency analysis

Freq(data.M$Manipulation)
## Frequency Statistics:
## ───────────
##      N    %
## ───────────
## 0  264 49.2
## 1  273 50.8
## ───────────
## Total N = 537
Freq(data.M$W.Day)
## Frequency Statistics:
## ────────────
##       N    %
## ────────────
## 11  136 25.3
## 12  134 25.0
## 14  139 25.9
## 15  128 23.8
## ────────────
## Total N = 537

3.1.2 ICC and RWG

HLM_ICC_rWG(data.M, group="B.ID", icc.var="Manipulation")
## 
## ------ Sample Size Information ------
## 
## Level 1: N = 537 observations ("Manipulation")
## Level 2: K = 154 groups ("B.ID")
## 
##        n (group sizes)
## Min.             1.000
## Median           4.000
## Mean             3.487
## Max.             4.000
## 
## ------ ICC(1), ICC(2), and rWG ------
## 
## ICC variable: "Manipulation"
## 
## ICC(1) = 0.000 (non-independence of data)
## ICC(2) = 0.000 (reliability of group means)
## 
## rWG variable: "Manipulation"
## 
## rWG (within-group agreement for single-item measures)
## ────────────────────────────────────────────────────
##       Min. 1st Qu. Median  Mean 3rd Qu.  Max.   NA's
## ────────────────────────────────────────────────────
## rWG  0.000   0.000  0.000 0.028   0.000 1.000 12.000
## ────────────────────────────────────────────────────
HLM_ICC_rWG(data.M, group="B.ID", icc.var="WP.CreativeProcessEngagementV")
## 
## ------ Sample Size Information ------
## 
## Level 1: N = 493 observations ("WP.CreativeProcessEngagementV")
## Level 2: K = 146 groups ("B.ID")
## 
##        n (group sizes)
## Min.             1.000
## Median           4.000
## Mean             3.377
## Max.             4.000
## 
## ------ ICC(1), ICC(2), and rWG ------
## 
## ICC variable: "WP.CreativeProcessEngagementV"
## 
## ICC(1) = 0.784 (non-independence of data)
## ICC(2) = 0.915 (reliability of group means)
## 
## rWG variable: "WP.CreativeProcessEngagementV"
## 
## rWG (within-group agreement for single-item measures)
## ────────────────────────────────────────────────────
##       Min. 1st Qu. Median  Mean 3rd Qu.  Max.   NA's
## ────────────────────────────────────────────────────
## rWG  0.000   0.893  0.965 0.893   0.992 1.000 10.000
## ────────────────────────────────────────────────────

3.1.3 Manipulation check

3.1.3.1 MLM

Manipulation.MLM= lmer(WA.GraceV~Manipulation + (1|B.ID), na.action = na.exclude, data = data.M, control=lmerControl(optimizer="bobyqa"))
HLM_summary(Manipulation.MLM)
## 
## Hierarchical Linear Model (HLM)
## (also known as) Linear Mixed Model (LMM)
## (also known as) Multilevel Linear Model (MLM)
## 
## Model Information:
## Formula: WA.GraceV ~ Manipulation + (1 | B.ID)
## Level-1 Observations: N = 524
## Level-2 Groups/Clusters: B.ID, 154
## 
## Model Fit:
## AIC = 931.121
## BIC = 948.167
## R_(m)² = 0.00003  (Marginal R²: fixed effects)
## R_(c)² = 0.73123  (Conditional R²: fixed + random effects)
## Omega² = NA  (= 1 - proportion of unexplained variance)
## 
## ANOVA Table:
## ────────────────────────────────────────────────────────
##               Sum Sq Mean Sq NumDF  DenDF    F     p    
## ────────────────────────────────────────────────────────
## Manipulation    0.01    0.01  1.00 374.36 0.06  .813    
## ────────────────────────────────────────────────────────
## 
## Fixed Effects:
## Unstandardized Coefficients (b or γ):
## Outcome Variable: WA.GraceV
## ─────────────────────────────────────────────────────────────────
##                 b/γ    S.E.     t    df     p     [95% CI of b/γ]
## ─────────────────────────────────────────────────────────────────
## (Intercept)   3.820 (0.061) 62.23 180.5 <.001 *** [ 3.699, 3.941]
## Manipulation  0.009 (0.037)  0.24 374.4  .813     [-0.064, 0.082]
## ─────────────────────────────────────────────────────────────────
## 'df' is estimated by Satterthwaite approximation.
## 
## Standardized Coefficients (β):
## Outcome Variable: WA.GraceV
## ────────────────────────────────────────────────────────────────
##                   β    S.E.    t    df     p       [95% CI of β]
## ────────────────────────────────────────────────────────────────
## Manipulation  0.006 (0.024) 0.24 374.4  .813     [-0.041, 0.052]
## ────────────────────────────────────────────────────────────────
## 
## Random Effects:
## ──────────────────────────────────────────
##  Cluster  K   Parameter   Variance     ICC
## ──────────────────────────────────────────
##  B.ID     154 (Intercept)  0.46889 0.73122
##  Residual                  0.17235        
## ──────────────────────────────────────────

3.1.4 T-test

Manipulation.T=MANOVA(data=data.M, subID="B.ID", dv="WA.GraceV", within=c("Manipulation"))
## 
## ====== ANOVA (Within-Subjects Design) ======
## 
## Descriptives:
## ─────────────────────────────────
##  "Manipulation"  Mean    S.D.   n
## ─────────────────────────────────
##   Manipulation0 3.833 (0.715) 125
##   Manipulation1 3.853 (0.699) 125
## ─────────────────────────────────
## Total sample size: N = 154
## 
## ANOVA Table:
## Dependent variable(s):      WA.GraceV
## Between-subjects factor(s): –
## Within-subjects factor(s):  Manipulation
## Covariate(s):               –
## ──────────────────────────────────────────────────────────────────────────
##                  MS   MSE df1 df2     F     p     η²p [90% CI of η²p]  η²G
## ──────────────────────────────────────────────────────────────────────────
## Manipulation  0.025 0.080   1 124 0.313  .577       .003 [.000, .037] .000
## ──────────────────────────────────────────────────────────────────────────
## MSE = mean square error (the residual variance of the linear model)
## η²p = partial eta-squared = SS / (SS + SSE) = F * df1 / (F * df1 + df2)
## ω²p = partial omega-squared = (F - 1) * df1 / (F * df1 + df2 + 1)
## η²G = generalized eta-squared (see Olejnik & Algina, 2003)
## Cohen’s f² = η²p / (1 - η²p)
## 
## Levene’s Test for Homogeneity of Variance:
## No between-subjects factors. No need to do the Levene’s test.
## 
## Mauchly’s Test of Sphericity:
## The repeated measures have only two levels. The assumption of sphericity is always met.
emmip(Manipulation.T, ~Manipulation, CIs=TRUE, style = "factor", linearg = list(), CIarg = list( col = "grey",size = 20), dotarg = list(size = 2)) +
    ggplot2::theme_bw()

