This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
dataset.df <- read.csv("~/Downloads/insurance.csv")
head(dataset.df)
## age sex bmi children smoker region charges
## 1 19 female 27.900 0 yes southwest 16884.924
## 2 18 male 33.770 1 no southeast 1725.552
## 3 28 male 33.000 3 no southeast 4449.462
## 4 33 male 22.705 0 no northwest 21984.471
## 5 32 male 28.880 0 no northwest 3866.855
## 6 31 female 25.740 0 no southeast 3756.622
dataset.df <- dataset.df[, c("age", "sex", "bmi")]
dataset.df$baru <- ""
head(dataset.df)
## age sex bmi baru
## 1 19 female 27.900
## 2 18 male 33.770
## 3 28 male 33.000
## 4 33 male 22.705
## 5 32 male 28.880
## 6 31 female 25.740
dataset.df["bmi.category"] <- ""
head(dataset.df)
## age sex bmi baru bmi.category
## 1 19 female 27.900
## 2 18 male 33.770
## 3 28 male 33.000
## 4 33 male 22.705
## 5 32 male 28.880
## 6 31 female 25.740
dataset.df["bmi.category"][dataset.df["bmi"]<18.5] <-"underweight"
dataset.df["bmi.category"][dataset.df["bmi"]>25] <-"overweight"
dataset.df["bmi.category"][dataset.df["bmi.category"]==""] <-"normal"
head(dataset.df)
## age sex bmi baru bmi.category
## 1 19 female 27.900 overweight
## 2 18 male 33.770 overweight
## 3 28 male 33.000 overweight
## 4 33 male 22.705 normal
## 5 32 male 28.880 overweight
## 6 31 female 25.740 overweight
# Seed NRP
set.seed(1401201013)
# Fungsi transformasi invers
inverse_transform <- function(u) {
x <- sqrt(u) / 2 # Transformasi invers untuk distribusi
return(x)
}
# Membangkitkan 100 bilangan acak dari distribusi yang diberikan
n <- 100
u <- runif(n) # Menghasilkan bilangan acak dari distribusi uniform antara 0 dan 1
x <- inverse_transform(u) # Menggunakan fungsi transformasi invers
# Menampilkan hasil
print(x)
## [1] 0.23837782 0.22408760 0.41743818 0.46394599 0.24456634 0.20877029
## [7] 0.40260467 0.40731262 0.48611461 0.34946510 0.37071738 0.48152118
## [13] 0.47026279 0.48348461 0.45990564 0.42146701 0.43050028 0.10635673
## [19] 0.09021058 0.12438700 0.34204711 0.36538578 0.35569679 0.25891932
## [25] 0.36611472 0.38702364 0.41015091 0.28336083 0.16968212 0.22642998
## [31] 0.44920482 0.25887918 0.39053169 0.39065805 0.41584031 0.18138768
## [37] 0.13771744 0.39511760 0.43873135 0.15161733 0.47509139 0.25957338
## [43] 0.44032754 0.35201947 0.16749887 0.49311016 0.20802335 0.33102195
## [49] 0.14068956 0.24250389 0.23516928 0.13003087 0.38980098 0.43776503
## [55] 0.35437419 0.32502097 0.10780763 0.37784595 0.48691775 0.33329417
## [61] 0.32455020 0.44971666 0.48312020 0.37936080 0.38261042 0.39907373
## [67] 0.35145617 0.47561225 0.45271416 0.28697602 0.27101216 0.28856327
## [73] 0.47590908 0.33552513 0.34119980 0.46643986 0.35574033 0.30065685
## [79] 0.29548165 0.47794518 0.45755151 0.30029124 0.48479847 0.35119158
## [85] 0.25964965 0.10781457 0.44483256 0.46098567 0.41610944 0.43146407
## [91] 0.40027459 0.25173810 0.37839949 0.24394049 0.43427865 0.48747257
## [97] 0.43745916 0.47654470 0.39203360 0.30490075
# Membuat grafik distribusi empiris
hist(x, breaks = 20, prob = TRUE, main = "Distribusi Empiris", xlab = "Nilai X")
curve(12*x^2*(1-x), add = TRUE, col = "red", lwd = 2)