Participants

#Data File
N <- read.csv("full.csv", header = T, na.strings=c(".", "", " ", "NA", "-99"))

#Sample Size: Number of participants (rows)
nrow(N)
## [1] 40

Demographics

#Age range
range(N$Age, na.rm = T)
## [1] 17 94
#Average age
mean(N$Age, na.rm = T)
## [1] 36.65789
#Standard deviation of age
sd(N$Age, na.rm = T)
## [1] 18.76062
#Gender frequencies
table(N$Gender)
## 
##  1  2  3 
## 22 15  2
#Ethnicity 
table(N$Ethnicity)
## 
##  1  2  3  6  7 
##  1  2  6 29  1
describe(N$Ethnicity)
## N$Ethnicity 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        5    0.585    5.231    1.341 
##                                         
## Value          1     2     3     6     7
## Frequency      1     2     6    29     1
## Proportion 0.026 0.051 0.154 0.744 0.026
## 
## For the frequency table, variable is rounded to the nearest 0
# Education: Please indicate the highest level of education you have completed (1 = Elementary/Grammar School, 2 = Middle School, 3 = High School or Equivalent, 4 = Vocational/Technical School (2 years), 5 = Some College, 6 = College or University (4 years), 7 = Master's Degree (MS, MA, MBA, etc.), 8 = Doctoral Degree (PhD), 9 = Professional Degree (MD, JD, etc.). 

N$EdNum <- as.numeric(as.character(N$EDU))
N$EDU1 <- factor(N$EdNum, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), 
                     labels = c("Elementary/Grammar School", "Middle School", "High School or Equivalent", "Vocational/Technical School (2 years)", "Some College", "College or University (4 years)", "Master's Degree (MS, MA, MBA, etc.)", "Doctoral Degree (PhD)", "Doctoral Degree (PhD)", "Other"))
table(N$EDU1)
## 
##             Elementary/Grammar School                         Middle School 
##                                     0                                     0 
##             High School or Equivalent Vocational/Technical School (2 years) 
##                                     4                                     0 
##                          Some College       College or University (4 years) 
##                                     8                                    15 
##   Master's Degree (MS, MA, MBA, etc.)                 Doctoral Degree (PhD) 
##                                     9                                     3 
##                                 Other 
##                                     0
describe(N$EdNum)
## N$EdNum 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        5    0.921    5.872    1.398 
##                                         
## Value          3     5     6     7     8
## Frequency      4     8    15     9     3
## Proportion 0.103 0.205 0.385 0.231 0.077
## 
## For the frequency table, variable is rounded to the nearest 0
hist(N$EdNum)

#Socioeconomic Status
describe(N$SES)
## N$SES 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       39        1       10    0.973    5.769    2.777      1.0      1.8 
##      .25      .50      .75      .90      .95 
##      5.0      6.0      7.5      9.0      9.0 
##                                                                       
## Value          1     2     3     4     5     6     7     8     9    10
## Frequency      4     1     1     3    10     3     7     4     5     1
## Proportion 0.103 0.026 0.026 0.077 0.256 0.077 0.179 0.103 0.128 0.026
## 
## For the frequency table, variable is rounded to the nearest 0
sd(N$SES, na.rm = TRUE)
## [1] 2.454443
N$SES1 <- factor(N$SES, levels = c(2, 3, 4, 5, 6, 7,8, 9, 10), 
                     labels = c("Under $10,000", "$10,000-$19,999", "$20,000-$29,999", "$30,000-$39,999", "$40,000-$49,999", "$50,000-$74,999", "$75,000-$99,999", "$100,000-$149,999", "$150,000 or more"))
table(N$SES1)
## 
##     Under $10,000   $10,000-$19,999   $20,000-$29,999   $30,000-$39,999 
##                 1                 1                 3                10 
##   $40,000-$49,999   $50,000-$74,999   $75,000-$99,999 $100,000-$149,999 
##                 3                 7                 4                 5 
##  $150,000 or more 
##                 1
hist(N$SES, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

# Living Environment (1 = urban, 2 = suburban, 3 = rural)
table(N$Region)
## 
##  1  2  3 
##  9 24  6
#Political Ideology 

##Which of the following best describes your political orientation? ( 1 = Strongly Conservative to 7 = Strongly Liberal)

describe(N$ContoLib)
## N$ContoLib 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        7    0.956    5.128    1.919 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      2     2     2     6     9     7    11
## Proportion 0.051 0.051 0.051 0.154 0.231 0.179 0.282
## 
## For the frequency table, variable is rounded to the nearest 0
N$IDEO = as.numeric(recode_factor(N$ContoLib,'1'= "3",'2'= "2",'3'= "1",
                                          '4'= "0",'5'= "-1", '6'= "-2", '7'= "-3"))
describe(N$IDEO)
## N$IDEO 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        7    0.956    5.128    1.919 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      2     2     2     6     9     7    11
## Proportion 0.051 0.051 0.051 0.154 0.231 0.179 0.282
## 
## For the frequency table, variable is rounded to the nearest 0
hist(N$IDEO , main = 'Political Ideology')