3.1.5 Main effect

Main= lmer(WP.CreativeProcessEngagementV~Manipulation + (1|B.ID), na.action = na.exclude, data = data.M, control=lmerControl(optimizer="bobyqa")) 
HLM_summary(Main)
## 
## Hierarchical Linear Model (HLM)
## (also known as) Linear Mixed Model (LMM)
## (also known as) Multilevel Linear Model (MLM)
## 
## Model Information:
## Formula: WP.CreativeProcessEngagementV ~ Manipulation + (1 | B.ID)
## Level-1 Observations: N = 493
## Level-2 Groups/Clusters: B.ID, 146
## 
## Model Fit:
## AIC = 723.366
## BIC = 740.168
## R_(m)² = 0.00006  (Marginal R²: fixed effects)
## R_(c)² = 0.78386  (Conditional R²: fixed + random effects)
## Omega² = NA  (= 1 - proportion of unexplained variance)
## 
## ANOVA Table:
## ────────────────────────────────────────────────────────
##               Sum Sq Mean Sq NumDF  DenDF    F     p    
## ────────────────────────────────────────────────────────
## Manipulation    0.02    0.02  1.00 350.47 0.13  .718    
## ────────────────────────────────────────────────────────
## 
## Fixed Effects:
## Unstandardized Coefficients (b or γ):
## Outcome Variable: WP.CreativeProcessEngagementV
## ─────────────────────────────────────────────────────────────────
##                 b/γ    S.E.     t    df     p     [95% CI of b/γ]
## ─────────────────────────────────────────────────────────────────
## (Intercept)   3.305 (0.059) 56.36 169.1 <.001 *** [ 3.189, 3.421]
## Manipulation  0.011 (0.032)  0.36 350.5  .718     [-0.051, 0.074]
## ─────────────────────────────────────────────────────────────────
## 'df' is estimated by Satterthwaite approximation.
## 
## Standardized Coefficients (β):
## Outcome Variable: WP.CreativeProcessEngagementV
## ────────────────────────────────────────────────────────────────
##                   β    S.E.    t    df     p       [95% CI of β]
## ────────────────────────────────────────────────────────────────
## Manipulation  0.008 (0.022) 0.36 350.5  .718     [-0.035, 0.051]
## ────────────────────────────────────────────────────────────────
## 
## Random Effects:
## ──────────────────────────────────────────
##  Cluster  K   Parameter   Variance     ICC
## ──────────────────────────────────────────
##  B.ID     146 (Intercept)  0.42142 0.78384
##  Residual                  0.11621        
## ──────────────────────────────────────────

3.2 Moderation effect

3.2.1 Model

Mo=PROCESS(data.M, y="WP.CreativeProcessEngagementV", x="Manipulation", mods="Stability.GraC", 
           covs=c("WP.SupervisoryBehavioralFeedbackV_mean"),
           cluster ="B.ID", center=FALSE)#, file="D2.doc")hlm.re.y = "(1|B.ID)", 
## Error in `[.data.frame`(data, c(y, x, meds, mods, covs, clusters)): 选择了未定义的列

3.3 Multilevel moderated mediation effect

3.3.1 Self-improvement

3.3.1.1 Learning Behavior

MoMe.S=PROCESS(data.M, y="WP.learningBehaviorV", x="Manipulation", 
           mods="B.CompetitiveClimateV.GraC",meds="WP.CreativeProcessEngagementV",
           covs=cc("WP.SupervisoryBehavioralFeedbackV_mean,WP.CreativeProcessEngagementV_mean"),
           cluster ="B.ID", mod.path=c("x-m"), center=FALSE,
           ci="mcmc", nsim=100, seed=1223)#, file="D2.doc")hlm.re.y = "(1|B.ID)",
## Error in `[.data.frame`(data, c(y, x, meds, mods, covs, clusters)): 选择了未定义的列

3.3.2 Plot

interact_plot(MoMe.S$model.y, pred = WP.CreativeProcessEngagementV.GroC, modx = Stability.GraC,#Basic setup
              modx.values = "plus-minus", modx.labels= c("Low group", "High group"),legend.main="Stability of SBF",)+#Set moderators in plot
  ylab("Information Search")+xlab("Reflection on FSI")#+#Set labels of X and Y
## Error in eval(expr, envir, enclos): 找不到对象'MoMe.S'
  #scale_y_continuous(limits = c(20, 50))+#limit X and Y
  #scale_x_continuous(limits = c(1, 4),breaks = c(1, 2, 3, 4),labels=c("2010年", "2011年", "2012年","2013年"))#set label of X

3.3.2.1 Job Crafting

MoMe.S=PROCESS(data.M, y="WP.JobCraftingV", x="Manipulation", 
           mods="Stability.GraC",meds="WP.CreativeProcessEngagementV",
           covs=cc("WP.SupervisoryBehavioralFeedbackV_mean,WP.CreativeProcessEngagementV_mean"),
           cluster ="B.ID", mod.path=c("x-m"), center=FALSE,
           ci="mcmc", nsim=100, seed=1223)#, file="D2.doc")hlm.re.y = "(1|B.ID)",
## Error in `[.data.frame`(data, c(y, x, meds, mods, covs, clusters)): 选择了未定义的列

3.3.3 System-improvement

3.3.3.1 Taking Charge

MoMe.S=PROCESS(data.M, y="WP.TakingChargeV", x="Manipulation", 
           mods="Stability.GraC",meds="WP.CreativeProcessEngagementV",
           covs=cc("WP.SupervisoryBehavioralFeedbackV_mean,WP.CreativeProcessEngagementV_mean"),
           cluster ="B.ID", mod.path=c("x-m"), center=FALSE,
           ci="mcmc", nsim=100, seed=1223)#, file="D2.doc")hlm.re.y = "(1|B.ID)",
## Error in `[.data.frame`(data, c(y, x, meds, mods, covs, clusters)): 选择了未定义的列

