library(tidyverse)
library(janitor)
library(flextable)
library(moments)
getwd()
## [1] "C:/Users/xpadi/OneDrive/Escritorio/Universidad/2023-2/Bioinformatica"
setwd("C:/Users/xpadi/OneDrive/Escritorio/Universidad/2023-2/Bioinformatica")
getwd()
## [1] "C:/Users/xpadi/OneDrive/Escritorio/Universidad/2023-2/Bioinformatica"
df=read.csv("500_Person_Gender_Height_Weight_Index.csv")
table(df$Gender)
##
## Female Male
## 255 245
La función tabyl se encuentra en la paqueteria janitor
table(df$Gender)
##
## Female Male
## 255 245
df %>% tabyl(Gender)
## Gender n percent
## Female 255 0.51
## Male 245 0.49
#tabyl da cuantos hay y en porcentaje
Versión mejorada
df %>% tabyl(Gender)%>%
flextable()%>%
fontsize(size=14)%>%
autofit()
Gender | n | percent |
|---|---|---|
Female | 255 | 0.51 |
Male | 245 | 0.49 |
df%>% tabyl(Gender)%>%
adorn_pct_formatting()%>%
flextable()%>%
fontsize(size=14)%>%
autofit()%>%
theme_box()
Gender | n | percent |
|---|---|---|
Female | 255 | 51.0% |
Male | 245 | 49.0% |
df%>% tabyl(Gender)%>%
adorn_totals("row")%>%
adorn_pct_formatting()%>%
flextable()%>%
fontsize(size=14)%>%
autofit()%>%
theme_box()
Gender | n | percent |
|---|---|---|
Female | 255 | 51.0% |
Male | 245 | 49.0% |
Total | 500 | 100.0% |
df %>% tabyl(Gender)%>%
ggplot(aes(x=Gender,y=n,fill=Gender))+
geom_col()+
labs(x="Genero",y="Frecuencia",title = "Genero de los encuestados")+
guides(fill=FALSE)
df %>% tabyl(Weight)%>%
ggplot(aes(x=Weight,y=n,fill=Weight))+
geom_col()+
labs(x="Peso",y="Frecuencia",title="Peso de los encuestados")+
geom_text(aes(label=n),vjust=1.5,col="white",fontface="bold")
df %>% tabyl(Gender)%>%
ggplot(aes(x=Gender,y=n,fill=Gender))+
geom_col()+
labs(x="Genero",y="Frecuencia",title="Genero de los encuestados")+
geom_text(aes(label=sprintf("%.2f%%",100*percent)),vjust=1.5,col="white",fontface="bold")
n=100
numeros= rnorm(n=n,mean=20,sd=1)
numeros
## [1] 18.34981 20.90628 21.65883 20.00418 20.38705 19.62184 19.88493 19.54363
## [9] 18.88072 20.11042 19.73245 21.10461 20.63915 19.09704 20.01025 21.78147
## [17] 19.86414 20.83799 19.07582 21.54067 19.70331 20.87679 20.20636 20.36104
## [25] 18.27729 19.71850 19.51813 23.31992 20.17049 20.80231 19.64855 21.59344
## [33] 21.08385 20.72297 20.00221 18.79489 20.22549 20.70079 19.50620 19.21157
## [41] 18.03785 20.75006 19.58807 16.66063 19.93704 19.50728 17.84562 18.99696
## [49] 18.66469 19.09867 18.94722 20.69832 19.33933 18.75053 21.11828 20.17801
## [57] 19.42060 21.13341 19.46589 19.62398 20.89609 20.39718 19.98148 20.66587
## [65] 21.25255 18.60555 19.06325 17.74926 18.59314 20.11798 20.38930 18.63804
## [73] 20.44239 20.04718 21.22896 20.98803 20.58817 19.46253 19.71645 19.21688
## [81] 20.07555 21.22608 20.68400 21.38023 18.50697 19.10191 19.02500 18.14078
## [89] 19.80997 20.36756 19.34232 21.27608 19.81637 20.34342 20.48275 19.49632
## [97] 20.05225 17.26891 19.96078 20.92943
df1=data.frame(numeros)
df1
## numeros
## 1 18.34981
## 2 20.90628
## 3 21.65883
## 4 20.00418
## 5 20.38705
## 6 19.62184
## 7 19.88493
## 8 19.54363
## 9 18.88072
## 10 20.11042
## 11 19.73245
## 12 21.10461
## 13 20.63915
## 14 19.09704
## 15 20.01025
## 16 21.78147
## 17 19.86414
## 18 20.83799
## 19 19.07582
## 20 21.54067
## 21 19.70331
## 22 20.87679
## 23 20.20636
## 24 20.36104
## 25 18.27729
## 26 19.71850
## 27 19.51813
## 28 23.31992
## 29 20.17049
## 30 20.80231
## 31 19.64855
## 32 21.59344
## 33 21.08385
## 34 20.72297
## 35 20.00221
## 36 18.79489
## 37 20.22549
## 38 20.70079
## 39 19.50620
## 40 19.21157
## 41 18.03785
## 42 20.75006
## 43 19.58807
## 44 16.66063
## 45 19.93704
## 46 19.50728
## 47 17.84562
## 48 18.99696
## 49 18.66469
## 50 19.09867
## 51 18.94722
## 52 20.69832
## 53 19.33933
## 54 18.75053
## 55 21.11828
## 56 20.17801
## 57 19.42060
## 58 21.13341
## 59 19.46589
## 60 19.62398
## 61 20.89609
## 62 20.39718
## 63 19.98148
## 64 20.66587
## 65 21.25255
## 66 18.60555
## 67 19.06325
## 68 17.74926
## 69 18.59314
## 70 20.11798
## 71 20.38930
## 72 18.63804
## 73 20.44239
## 74 20.04718
## 75 21.22896
## 76 20.98803
## 77 20.58817
## 78 19.46253
## 79 19.71645
## 80 19.21688
## 81 20.07555
## 82 21.22608
## 83 20.68400
## 84 21.38023
## 85 18.50697
## 86 19.10191
## 87 19.02500
## 88 18.14078
## 89 19.80997
## 90 20.36756
## 91 19.34232
## 92 21.27608
## 93 19.81637
## 94 20.34342
## 95 20.48275
## 96 19.49632
## 97 20.05225
## 98 17.26891
## 99 19.96078
## 100 20.92943
df1 %>%
ggplot(aes(x=numeros))+
geom_histogram(color="blue",fill="lightblue")+
labs(x="Numeros",y="Frecuencia",tittle="Campana de gauss experimental")