Tendency to Perceive Technology as Natural Scale

#Recode 6-12 coding scheme to traditional 1-7 Likert Scale 
N$TPTNS_1RECODE = recode(N$TPTNS_1,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'= 6, '12'=7)
N$TPTNS_2RECODE = recode(N$TPTNS_2,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_3RRECODE = recode(N$TPTNS_3R,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_4RECODE = recode(N$TPTNS_4,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_5RRECODE = recode(N$TPTNS_5R,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_6RECODE = recode(N$TPTNS_6,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_7RECODE = recode(N$TPTNS_7R,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_8RECODE = recode(N$TPTNS_8,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_9RRECODE = recode(N$TPTNS_9R,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_10RECODE = recode(N$TPTNS_10,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_11RECODE = recode(N$TPTNS_11,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_12RRECODE = recode(N$TPTNS_12R,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_13RECODE = recode(N$TPTNS_13,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_14RECODE = recode(N$TPTNS_14,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)
N$TPTNS_15RRECODE = recode(N$TPTNS_15R,'6'=1,'7'=2,'8'=3,
                                          '9'=4,'10'= 5, '11'=6, '12'=7)

#Now make sure that all items on the TPTNS are numeric and rename them
N$T1 <- as.numeric(as.character(N$TPTNS_1RECODE))
N$T2 <- as.numeric(as.character(N$TPTNS_2RECODE))
N$T3R <- as.numeric(as.character(N$TPTNS_3RRECODE))
N$T4 <- as.numeric(as.character(N$TPTNS_4RECODE))
N$T5R <- as.numeric(as.character(N$TPTNS_5RRECODE))
N$T6 <- as.numeric(as.character(N$TPTNS_6RECODE))
N$T7R <- as.numeric(as.character(N$TPTNS_7RECODE))
N$T8 <- as.numeric(as.character(N$TPTNS_8RECODE))
N$T9R <- as.numeric(as.character(N$TPTNS_9RRECODE))
N$T10 <- as.numeric(as.character(N$TPTNS_10RECODE))
N$T11 <- as.numeric(as.character(N$TPTNS_11RECODE))
N$T12R <- as.numeric(as.character(N$TPTNS_12RRECODE))
N$T13 <- as.numeric(as.character(N$TPTNS_13RECODE))
N$T14 <- as.numeric(as.character(N$TPTNS_14RECODE))
N$T15R <- as.numeric(as.character(N$TPTNS_15RRECODE))

#Histograms
hist(N$T1, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T2, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T3R, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T4, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T5R, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T6, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T7R, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T8, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T9R, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T10, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T11, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T12R, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T13, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T14, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

hist(N$T15R, na.rm = TRUE)
## Warning in plot.window(xlim, ylim, "", ...): "na.rm" is not a graphical
## parameter
## Warning in title(main = main, sub = sub, xlab = xlab, ylab = ylab, ...):
## "na.rm" is not a graphical parameter
## Warning in axis(1, ...): "na.rm" is not a graphical parameter
## Warning in axis(2, at = yt, ...): "na.rm" is not a graphical parameter

#Tendency to Perceive Technology as Natural Score
N$TPTNS_Score <- rowMeans(N [, c("T1", "T2", "T3R", "T4", "T5R", "T6", "T7R", "T8", "T9R", "T10", "T11", "T12R", "T13", "T14", "T15R")], na.rm=TRUE)

describe(N$TPTNS_Score)
## N$TPTNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       40        0       30    0.998    3.732   0.9832    2.383    2.593 
##      .25      .50      .75      .90      .95 
##    3.283    3.833    4.017    4.940    5.410 
## 
## lowest : 1.66667 2.06667 2.4     2.53333 2.6    
## highest: 4.6     4.93333 5       5.4     5.6
sd(N$TPTNS_Score, na.rm= TRUE)
## [1] 0.8821739
hist(N$TPTNS_Score)