3.3.3.2 Performance Improvement

MoMe.S=PROCESS(data.M, y="WP.PerformanceImprovementV", x="Manipulation", 
           mods="Stability.GraC",meds="WP.CreativeProcessEngagementV",
           covs=cc("WP.SupervisoryBehavioralFeedbackV_mean,WP.CreativeProcessEngagementV_mean"),
           cluster ="B.ID", mod.path=c("x-m"), center=FALSE,
           ci="mcmc", nsim=100, seed=1223)#, file="D2.doc")hlm.re.y = "(1|B.ID)",
## Error in `[.data.frame`(data, c(y, x, meds, mods, covs, clusters)): 选择了未定义的列

3.3.4 Learning

3.3.4.1 Learning through independant observation

MoMe.S=PROCESS(data.M, y="WP.ObservationalLearningV", x="Manipulation",
               mods="Stability.GraC",meds="WP.CreativeProcessEngagementV",
               covs=cc("WP.SupervisoryBehavioralFeedbackV_mean,WP.CreativeProcessEngagementV_mean"),
               cluster ="B.ID", mod.path=c("x-m"), center=FALSE,
               ci="mcmc", nsim=100, seed=1223)#, file="D2.doc")hlm.re.y = "(1|B.ID)",
## Error in `[.data.frame`(data, c(y, x, meds, mods, covs, clusters)): 选择了未定义的列

3.3.4.2 Learning through social interaction

MoMe.S=PROCESS(data.M, y="WP.AdviceSeekingV", x="Manipulation",
               mods="Stability.GraC",meds="WP.CreativeProcessEngagementV",
               covs=cc("WP.SupervisoryBehavioralFeedbackV_mean,WP.CreativeProcessEngagementV_mean"),
               cluster ="B.ID", mod.path=c("x-m"), center=FALSE,
               ci="mcmc", nsim=100, seed=1223)#, file="D2.doc")hlm.re.y = "(1|B.ID)",
## Error in `[.data.frame`(data, c(y, x, meds, mods, covs, clusters)): 选择了未定义的列

4 ESM STUDY

4.1 Primary analysis

4.1.1 Frequency analysis

Freq(data.D$WA.GraceV)
## Frequency Statistics:
## ──────────────────────────
##                     N    %
## ──────────────────────────
## 1                   6  0.8
## 2                  74 10.1
## 2.33333333333333    2  0.3
## 2.66666666666667   28  3.8
## 3                  35  4.8
## 3.33333333333333   27  3.7
## 3.66666666666667   21  2.9
## 4                 441 60.0
## 4.33333333333333   12  1.6
## 4.66666666666667    7  1.0
## 5                  66  9.0
## (NA)               16  2.2
## ──────────────────────────
## Total N = 735
## Valid N = 719
Freq(data.D$W.Day)
## Frequency Statistics:
## ────────────
##       N    %
## ────────────
## 6   148 20.1
## 7   152 20.7
## 8   144 19.6
## 9   148 20.1
## 10  143 19.5
## ────────────
## Total N = 735

4.1.2 ICC and RWG

HLM_ICC_rWG(data.D, group="B.ID", icc.var="WA.GraceV")
## 
## ------ Sample Size Information ------
## 
## Level 1: N = 719 observations ("WA.GraceV")
## Level 2: K = 165 groups ("B.ID")
## 
##        n (group sizes)
## Min.             1.000
## Median           5.000
## Mean             4.358
## Max.             5.000
## 
## ------ ICC(1), ICC(2), and rWG ------
## 
## ICC variable: "WA.GraceV"
## 
## ICC(1) = 0.765 (non-independence of data)
## ICC(2) = 0.924 (reliability of group means)
## 
## rWG variable: "WA.GraceV"
## 
## rWG (within-group agreement for single-item measures)
## ───────────────────────────────────────────────────
##       Min. 1st Qu. Median  Mean 3rd Qu.  Max.  NA's
## ───────────────────────────────────────────────────
## rWG  0.000   0.856  1.000 0.902   1.000 1.000 9.000
## ───────────────────────────────────────────────────
HLM_ICC_rWG(data.D, group="B.ID", icc.var="WP.CreativeProcessEngagementV")
## 
## ------ Sample Size Information ------
## 
## Level 1: N = 689 observations ("WP.CreativeProcessEngagementV")
## Level 2: K = 162 groups ("B.ID")
## 
##        n (group sizes)
## Min.             1.000
## Median           5.000
## Mean             4.253
## Max.             5.000
## 
## ------ ICC(1), ICC(2), and rWG ------
## 
## ICC variable: "WP.CreativeProcessEngagementV"
## 
## ICC(1) = 0.805 (non-independence of data)
## ICC(2) = 0.936 (reliability of group means)
## 
## rWG variable: "WP.CreativeProcessEngagementV"
## 
## rWG (within-group agreement for single-item measures)
## ────────────────────────────────────────────────────
##       Min. 1st Qu. Median  Mean 3rd Qu.  Max.   NA's
## ────────────────────────────────────────────────────
## rWG  0.000   0.900  0.969 0.909   0.998 1.000 12.000
## ────────────────────────────────────────────────────

4.1.3 Main effect

Main= lmer(WA.ThrivingAtWorkLearningV ~WP.CreativeProcessEngagementV_mean+WA.GraceV_mean+WA.GraceV.GroC+WP.CreativeProcessEngagementV.GroC*B.CompetitiveClimateV.GraC+ (1|B.ID), na.action = na.exclude, data = data.D, control=lmerControl(optimizer="bobyqa")) 
print_table(Main)
## ────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                                                Estimate    S.E.      df      t     p    
## ────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                                       0.078 (0.166) 153.922  0.472  .638    
## WP.CreativeProcessEngagementV_mean                                0.811 (0.054) 150.911 15.015 <.001 ***
## WA.GraceV_mean                                                    0.155 (0.054) 154.209  2.883  .005 ** 
## WA.GraceV.GroC                                                    0.218 (0.047) 530.131  4.594 <.001 ***
## WP.CreativeProcessEngagementV.GroC                                0.201 (0.052) 512.905  3.885 <.001 ***
## B.CompetitiveClimateV.GraC                                        0.008 (0.045) 148.280  0.179  .858    
## WP.CreativeProcessEngagementV.GroC:B.CompetitiveClimateV.GraC     0.236 (0.086) 512.688  2.759  .006 ** 
## ────────────────────────────────────────────────────────────────────────────────────────────────────────

4.2 Moderation effect

4.2.1 Model

Mo=PROCESS(data.D, y="WA.ThrivingAtWorkLearningV", x="WA.GraceV.GroC", 
           mods="B.CompetitiveClimateV.GraC", 
           covs=cc("WP.SupervisoryBehavioralFeedbackV_mean,WA.GraceV_mean"),
           cluster ="B.ID", center=FALSE)#, file="D2.doc")hlm.re.y = "(1|B.ID)", 
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : WA.ThrivingAtWorkLearningV
## -  Predictor (X) : WA.GraceV.GroC
## -  Mediators (M) : -
## - Moderators (W) : B.CompetitiveClimateV.GraC
## - Covariates (C) : WP.SupervisoryBehavioralFeedbackV_mean, WA.GraceV_mean
## -   HLM Clusters : B.ID
## 
## Formula of Outcome:
## -    WA.ThrivingAtWorkLearningV ~ WP.SupervisoryBehavioralFeedbackV_mean + WA.GraceV_mean + WA.GraceV.GroC*B.CompetitiveClimateV.GraC + (1 | B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                            (1) WA.ThrivingAtWorkLearningV  (2) WA.ThrivingAtWorkLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                   0.248                           0.256                      
##                                              (0.208)                         (0.212)                     
## WP.SupervisoryBehavioralFeedbackV_mean        0.530 ***                       0.528 ***                  
##                                              (0.062)                         (0.063)                     
## WA.GraceV_mean                                0.359 ***                       0.358 ***                  
##                                              (0.064)                         (0.064)                     
## WA.GraceV.GroC                                0.219 ***                       0.221 ***                  
##                                              (0.045)                         (0.046)                     
## B.CompetitiveClimateV.GraC                                                    0.014                      
##                                                                              (0.058)                     
## WA.GraceV.GroC:B.CompetitiveClimateV.GraC                                     0.036                      
##                                                                              (0.077)                     
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                  0.493                           0.492                      
## Conditional R^2                               0.758                           0.759                      
## AIC                                        1108.794                        1119.682                      
## BIC                                        1136.261                        1156.305                      
## Num. obs.                                   719                             719                          
## Num. groups: B.ID                           165                             165                          
## Var: B.ID (Intercept)                         0.196                           0.197                      
## Var: Residual                                 0.178                           0.178                      
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 719 (16 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "WA.ThrivingAtWorkLearningV" (Y)
## ───────────────────────────────────────────────────────────────────
##                                                 F df1 df2     p    
## ───────────────────────────────────────────────────────────────────
## WA.GraceV.GroC * B.CompetitiveClimateV.GraC  0.22   1 554  .642    
## ───────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "WA.GraceV.GroC" (X) ==> "WA.ThrivingAtWorkLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────────
##  "B.CompetitiveClimateV.GraC" Effect    S.E.     t     p           [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  -0.684 (- SD)                 0.197 (0.065) 3.030  .003 **  [0.070, 0.324]
##  -0.006 (Mean)                 0.221 (0.045) 4.864 <.001 *** [0.132, 0.310]
##  0.672 (+ SD)                  0.245 (0.073) 3.368 <.001 *** [0.103, 0.388]
## ───────────────────────────────────────────────────────────────────────────

4.2.2 Plot

Mo$model.y
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: WA.ThrivingAtWorkLearningV ~ WP.SupervisoryBehavioralFeedbackV_mean +  
##     WA.GraceV_mean + WA.GraceV.GroC * B.CompetitiveClimateV.GraC +  
##     (1 | B.ID)
##    Data: data.c
## REML criterion at convergence: 1104
## Random effects:
##  Groups   Name        Std.Dev.
##  B.ID     (Intercept) 0.444   
##  Residual             0.422   
## Number of obs: 719, groups:  B.ID, 165
## Fixed Effects:
##                               (Intercept)  
##                                    0.2561  
##    WP.SupervisoryBehavioralFeedbackV_mean  
##                                    0.5279  
##                            WA.GraceV_mean  
##                                    0.3582  
##                            WA.GraceV.GroC  
##                                    0.2213  
##                B.CompetitiveClimateV.GraC  
##                                    0.0142  
## WA.GraceV.GroC:B.CompetitiveClimateV.GraC  
##                                    0.0356
MoMe.S$model.y
## Error in eval(expr, envir, enclos): 找不到对象'MoMe.S'
interact_plot(Mo$model.y, pred = WA.GraceV.GroC, modx = B.CompetitiveClimateV.GraC,#Basic setup
              modx.values = "plus-minus", modx.labels= c("Low group", "High group"),legend.main="Stability of SBF",)+#Set moderators in plot
  ylab("Information Search")+xlab("Reflection on FSI")#+#Set labels of X and Y

  #scale_y_continuous(limits = c(20, 50))+#limit X and Y
  #scale_x_continuous(limits = c(1, 4),breaks = c(1, 2, 3, 4),labels=c("2010年", "2011年", "2012年","2013年"))#set label of X