# TPTNS Scale 
N$TPTNS_Scale <- data.frame(N$T1, N$T2, N$T3R, N$T4, N$T5R, N$T6, N$T7R, N$T8, N$T9R, N$T10, N$T11, N$T12R, N$T13, N$T14, N$T15R)
describe(N$TPTNS_Scale)
## N$TPTNS_Scale 
## 
##  15  Variables      40  Observations
## --------------------------------------------------------------------------------
## N.T1 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.956     3.45    2.018 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      4    13     5     6     5     5     2
## Proportion 0.100 0.325 0.125 0.150 0.125 0.125 0.050
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T2 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        6    0.924    4.925    1.429 
##                                               
## Value          2     3     4     5     6     7
## Frequency      4     1     7    12    14     2
## Proportion 0.100 0.025 0.175 0.300 0.350 0.050
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T3R 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        4    0.885     2.25   0.9795 
##                               
## Value         1    2    3    4
## Frequency     8   18   10    4
## Proportion 0.20 0.45 0.25 0.10
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T4 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        6    0.963      4.5    1.944 
##                                               
## Value          2     3     4     5     6     7
## Frequency      7     5     9     4    10     5
## Proportion 0.175 0.125 0.225 0.100 0.250 0.125
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T5R 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.942    3.075    1.786 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      5    14     7     8     1     3     2
## Proportion 0.125 0.350 0.175 0.200 0.025 0.075 0.050
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T6 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.951     4.75    2.005 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      3     4     3     3     9    13     5
## Proportion 0.075 0.100 0.075 0.075 0.225 0.325 0.125
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T7R 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.962      4.5    1.946 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      2     4     5     9     5    11     4
## Proportion 0.050 0.100 0.125 0.225 0.125 0.275 0.100
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T8 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.947     4.45    1.992 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      3     5     4     5     7    14     2
## Proportion 0.075 0.125 0.100 0.125 0.175 0.350 0.050
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T9R 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.956    3.675    1.722 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      2     7    12     8     4     6     1
## Proportion 0.050 0.175 0.300 0.200 0.100 0.150 0.025
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T10 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        6    0.947      4.5    1.638 
##                                               
## Value          2     3     4     5     6     7
## Frequency      7     1    10    11     9     2
## Proportion 0.175 0.025 0.250 0.275 0.225 0.050
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T11 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.956    3.575    2.206 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      4    13     6     3     6     3     5
## Proportion 0.100 0.325 0.150 0.075 0.150 0.075 0.125
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T12R 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        6     0.93      2.9    1.869 
##                                               
## Value          1     2     3     4     6     7
## Frequency      7    15     9     3     2     4
## Proportion 0.175 0.375 0.225 0.075 0.050 0.100
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T13 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.956      3.4    2.351 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      8    12     4     2     3     8     3
## Proportion 0.200 0.300 0.100 0.050 0.075 0.200 0.075
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T14 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.934    2.775    1.714 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      8    15     5     6     3     2     1
## Proportion 0.200 0.375 0.125 0.150 0.075 0.050 0.025
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T15R 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.955     3.25    2.056 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      6    13     6     4     4     5     2
## Proportion 0.150 0.325 0.150 0.100 0.100 0.125 0.050
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
psych::alpha(N$TPTNS_Scale)