4.3 Multilevel moderated mediation effect

4.3.1 Self-improvement

4.3.1.1 Learning Thriving

MoMe.S=PROCESS(data.D, y="WA.ThrivingAtWorkLearningV", x="WA.GraceV.GroC", 
           mods="B.CompetitiveClimateV.GraC",meds="WP.CreativeProcessEngagementV.GroC",
           covs=cc("WP.CreativeProcessEngagementV_mean,WA.GraceV_mean"),
           cluster ="B.ID", mod.path=c("m-y"), center=FALSE,
           ci="mcmc", nsim=100, seed=1223)#, file="D2.doc")hlm.re.y = "(1|B.ID)",
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 14 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : WA.ThrivingAtWorkLearningV
## -  Predictor (X) : WA.GraceV.GroC
## -  Mediators (M) : WP.CreativeProcessEngagementV.GroC
## - Moderators (W) : B.CompetitiveClimateV.GraC
## - Covariates (C) : WP.CreativeProcessEngagementV_mean, WA.GraceV_mean
## -   HLM Clusters : B.ID
## 
## Formula of Mediator:
## -    WP.CreativeProcessEngagementV.GroC ~ WP.CreativeProcessEngagementV_mean + WA.GraceV_mean + WA.GraceV.GroC + B.CompetitiveClimateV.GraC + (1 | B.ID)
## Formula of Outcome:
## -    WA.ThrivingAtWorkLearningV ~ WP.CreativeProcessEngagementV_mean + WA.GraceV_mean + WA.GraceV.GroC + WP.CreativeProcessEngagementV.GroC*B.CompetitiveClimateV.GraC + (1 | B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                                                (1) WA.ThrivingAtWorkLearningV  (2) WP.CreativeProcessEngagementV.GroC  (3) WA.ThrivingAtWorkLearningV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                                      0.075                           0.000                                    0.078                      
##                                                                 (0.163)                         (0.067)                                  (0.166)                     
## WP.CreativeProcessEngagementV_mean                               0.812 ***                      -0.001                                    0.811 ***                  
##                                                                 (0.053)                         (0.022)                                  (0.054)                     
## WA.GraceV_mean                                                   0.154 **                        0.001                                    0.155 **                   
##                                                                 (0.053)                         (0.022)                                  (0.054)                     
## WA.GraceV.GroC                                                   0.238 ***                       0.074 *                                  0.218 ***                  
##                                                                 (0.048)                         (0.035)                                  (0.047)                     
## B.CompetitiveClimateV.GraC                                                                      -0.000                                    0.008                      
##                                                                                                 (0.018)                                  (0.045)                     
## WP.CreativeProcessEngagementV.GroC                                                                                                        0.201 ***                  
##                                                                                                                                          (0.052)                     
## WP.CreativeProcessEngagementV.GroC:B.CompetitiveClimateV.GraC                                                                             0.236 **                   
##                                                                                                                                          (0.086)                     
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                                     0.624                           0.007                                    0.630                      
## Conditional R^2                                                  0.755                           0.007                                    0.764                      
## AIC                                                            962.824                         380.698                                  959.682                      
## BIC                                                            989.913                         412.301                                 1000.314                      
## Num. obs.                                                      675                             675                                      675                          
## Num. groups: B.ID                                              159                             159                                      159                          
## Var: B.ID (Intercept)                                            0.095                           0.000                                    0.098                      
## Var: Residual                                                    0.179                           0.097                                    0.172                      
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 14)
## Sample Size : 675 (60 missing observations deleted)
## Random Seed : set.seed(1223)
## Simulations : 100 (Monte Carlo)
## 
## Direct Effect: "WA.GraceV.GroC" (X) ==> "WA.ThrivingAtWorkLearningV" (Y)
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.218 (0.047) 4.594 <.001 *** [0.125, 0.311]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "WA.ThrivingAtWorkLearningV" (Y)
## ───────────────────────────────────────────────────────────────────────────────────────
##                                                                     F df1 df2     p    
## ───────────────────────────────────────────────────────────────────────────────────────
## WP.CreativeProcessEngagementV.GroC * B.CompetitiveClimateV.GraC  7.61   1 513  .006 ** 
## ───────────────────────────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "WP.CreativeProcessEngagementV.GroC" (M) ==> "WA.ThrivingAtWorkLearningV" (Y)
## (Conditional Effects [b] of M on Y)
## ────────────────────────────────────────────────────────────────────────────
##  "B.CompetitiveClimateV.GraC" Effect    S.E.     t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  -0.677 (- SD)                 0.041 (0.074) 0.553  .581     [-0.104, 0.186]
##  0.002 (Mean)                  0.201 (0.052) 3.892 <.001 *** [ 0.100, 0.302]
##  0.681 (+ SD)                  0.361 (0.081) 4.453 <.001 *** [ 0.202, 0.520]
## ────────────────────────────────────────────────────────────────────────────
## 
## Running 100 * 3 simulations...
## Indirect Path: "WA.GraceV.GroC" (X) ==> "WP.CreativeProcessEngagementV.GroC" (M) ==> "WA.ThrivingAtWorkLearningV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ────────────────────────────────────────────────────────────────────────────
##  "B.CompetitiveClimateV.GraC" Effect    S.E.     z     p       [MCMC 95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  -0.677 (- SD)                 0.003 (0.006) 0.533  .594     [-0.008, 0.017]
##  0.002 (Mean)                  0.016 (0.008) 1.908  .056 .   [0.003, 0.035] 
##  0.681 (+ SD)                  0.028 (0.014) 1.999  .046 *   [0.006, 0.061] 
## ────────────────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 100 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)
4.3.1.1.1 Plot
interact_plot(MoMe.S$model.y, pred = WP.CreativeProcessEngagementV.GroC, modx = B.CompetitiveClimateV.GraC,#Basic setup
              modx.values = "plus-minus", modx.labels= c("Low group", "High group"),legend.main="Competitive Climate",)+#Set moderators in plot
  ylab("Learning Thriving")+xlab("Gratitude")#+#Set labels of X and Y

  #scale_y_continuous(limits = c(20, 50))+#limit X and Y
  #scale_x_continuous(limits = c(1, 4),breaks = c(1, 2, 3, 4),labels=c("2010年", "2011年", "2012年","2013年"))#set label of X