## Warning in psych::alpha(N$TPTNS_Scale): Some items were negatively correlated with the first principal component and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( N.T3R ) were negatively correlated with the first principal component and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = N$TPTNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.81       0.8     0.9      0.21 4.1 0.042  3.7 0.88     0.25
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.71  0.81  0.89
## Duhachek  0.73  0.81  0.89
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## N.T1        0.78      0.78    0.87      0.20 3.5    0.049 0.052  0.24
## N.T2        0.80      0.79    0.88      0.21 3.8    0.045 0.057  0.26
## N.T3R       0.83      0.83    0.90      0.26 4.9    0.040 0.037  0.27
## N.T4        0.78      0.78    0.88      0.20 3.5    0.049 0.051  0.24
## N.T5R       0.82      0.81    0.89      0.23 4.1    0.041 0.054  0.27
## N.T6        0.80      0.79    0.88      0.21 3.8    0.044 0.051  0.26
## N.T7R       0.79      0.78    0.88      0.20 3.5    0.048 0.055  0.22
## N.T8        0.80      0.80    0.88      0.22 3.9    0.044 0.052  0.25
## N.T9R       0.80      0.79    0.89      0.21 3.7    0.045 0.056  0.26
## N.T10       0.79      0.77    0.87      0.20 3.4    0.048 0.050  0.24
## N.T11       0.79      0.78    0.88      0.20 3.6    0.048 0.052  0.25
## N.T12R      0.80      0.79    0.88      0.21 3.8    0.045 0.052  0.25
## N.T13       0.83      0.82    0.90      0.24 4.5    0.038 0.047  0.27
## N.T14       0.80      0.79    0.89      0.21 3.7    0.046 0.057  0.25
## N.T15R      0.79      0.79    0.88      0.21 3.7    0.046 0.054  0.25
## 
##  Item statistics 
##         n raw.r std.r  r.cor r.drop mean  sd
## N.T1   40  0.72  0.71  0.707  0.644  3.5 1.8
## N.T2   40  0.51  0.55  0.512  0.429  4.9 1.3
## N.T3R  40 -0.12 -0.03 -0.105 -0.182  2.2 0.9
## N.T4   40  0.71  0.69  0.688  0.638  4.5 1.7
## N.T5R  40  0.31  0.36  0.310  0.189  3.1 1.6
## N.T6   40  0.53  0.55  0.548  0.425  4.8 1.8
## N.T7R  40  0.67  0.68  0.664  0.595  4.5 1.7
## N.T8   40  0.50  0.48  0.462  0.387  4.5 1.8
## N.T9R  40  0.54  0.57  0.532  0.446  3.7 1.5
## N.T10  40  0.71  0.72  0.729  0.645  4.5 1.5
## N.T11  40  0.67  0.63  0.621  0.570  3.6 2.0
## N.T12R 40  0.56  0.52  0.493  0.454  2.9 1.8
## N.T13  40  0.22  0.16  0.086  0.058  3.4 2.1
## N.T14  40  0.58  0.59  0.543  0.495  2.8 1.6
## N.T15R 40  0.61  0.58  0.544  0.506  3.2 1.8
## 
## Non missing response frequency for each item
##           1    2    3    4    5    6    7 miss
## N.T1   0.10 0.32 0.12 0.15 0.12 0.12 0.05    0
## N.T2   0.00 0.10 0.03 0.17 0.30 0.35 0.05    0
## N.T3R  0.20 0.45 0.25 0.10 0.00 0.00 0.00    0
## N.T4   0.00 0.17 0.12 0.22 0.10 0.25 0.12    0
## N.T5R  0.12 0.35 0.17 0.20 0.03 0.07 0.05    0
## N.T6   0.07 0.10 0.07 0.07 0.22 0.32 0.12    0
## N.T7R  0.05 0.10 0.12 0.22 0.12 0.28 0.10    0
## N.T8   0.07 0.12 0.10 0.12 0.17 0.35 0.05    0
## N.T9R  0.05 0.17 0.30 0.20 0.10 0.15 0.03    0
## N.T10  0.00 0.17 0.03 0.25 0.28 0.22 0.05    0
## N.T11  0.10 0.32 0.15 0.07 0.15 0.07 0.12    0
## N.T12R 0.17 0.38 0.22 0.07 0.00 0.05 0.10    0
## N.T13  0.20 0.30 0.10 0.05 0.07 0.20 0.07    0
## N.T14  0.20 0.38 0.12 0.15 0.07 0.05 0.03    0
## N.T15R 0.15 0.32 0.15 0.10 0.10 0.12 0.05    0
# Reliability if items 2, 3, and 13 were removed
N$TPTNS_Scale2 <- data.frame(N$T1,N$T4, N$T5R, N$T6, N$T7R, N$T8, N$T9R, N$T10, N$T11, N$T12R, N$T14, N$T15R)
describe(N$TPTNS_Scale2)
## N$TPTNS_Scale2 
## 
##  12  Variables      40  Observations
## --------------------------------------------------------------------------------
## N.T1 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.956     3.45    2.018 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      4    13     5     6     5     5     2
## Proportion 0.100 0.325 0.125 0.150 0.125 0.125 0.050
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T4 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        6    0.963      4.5    1.944 
##                                               
## Value          2     3     4     5     6     7
## Frequency      7     5     9     4    10     5
## Proportion 0.175 0.125 0.225 0.100 0.250 0.125
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T5R 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.942    3.075    1.786 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      5    14     7     8     1     3     2
## Proportion 0.125 0.350 0.175 0.200 0.025 0.075 0.050
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T6 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.951     4.75    2.005 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      3     4     3     3     9    13     5
## Proportion 0.075 0.100 0.075 0.075 0.225 0.325 0.125
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T7R 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.962      4.5    1.946 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      2     4     5     9     5    11     4
## Proportion 0.050 0.100 0.125 0.225 0.125 0.275 0.100
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T8 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.947     4.45    1.992 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      3     5     4     5     7    14     2
## Proportion 0.075 0.125 0.100 0.125 0.175 0.350 0.050
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T9R 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.956    3.675    1.722 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      2     7    12     8     4     6     1
## Proportion 0.050 0.175 0.300 0.200 0.100 0.150 0.025
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T10 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        6    0.947      4.5    1.638 
##                                               
## Value          2     3     4     5     6     7
## Frequency      7     1    10    11     9     2
## Proportion 0.175 0.025 0.250 0.275 0.225 0.050
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T11 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.956    3.575    2.206 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      4    13     6     3     6     3     5
## Proportion 0.100 0.325 0.150 0.075 0.150 0.075 0.125
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T12R 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        6     0.93      2.9    1.869 
##                                               
## Value          1     2     3     4     6     7
## Frequency      7    15     9     3     2     4
## Proportion 0.175 0.375 0.225 0.075 0.050 0.100
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T14 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.934    2.775    1.714 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      8    15     5     6     3     2     1
## Proportion 0.200 0.375 0.125 0.150 0.075 0.050 0.025
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.T15R 
##        n  missing distinct     Info     Mean      Gmd 
##       40        0        7    0.955     3.25    2.056 
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency      6    13     6     4     4     5     2
## Proportion 0.150 0.325 0.150 0.100 0.100 0.125 0.050
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
psych::alpha(N$TPTNS_Scale2)
## 
## Reliability analysis   
## Call: psych::alpha(x = N$TPTNS_Scale2)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.84      0.84     0.9      0.31 5.3 0.037  3.8  1     0.32
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.75  0.84  0.90
## Duhachek  0.77  0.84  0.91
## 
##  Reliability if an item is dropped:
##        raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## N.T1        0.82      0.82    0.88      0.29 4.5    0.043 0.032  0.32
## N.T4        0.82      0.82    0.88      0.29 4.5    0.043 0.030  0.32
## N.T5R       0.85      0.85    0.90      0.34 5.8    0.035 0.023  0.35
## N.T6        0.83      0.83    0.88      0.31 4.9    0.040 0.027  0.33
## N.T7R       0.82      0.82    0.88      0.29 4.6    0.042 0.033  0.32
## N.T8        0.83      0.83    0.88      0.31 5.0    0.040 0.029  0.34
## N.T9R       0.83      0.83    0.89      0.31 4.9    0.040 0.033  0.34
## N.T10       0.82      0.82    0.87      0.29 4.4    0.043 0.027  0.29
## N.T11       0.82      0.82    0.89      0.29 4.6    0.043 0.030  0.29
## N.T12R      0.83      0.84    0.89      0.32 5.1    0.039 0.026  0.34
## N.T14       0.83      0.83    0.90      0.31 4.9    0.040 0.033  0.32
## N.T15R      0.83      0.83    0.89      0.31 4.9    0.040 0.031  0.33
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean  sd
## N.T1   40  0.71  0.70  0.68   0.63  3.5 1.8
## N.T4   40  0.71  0.71  0.70   0.63  4.5 1.7
## N.T5R  40  0.30  0.31  0.25   0.17  3.1 1.6
## N.T6   40  0.58  0.59  0.58   0.47  4.8 1.8
## N.T7R  40  0.69  0.69  0.66   0.60  4.5 1.7
## N.T8   40  0.56  0.56  0.53   0.45  4.5 1.8
## N.T9R  40  0.55  0.57  0.52   0.46  3.7 1.5
## N.T10  40  0.72  0.74  0.74   0.66  4.5 1.5
## N.T11  40  0.70  0.69  0.66   0.60  3.6 2.0
## N.T12R 40  0.53  0.51  0.48   0.42  2.9 1.8
## N.T14  40  0.59  0.59  0.54   0.49  2.8 1.6
## N.T15R 40  0.57  0.56  0.52   0.46  3.2 1.8
## 
## Non missing response frequency for each item
##           1    2    3    4    5    6    7 miss
## N.T1   0.10 0.32 0.12 0.15 0.12 0.12 0.05    0
## N.T4   0.00 0.17 0.12 0.22 0.10 0.25 0.12    0
## N.T5R  0.12 0.35 0.17 0.20 0.03 0.07 0.05    0
## N.T6   0.07 0.10 0.07 0.07 0.22 0.32 0.12    0
## N.T7R  0.05 0.10 0.12 0.22 0.12 0.28 0.10    0
## N.T8   0.07 0.12 0.10 0.12 0.17 0.35 0.05    0
## N.T9R  0.05 0.17 0.30 0.20 0.10 0.15 0.03    0
## N.T10  0.00 0.17 0.03 0.25 0.28 0.22 0.05    0
## N.T11  0.10 0.32 0.15 0.07 0.15 0.07 0.12    0
## N.T12R 0.17 0.38 0.22 0.07 0.00 0.05 0.10    0
## N.T14  0.20 0.38 0.12 0.15 0.07 0.05 0.03    0
## N.T15R 0.15 0.32 0.15 0.10 0.10 0.12 0.05    0