4.3.1.2 Job Crafting

MoMe.S=PROCESS(data.D, y="WP.JobCraftingV", x="WA.GraceV.GroC", 
           mods="B.CompetitiveClimateV.GraC",meds="WP.CreativeProcessEngagementV.GroC",
           covs=cc("WP.CreativeProcessEngagementV_mean,WA.GraceV_mean"),
           cluster ="B.ID", mod.path=c("m-y"), center=FALSE,
           ci="mcmc", nsim=100, seed=1223)#, file="D2.doc")hlm.re.y = "(1|B.ID)",
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 14 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : WP.JobCraftingV
## -  Predictor (X) : WA.GraceV.GroC
## -  Mediators (M) : WP.CreativeProcessEngagementV.GroC
## - Moderators (W) : B.CompetitiveClimateV.GraC
## - Covariates (C) : WP.CreativeProcessEngagementV_mean, WA.GraceV_mean
## -   HLM Clusters : B.ID
## 
## Formula of Mediator:
## -    WP.CreativeProcessEngagementV.GroC ~ WP.CreativeProcessEngagementV_mean + WA.GraceV_mean + WA.GraceV.GroC + B.CompetitiveClimateV.GraC + (1 | B.ID)
## Formula of Outcome:
## -    WP.JobCraftingV ~ WP.CreativeProcessEngagementV_mean + WA.GraceV_mean + WA.GraceV.GroC + WP.CreativeProcessEngagementV.GroC*B.CompetitiveClimateV.GraC + (1 | B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                                                (1) WP.JobCraftingV  (2) WP.CreativeProcessEngagementV.GroC  (3) WP.JobCraftingV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                                      0.211                0.000                                   0.259            
##                                                                 (0.166)              (0.067)                                 (0.167)           
## WP.CreativeProcessEngagementV_mean                               0.891 ***           -0.001                                   0.881 ***        
##                                                                 (0.055)              (0.022)                                 (0.055)           
## WA.GraceV_mean                                                  -0.015                0.001                                  -0.018            
##                                                                 (0.055)              (0.022)                                 (0.054)           
## WA.GraceV.GroC                                                   0.121 **             0.074 *                                 0.095 *          
##                                                                 (0.042)              (0.035)                                 (0.039)           
## B.CompetitiveClimateV.GraC                                                           -0.000                                   0.079            
##                                                                                      (0.018)                                 (0.046)           
## WP.CreativeProcessEngagementV.GroC                                                                                            0.411 ***        
##                                                                                                                              (0.042)           
## WP.CreativeProcessEngagementV.GroC:B.CompetitiveClimateV.GraC                                                                -0.188 **         
##                                                                                                                              (0.069)           
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                                     0.624                0.007                                   0.655            
## Conditional R^2                                                  0.794                0.007                                   0.830            
## AIC                                                            832.213              380.698                                 748.225            
## BIC                                                            859.301              412.301                                 788.857            
## Num. obs.                                                      675                  675                                     675                
## Num. groups: B.ID                                              159                  159                                     159                
## Var: B.ID (Intercept)                                            0.113                0.000                                   0.116            
## Var: Residual                                                    0.137                0.097                                   0.113            
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 14)
## Sample Size : 675 (60 missing observations deleted)
## Random Seed : set.seed(1223)
## Simulations : 100 (Monte Carlo)
## 
## Direct Effect: "WA.GraceV.GroC" (X) ==> "WP.JobCraftingV" (Y)
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.095 (0.039) 2.464  .014 *   [0.020, 0.171]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "WP.JobCraftingV" (Y)
## ───────────────────────────────────────────────────────────────────────────────────────
##                                                                     F df1 df2     p    
## ───────────────────────────────────────────────────────────────────────────────────────
## WP.CreativeProcessEngagementV.GroC * B.CompetitiveClimateV.GraC  7.33   1 513  .007 ** 
## ───────────────────────────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "WP.CreativeProcessEngagementV.GroC" (M) ==> "WP.JobCraftingV" (Y)
## (Conditional Effects [b] of M on Y)
## ───────────────────────────────────────────────────────────────────────────
##  "B.CompetitiveClimateV.GraC" Effect    S.E.     t     p           [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  -0.677 (- SD)                 0.538 (0.060) 8.946 <.001 *** [0.420, 0.656]
##  0.002 (Mean)                  0.411 (0.042) 9.794 <.001 *** [0.329, 0.493]
##  0.681 (+ SD)                  0.283 (0.066) 4.301 <.001 *** [0.154, 0.412]
## ───────────────────────────────────────────────────────────────────────────
## 
## Running 100 * 3 simulations...
## Indirect Path: "WA.GraceV.GroC" (X) ==> "WP.CreativeProcessEngagementV.GroC" (M) ==> "WP.JobCraftingV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ───────────────────────────────────────────────────────────────────────────
##  "B.CompetitiveClimateV.GraC" Effect    S.E.     z     p      [MCMC 95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  -0.677 (- SD)                 0.042 (0.019) 2.237  .025 *   [0.010, 0.079]
##  0.002 (Mean)                  0.032 (0.015) 2.214  .027 *   [0.007, 0.063]
##  0.681 (+ SD)                  0.022 (0.011) 1.983  .047 *   [0.005, 0.048]
## ───────────────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 100 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

4.3.1.3 Improvision

MoMe.S=PROCESS(data.D, y="WA.ImprovisionV", x="WA.GraceV.GroC", 
           mods="B.CompetitiveClimateV.GraC",meds="WP.CreativeProcessEngagementV.GroC",
           covs=cc("WP.CreativeProcessEngagementV_mean,WA.GraceV_mean"),
           cluster ="B.ID", mod.path=c("m-y"), center=FALSE,
           ci="mcmc", nsim=100, seed=1223)#, file="D2.doc")hlm.re.y = "(1|B.ID)",
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 14 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : WA.ImprovisionV
## -  Predictor (X) : WA.GraceV.GroC
## -  Mediators (M) : WP.CreativeProcessEngagementV.GroC
## - Moderators (W) : B.CompetitiveClimateV.GraC
## - Covariates (C) : WP.CreativeProcessEngagementV_mean, WA.GraceV_mean
## -   HLM Clusters : B.ID
## 
## Formula of Mediator:
## -    WP.CreativeProcessEngagementV.GroC ~ WP.CreativeProcessEngagementV_mean + WA.GraceV_mean + WA.GraceV.GroC + B.CompetitiveClimateV.GraC + (1 | B.ID)
## Formula of Outcome:
## -    WA.ImprovisionV ~ WP.CreativeProcessEngagementV_mean + WA.GraceV_mean + WA.GraceV.GroC + WP.CreativeProcessEngagementV.GroC*B.CompetitiveClimateV.GraC + (1 | B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                                                (1) WA.ImprovisionV  (2) WP.CreativeProcessEngagementV.GroC  (3) WA.ImprovisionV
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                                      0.627 ***            0.000                                   0.638 ***        
##                                                                 (0.143)              (0.067)                                 (0.145)           
## WP.CreativeProcessEngagementV_mean                               0.721 ***           -0.001                                   0.718 ***        
##                                                                 (0.047)              (0.022)                                 (0.047)           
## WA.GraceV_mean                                                   0.108 *              0.001                                   0.107 *          
##                                                                 (0.047)              (0.022)                                 (0.047)           
## WA.GraceV.GroC                                                   0.250 ***            0.074 *                                 0.238 ***        
##                                                                 (0.037)              (0.035)                                 (0.037)           
## B.CompetitiveClimateV.GraC                                                           -0.000                                   0.019            
##                                                                                      (0.018)                                 (0.039)           
## WP.CreativeProcessEngagementV.GroC                                                                                            0.118 **         
##                                                                                                                              (0.040)           
## WP.CreativeProcessEngagementV.GroC:B.CompetitiveClimateV.GraC                                                                 0.166 *          
##                                                                                                                              (0.066)           
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                                     0.646                0.007                                   0.650            
## Conditional R^2                                                  0.800                0.007                                   0.805            
## AIC                                                            651.659              380.698                                 656.626            
## BIC                                                            678.747              412.301                                 697.258            
## Num. obs.                                                      675                  675                                     675                
## Num. groups: B.ID                                              159                  159                                     159                
## Var: B.ID (Intercept)                                            0.081                0.000                                   0.082            
## Var: Residual                                                    0.106                0.097                                   0.103            
## ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 14)
## Sample Size : 675 (60 missing observations deleted)
## Random Seed : set.seed(1223)
## Simulations : 100 (Monte Carlo)
## 
## Direct Effect: "WA.GraceV.GroC" (X) ==> "WA.ImprovisionV" (Y)
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.238 (0.037) 6.455 <.001 *** [0.165, 0.310]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "WA.ImprovisionV" (Y)
## ───────────────────────────────────────────────────────────────────────────────────────
##                                                                     F df1 df2     p    
## ───────────────────────────────────────────────────────────────────────────────────────
## WP.CreativeProcessEngagementV.GroC * B.CompetitiveClimateV.GraC  6.25   1 511  .013 *  
## ───────────────────────────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "WP.CreativeProcessEngagementV.GroC" (M) ==> "WA.ImprovisionV" (Y)
## (Conditional Effects [b] of M on Y)
## ────────────────────────────────────────────────────────────────────────────
##  "B.CompetitiveClimateV.GraC" Effect    S.E.     t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  -0.677 (- SD)                 0.006 (0.057) 0.104  .917     [-0.107, 0.119]
##  0.002 (Mean)                  0.118 (0.040) 2.956  .003 **  [ 0.040, 0.197]
##  0.681 (+ SD)                  0.231 (0.063) 3.671 <.001 *** [ 0.108, 0.354]
## ────────────────────────────────────────────────────────────────────────────
## 
## Running 100 * 3 simulations...
## Indirect Path: "WA.GraceV.GroC" (X) ==> "WP.CreativeProcessEngagementV.GroC" (M) ==> "WA.ImprovisionV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ────────────────────────────────────────────────────────────────────────────
##  "B.CompetitiveClimateV.GraC" Effect    S.E.     z     p       [MCMC 95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  -0.677 (- SD)                 0.001 (0.005) 0.120  .905     [-0.008, 0.010]
##  0.002 (Mean)                  0.009 (0.005) 1.745  .081 .   [0.002, 0.022] 
##  0.681 (+ SD)                  0.018 (0.010) 1.905  .057 .   [0.004, 0.040] 
## ────────────────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 100 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

4.3.1.4 Learning Behavior

4.3.2 System-improvement

4.3.2.1 Taking Charge

MoMe.S=PROCESS(data.D, y="WP.TakingChargeV", x="WA.GraceV.GroC", 
           mods="B.CompetitiveClimateV.GraC",meds="WP.CreativeProcessEngagementV.GroC",
           covs=cc("WP.CreativeProcessEngagementV_mean,WA.GraceV_mean"),
           cluster ="B.ID", mod.path=c("m-y"), center=FALSE,
           ci="mcmc", nsim=100, seed=1223)#, file="D2.doc")hlm.re.y = "(1|B.ID)",
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 14 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : WP.TakingChargeV
## -  Predictor (X) : WA.GraceV.GroC
## -  Mediators (M) : WP.CreativeProcessEngagementV.GroC
## - Moderators (W) : B.CompetitiveClimateV.GraC
## - Covariates (C) : WP.CreativeProcessEngagementV_mean, WA.GraceV_mean
## -   HLM Clusters : B.ID
## 
## Formula of Mediator:
## -    WP.CreativeProcessEngagementV.GroC ~ WP.CreativeProcessEngagementV_mean + WA.GraceV_mean + WA.GraceV.GroC + B.CompetitiveClimateV.GraC + (1 | B.ID)
## Formula of Outcome:
## -    WP.TakingChargeV ~ WP.CreativeProcessEngagementV_mean + WA.GraceV_mean + WA.GraceV.GroC + WP.CreativeProcessEngagementV.GroC*B.CompetitiveClimateV.GraC + (1 | B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                                                (1) WP.TakingChargeV  (2) WP.CreativeProcessEngagementV.GroC  (3) WP.TakingChargeV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                                      -0.140                0.000                                   -0.139            
##                                                                  (0.219)              (0.067)                                  (0.223)           
## WP.CreativeProcessEngagementV_mean                                1.018 ***           -0.001                                    1.018 ***        
##                                                                  (0.072)              (0.022)                                  (0.073)           
## WA.GraceV_mean                                                   -0.065                0.001                                   -0.065            
##                                                                  (0.072)              (0.022)                                  (0.072)           
## WA.GraceV.GroC                                                    0.186 ***            0.074 *                                  0.165 **         
##                                                                  (0.053)              (0.035)                                  (0.051)           
## B.CompetitiveClimateV.GraC                                                            -0.000                                    0.004            
##                                                                                       (0.018)                                  (0.061)           
## WP.CreativeProcessEngagementV.GroC                                                                                              0.354 ***        
##                                                                                                                                (0.055)           
## WP.CreativeProcessEngagementV.GroC:B.CompetitiveClimateV.GraC                                                                  -0.307 ***        
##                                                                                                                                (0.092)           
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                                      0.550                0.007                                    0.566            
## Conditional R^2                                                   0.765                0.007                                    0.788            
## AIC                                                            1160.234              380.698                                 1123.420            
## BIC                                                            1187.322              412.301                                 1164.053            
## Num. obs.                                                       675                  675                                      675                
## Num. groups: B.ID                                               159                  159                                      159                
## Var: B.ID (Intercept)                                             0.200                0.000                                    0.207            
## Var: Residual                                                     0.219                0.097                                    0.198            
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 14)
## Sample Size : 675 (60 missing observations deleted)
## Random Seed : set.seed(1223)
## Simulations : 100 (Monte Carlo)
## 
## Direct Effect: "WA.GraceV.GroC" (X) ==> "WP.TakingChargeV" (Y)
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.165 (0.051) 3.243  .001 **  [0.066, 0.265]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "WP.TakingChargeV" (Y)
## ────────────────────────────────────────────────────────────────────────────────────────
##                                                                      F df1 df2     p    
## ────────────────────────────────────────────────────────────────────────────────────────
## WP.CreativeProcessEngagementV.GroC * B.CompetitiveClimateV.GraC  11.22   1 513 <.001 ***
## ────────────────────────────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "WP.CreativeProcessEngagementV.GroC" (M) ==> "WP.TakingChargeV" (Y)
## (Conditional Effects [b] of M on Y)
## ────────────────────────────────────────────────────────────────────────────
##  "B.CompetitiveClimateV.GraC" Effect    S.E.     t     p            [95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  -0.677 (- SD)                 0.562 (0.080) 7.064 <.001 *** [ 0.406, 0.718]
##  0.002 (Mean)                  0.353 (0.055) 6.373 <.001 *** [ 0.245, 0.462]
##  0.681 (+ SD)                  0.145 (0.087) 1.663  .097 .   [-0.026, 0.315]
## ────────────────────────────────────────────────────────────────────────────
## 
## Running 100 * 3 simulations...
## Indirect Path: "WA.GraceV.GroC" (X) ==> "WP.CreativeProcessEngagementV.GroC" (M) ==> "WP.TakingChargeV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ────────────────────────────────────────────────────────────────────────────
##  "B.CompetitiveClimateV.GraC" Effect    S.E.     z     p       [MCMC 95% CI]
## ────────────────────────────────────────────────────────────────────────────
##  -0.677 (- SD)                 0.044 (0.020) 2.186  .029 *   [0.011, 0.084] 
##  0.002 (Mean)                  0.028 (0.013) 2.112  .035 *   [0.006, 0.058] 
##  0.681 (+ SD)                  0.012 (0.009) 1.355  .176     [-0.003, 0.031]
## ────────────────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 100 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