Aversion to Tampering with Nature

#Aversion to Tampering with Nature
#Aversion to Tampering with Nature Item Definitions
N$A1 <- as.numeric(as.character(N$ATNS_1))
N$A2 <- as.numeric(as.character(N$ATNS_2))
N$A3 <- as.numeric(as.character(N$ATNS_3))
N$A4 <- as.numeric(as.character(N$ATNS_4))
N$A5R <- as.numeric(as.character(N$ATNS_5R))

#Aversion to Tampering with Nature Scale Descriptives (No reversed codes)
describe(N$A1)
## N$A1 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        7     0.93    9.744    1.609 
##                                                     
## Value          6     7     8     9    10    11    12
## Frequency      1     4     1     7    15     7     4
## Proportion 0.026 0.103 0.026 0.179 0.385 0.179 0.103
## 
## For the frequency table, variable is rounded to the nearest 0
sd(N$A1)
## [1] NA
range(N$A1, na.rm=TRUE)
## [1]  6 12
describe(N$A2)
## N$A2 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        7    0.957    9.385    1.738 
##                                                     
## Value          6     7     8     9    10    11    12
## Frequency      1     4     7     6    12     6     3
## Proportion 0.026 0.103 0.179 0.154 0.308 0.154 0.077
## 
## For the frequency table, variable is rounded to the nearest 0
sd(N$A2)
## [1] NA
range(N$A2, na.rm=TRUE)
## [1]  6 12
describe(N$A3)
## N$A3 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        7    0.949    8.718    1.598 
##                                                     
## Value          6     7     8     9    10    11    12
## Frequency      1     8    10     6    11     2     1
## Proportion 0.026 0.205 0.256 0.154 0.282 0.051 0.026
## 
## For the frequency table, variable is rounded to the nearest 0
sd(N$A3)
## [1] NA
range(N$A3, na.rm=TRUE)
## [1]  6 12
describe(N$A4)
## N$A4 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        7    0.962        9    1.781 
##                                                     
## Value          6     7     8     9    10    11    12
## Frequency      1     7     9     5     9     7     1
## Proportion 0.026 0.179 0.231 0.128 0.231 0.179 0.026
## 
## For the frequency table, variable is rounded to the nearest 0
sd(N$A4)
## [1] NA
range(N$A4, na.rm=TRUE)
## [1]  6 12
describe(N$A5R)
## N$A5R 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        6     0.96    9.282    1.657 
##                                               
## Value          7     8     9    10    11    12
## Frequency      4    10     8     7     8     2
## Proportion 0.103 0.256 0.205 0.179 0.205 0.051
## 
## For the frequency table, variable is rounded to the nearest 0
sd(N$A5R)
## [1] NA
range(N$A5R, na.rm=TRUE)
## [1]  7 12
#Aversion to Tampering with Nature Scale Histograms by Item (No reversed codes)
hist(N$A1, main = 'ATNS #1: People who push for technological fixes to environmental problems are underestimating the risks.')

hist(N$A2, main = 'ATNS #2: People who say we shouldn’t tamper with nature are just being naïve.')

hist(N$A3, main = 'ATNS #3: Human beings have no right to meddle with the natural environment.')

hist(N$A4, main = 'ATNS #4: I would prefer to live in a world where humans leave nature alone.')

hist(N$A5R, main = 'ATNS #5: Altering nature will be our downfall as a species.')

#Cronbach's Alpha (4 and 5 reverse coded)
N$ATNS_Scale <- data.frame(N$A1, N$A2, N$A3, N$A4, N$A5R)
N$ATNS_Score <- rowMeans(N [, c("A1", "A2", "A3", "A4", "A5R")], na.rm=TRUE)
psych::alpha(N$ATNS_Scale)
## 
## Reliability analysis   
## Call: psych::alpha(x = N$ATNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.74      0.74    0.76      0.36 2.9 0.065  9.2  1     0.38
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.59  0.74  0.85
## Duhachek  0.61  0.74  0.87
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## N.A1       0.71      0.71    0.73      0.38 2.4    0.076 0.054  0.36
## N.A2       0.76      0.76    0.77      0.45 3.2    0.063 0.034  0.42
## N.A3       0.60      0.60    0.57      0.27 1.5    0.103 0.018  0.30
## N.A4       0.63      0.63    0.60      0.30 1.7    0.096 0.022  0.35
## N.A5R      0.74      0.75    0.74      0.42 2.9    0.067 0.045  0.40
## 
##  Item statistics 
##        n raw.r std.r r.cor r.drop mean  sd
## N.A1  39  0.68  0.68  0.54   0.47  9.7 1.5
## N.A2  39  0.57  0.56  0.37   0.32  9.4 1.5
## N.A3  39  0.85  0.86  0.88   0.74  8.7 1.4
## N.A4  39  0.81  0.81  0.82   0.66  9.0 1.6
## N.A5R 39  0.59  0.60  0.44   0.37  9.3 1.5
## 
## Non missing response frequency for each item
##          6    7    8    9   10   11   12 miss
## N.A1  0.03 0.10 0.03 0.18 0.38 0.18 0.10 0.03
## N.A2  0.03 0.10 0.18 0.15 0.31 0.15 0.08 0.03
## N.A3  0.03 0.21 0.26 0.15 0.28 0.05 0.03 0.03
## N.A4  0.03 0.18 0.23 0.13 0.23 0.18 0.03 0.03
## N.A5R 0.00 0.10 0.26 0.21 0.18 0.21 0.05 0.03
describe(N$ATNS_Score)
## N$ATNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       39        1       20    0.996    9.226    1.202     7.78     7.96 
##      .25      .50      .75      .90      .95 
##     8.50     9.20    10.00    10.64    10.82 
##                                                                             
## Value        7.0   7.6   7.8   8.0   8.2   8.4   8.6   8.8   9.0   9.2   9.4
## Frequency      1     1     2     2     1     3     3     2     4     4     2
## Proportion 0.026 0.026 0.051 0.051 0.026 0.077 0.077 0.051 0.103 0.103 0.051
##                                                                 
## Value        9.6   9.8  10.0  10.2  10.4  10.6  10.8  11.0  11.4
## Frequency      1     1     3     2     2     1     2     1     1
## Proportion 0.026 0.026 0.077 0.051 0.051 0.026 0.051 0.026 0.026
## 
## For the frequency table, variable is rounded to the nearest 0
sd(N$ATNS_Score, na.rm=TRUE)
## [1] 1.041436
hist(N$ATNS_Score)