4.3.2.2 Performance Improvement

MoMe.S=PROCESS(data.D, y="WP.PerformanceImprovementV", x="WA.GraceV.GroC", 
           mods="B.CompetitiveClimateV.GraC",meds="WP.CreativeProcessEngagementV.GroC",
           covs=cc("WP.CreativeProcessEngagementV_mean,WA.GraceV_mean"),
           cluster ="B.ID", mod.path=c("m-y"), center=FALSE,
           ci="mcmc", nsim=100, seed=1223)#, file="D2.doc")hlm.re.y = "(1|B.ID)",
## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 14 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : WP.PerformanceImprovementV
## -  Predictor (X) : WA.GraceV.GroC
## -  Mediators (M) : WP.CreativeProcessEngagementV.GroC
## - Moderators (W) : B.CompetitiveClimateV.GraC
## - Covariates (C) : WP.CreativeProcessEngagementV_mean, WA.GraceV_mean
## -   HLM Clusters : B.ID
## 
## Formula of Mediator:
## -    WP.CreativeProcessEngagementV.GroC ~ WP.CreativeProcessEngagementV_mean + WA.GraceV_mean + WA.GraceV.GroC + B.CompetitiveClimateV.GraC + (1 | B.ID)
## Formula of Outcome:
## -    WP.PerformanceImprovementV ~ WP.CreativeProcessEngagementV_mean + WA.GraceV_mean + WA.GraceV.GroC + WP.CreativeProcessEngagementV.GroC*B.CompetitiveClimateV.GraC + (1 | B.ID)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
##                                                                (1) WP.PerformanceImprovementV  (2) WP.CreativeProcessEngagementV.GroC  (3) WP.PerformanceImprovementV
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                                                      -0.041                          0.000                                   -0.002                      
##                                                                  (0.200)                        (0.067)                                  (0.202)                     
## WP.CreativeProcessEngagementV_mean                                0.975 ***                     -0.001                                    0.966 ***                  
##                                                                  (0.066)                        (0.022)                                  (0.066)                     
## WA.GraceV_mean                                                   -0.024                          0.001                                   -0.027                      
##                                                                  (0.066)                        (0.022)                                  (0.066)                     
## WA.GraceV.GroC                                                    0.203 **                       0.074 *                                  0.179 **                   
##                                                                  (0.062)                        (0.035)                                  (0.061)                     
## B.CompetitiveClimateV.GraC                                                                      -0.000                                    0.065                      
##                                                                                                 (0.018)                                  (0.055)                     
## WP.CreativeProcessEngagementV.GroC                                                                                                        0.386 ***                  
##                                                                                                                                          (0.066)                     
## WP.CreativeProcessEngagementV.GroC:B.CompetitiveClimateV.GraC                                                                            -0.200                      
##                                                                                                                                          (0.109)                     
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                                                      0.530                          0.007                                    0.549                      
## Conditional R^2                                                   0.676                          0.007                                    0.698                      
## AIC                                                            1297.715                        380.698                                 1274.143                      
## BIC                                                            1324.803                        412.301                                 1314.776                      
## Num. obs.                                                       675                            675                                      675                          
## Num. groups: B.ID                                               159                            159                                      159                          
## Var: B.ID (Intercept)                                             0.136                          0.000                                    0.140                      
## Var: Residual                                                     0.302                          0.097                                    0.282                      
## ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 14)
## Sample Size : 675 (60 missing observations deleted)
## Random Seed : set.seed(1223)
## Simulations : 100 (Monte Carlo)
## 
## Direct Effect: "WA.GraceV.GroC" (X) ==> "WP.PerformanceImprovementV" (Y)
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.179 (0.061) 2.959  .003 **  [0.061, 0.298]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "WP.PerformanceImprovementV" (Y)
## ───────────────────────────────────────────────────────────────────────────────────────
##                                                                     F df1 df2     p    
## ───────────────────────────────────────────────────────────────────────────────────────
## WP.CreativeProcessEngagementV.GroC * B.CompetitiveClimateV.GraC  3.34   1 520  .068 .  
## ───────────────────────────────────────────────────────────────────────────────────────
## 
## Simple Slopes: "WP.CreativeProcessEngagementV.GroC" (M) ==> "WP.PerformanceImprovementV" (Y)
## (Conditional Effects [b] of M on Y)
## ───────────────────────────────────────────────────────────────────────────
##  "B.CompetitiveClimateV.GraC" Effect    S.E.     t     p           [95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  -0.677 (- SD)                 0.521 (0.095) 5.497 <.001 *** [0.335, 0.707]
##  0.002 (Mean)                  0.386 (0.066) 5.834 <.001 *** [0.256, 0.515]
##  0.681 (+ SD)                  0.250 (0.104) 2.408  .016 *   [0.047, 0.453]
## ───────────────────────────────────────────────────────────────────────────
## 
## Running 100 * 3 simulations...
## Indirect Path: "WA.GraceV.GroC" (X) ==> "WP.CreativeProcessEngagementV.GroC" (M) ==> "WP.PerformanceImprovementV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ───────────────────────────────────────────────────────────────────────────
##  "B.CompetitiveClimateV.GraC" Effect    S.E.     z     p      [MCMC 95% CI]
## ───────────────────────────────────────────────────────────────────────────
##  -0.677 (- SD)                 0.041 (0.019) 2.108  .035 *   [0.010, 0.080]
##  0.002 (Mean)                  0.030 (0.015) 2.083  .037 *   [0.007, 0.064]
##  0.681 (+ SD)                  0.020 (0.012) 1.639  .101     [0.002, 0.049]
## ───────────────────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 100 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)
4.3.2.2.1 Plot
interact_plot(MoMe.S$model.y, pred = WP.CreativeProcessEngagementV.GroC, modx = B.CompetitiveClimateV.GraC,#Basic setup
              modx.values = "plus-minus", modx.labels= c("Low group", "High group"),legend.main="Competitive Climate",)+#Set moderators in plot
  ylab("System Performance Improvement")+xlab("Gratitude")#+#Set labels of X and Y

  #scale_y_continuous(limits = c(20, 50))+#limit X and Y
  #scale_x_continuous(limits = c(1, 4),breaks = c(1, 2, 3, 4),labels=c("2010年", "2011年", "2012年","2013年"))#set label of X