# Climate Change Belief

#Climate Change Belief Item Definitions
N$C1 <- as.numeric(as.character(N$CCB_1))
N$C2 <- as.numeric(as.character(N$CCB_2))
N$C3 <- as.numeric(as.character(N$CCB_3))
N$C4 <- as.numeric(as.character(N$CCB_4))

#Climate Change Belief Descriptives
describe(N$C1)
## N$C1 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        4    0.833    11.18    1.039 
##                                   
## Value          7    10    11    12
## Frequency      2     3    16    18
## Proportion 0.051 0.077 0.410 0.462
## 
## For the frequency table, variable is rounded to the nearest 0
range(N$C1, na.rm=TRUE)
## [1]  7 12
sd(N$C1, na.rm=TRUE)
## [1] 1.166908
describe(N$C2)
## N$C2 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        4    0.827    11.21     1.08 
##                                   
## Value          7    10    11    12
## Frequency      2     4    13    20
## Proportion 0.051 0.103 0.333 0.513
## 
## For the frequency table, variable is rounded to the nearest 0
range(N$C2, na.rm=TRUE)
## [1]  7 12
sd(N$C2, na.rm=TRUE)
## [1] 1.196035
describe(N$C3)
## N$C3 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        6    0.883    10.97    1.247 
##                                               
## Value          7     8     9    10    11    12
## Frequency      1     2     1     5    14    16
## Proportion 0.026 0.051 0.026 0.128 0.359 0.410
## 
## For the frequency table, variable is rounded to the nearest 0
range(N$C3, na.rm=TRUE)
## [1]  7 12
sd(N$C3, na.rm=TRUE)
## [1] 1.245776
describe(N$C4)
## N$C4 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        5    0.879    10.79    1.142 
##                                         
## Value          8     9    10    11    12
## Frequency      3     1     7    18    10
## Proportion 0.077 0.026 0.179 0.462 0.256
## 
## For the frequency table, variable is rounded to the nearest 0
range(N$C4, na.rm=TRUE)
## [1]  8 12
sd(N$C4, na.rm=TRUE)
## [1] 1.104524
#Climate Change Belief Histograms
hist(N$C1, main = 'Climate Change Belief #1: Climate change is happening."')

hist(N$C2, main = 'Climate Change Belief #2:Climate change poses a risk to human health, safety, and prosperity."')

hist(N$C3, main = 'Climate Change Belief #3:Human activity is largely responsible for recent climate change."')

hist(N$C4, main = 'Climate Change Belief #4: Reducing greenhouse gas emissions will reduce global warming and climate change."')

#Score & Scale
N$CCB_Score <- rowMeans(N [, c('C1', 'C2', 'C3','C4')], na.rm=T)
describe(N$CCB_Score)
## N$CCB_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       39        1       11    0.976    11.04    1.078     8.85    10.00 
##      .25      .50      .75      .90      .95 
##    10.75    11.25    11.75    12.00    12.00 
##                                                                             
## Value       7.25  7.50  9.00 10.00 10.50 10.75 11.00 11.25 11.50 11.75 12.00
## Frequency      1     1     1     2     3     4     7     1     6     4     9
## Proportion 0.026 0.026 0.026 0.051 0.077 0.103 0.179 0.026 0.154 0.103 0.231
## 
## For the frequency table, variable is rounded to the nearest 0
hist(N$CCB_Score)

sd(N$CCB_Score, na.rm = TRUE)
## [1] 1.101044
N$CCB_Scale <- data.frame(N$CCB_1, N$CCB_2, N$CCB_3, N$CCB_4)
describe(N$CCB_Scale)
## N$CCB_Scale 
## 
##  4  Variables      40  Observations
## --------------------------------------------------------------------------------
## N.CCB_1 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        4    0.833    11.18    1.039 
##                                   
## Value          7    10    11    12
## Frequency      2     3    16    18
## Proportion 0.051 0.077 0.410 0.462
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.CCB_2 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        4    0.827    11.21     1.08 
##                                   
## Value          7    10    11    12
## Frequency      2     4    13    20
## Proportion 0.051 0.103 0.333 0.513
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.CCB_3 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        6    0.883    10.97    1.247 
##                                               
## Value          7     8     9    10    11    12
## Frequency      1     2     1     5    14    16
## Proportion 0.026 0.051 0.026 0.128 0.359 0.410
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.CCB_4 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        5    0.879    10.79    1.142 
##                                         
## Value          8     9    10    11    12
## Frequency      3     1     7    18    10
## Proportion 0.077 0.026 0.179 0.462 0.256
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
#Cronbach's Alpha
psych::alpha(N$CCB_Scale)
## 
## Reliability analysis   
## Call: psych::alpha(x = N$CCB_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.95      0.95    0.96      0.83  19 0.013   11 1.1     0.84
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.92  0.95  0.97
## Duhachek  0.92  0.95  0.98
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## N.CCB_1      0.93      0.93    0.91      0.81  13    0.020 0.0053  0.84
## N.CCB_2      0.92      0.92    0.90      0.80  12    0.021 0.0043  0.84
## N.CCB_3      0.93      0.93    0.93      0.81  13    0.021 0.0201  0.73
## N.CCB_4      0.96      0.96    0.96      0.89  25    0.012 0.0051  0.87
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean  sd
## N.CCB_1 39  0.95  0.95  0.95   0.90   11 1.2
## N.CCB_2 39  0.96  0.96  0.96   0.92   11 1.2
## N.CCB_3 39  0.95  0.95  0.93   0.91   11 1.2
## N.CCB_4 39  0.88  0.88  0.82   0.79   11 1.1
## 
## Non missing response frequency for each item
##            7    8    9   10   11   12 miss
## N.CCB_1 0.05 0.00 0.00 0.08 0.41 0.46 0.03
## N.CCB_2 0.05 0.00 0.00 0.10 0.33 0.51 0.03
## N.CCB_3 0.03 0.05 0.03 0.13 0.36 0.41 0.03
## N.CCB_4 0.00 0.08 0.03 0.18 0.46 0.26 0.03

Connectedness to Nature

#Connectedness to Nature Item Definitions
N$CNS1 <- as.numeric(as.character(N$CNS_1))
N$CNS2 <- as.numeric(as.character(N$CNS_2))
N$CNS3 <- as.numeric(as.character(N$CNS_3))
N$CNS4R <- as.numeric(as.character(N$CNS_4R))
N$CNS5R <- as.numeric(as.character(N$CNS_5R))

#Descriptives
describe(N$CNS1)
## N$CNS1 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        5    0.908    10.54    1.233 
##                                         
## Value          7     9    10    11    12
## Frequency      2     2    14    13     8
## Proportion 0.051 0.051 0.359 0.333 0.205
## 
## For the frequency table, variable is rounded to the nearest 0
range(N$CNS1, na.rm=TRUE)
## [1]  7 12
describe(N$CNS2)
## N$CNS2 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        6    0.945    10.36    1.622 
##                                               
## Value          7     8     9    10    11    12
## Frequency      2     3     4    11     8    11
## Proportion 0.051 0.077 0.103 0.282 0.205 0.282
## 
## For the frequency table, variable is rounded to the nearest 0
range(N$CNS2, na.rm=TRUE)
## [1]  7 12
describe(N$CNS3)
## N$CNS3 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        7    0.964    10.03    1.906 
##                                                     
## Value          6     7     8     9    10    11    12
## Frequency      1     3     4     5     8     9     9
## Proportion 0.026 0.077 0.103 0.128 0.205 0.231 0.231
## 
## For the frequency table, variable is rounded to the nearest 0
range(N$CNS3, na.rm=TRUE)
## [1]  6 12
describe(N$CNS4R)
## N$CNS4R 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        7    0.959    9.641    2.337 
##                                                     
## Value          6     7     8     9    10    11    12
## Frequency      1     8     6     3     3     7    11
## Proportion 0.026 0.205 0.154 0.077 0.077 0.179 0.282
## 
## For the frequency table, variable is rounded to the nearest 0
range(N$CNS4R, na.rm=TRUE)
## [1]  6 12
describe(N$CNS5R)
## N$CNS5R 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        6     0.97    9.538    1.825 
##                                               
## Value          7     8     9    10    11    12
## Frequency      5     6     8     8     7     5
## Proportion 0.128 0.154 0.205 0.205 0.179 0.128
## 
## For the frequency table, variable is rounded to the nearest 0
range(N$CNS5R, na.rm=TRUE)
## [1]  7 12
#Histograms
hist(N$CNS1, main = 'I often feel a sense of oneness with the natural world around me.')

hist(N$CNS2, main = 'I think of the natural world as a community to which I belong.')

hist(N$CNS3, main = 'I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’.')

hist(N$CNS4R, main = 'My personal welfare is independent of the welfare of the natural world.')

hist(N$CNS5R, main = 'When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature.')

#Score & Scale
N$CNS_Score <- rowMeans(N [, c("CNS1", "CNS2", "CNS3", "CNS4R", "CNS5R")], na.rm=TRUE)
describe(N$CNS_Score)
## N$CNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##       39        1       18    0.995    10.02    1.418     8.00     8.56 
##      .25      .50      .75      .90      .95 
##     9.20    10.00    11.10    11.60    11.80 
##                                                                             
## Value        6.8   8.0   8.4   8.6   9.0   9.2   9.4   9.6   9.8  10.0  10.2
## Frequency      1     2     1     1     3     4     4     2     1     1     3
## Proportion 0.026 0.051 0.026 0.026 0.077 0.103 0.103 0.051 0.026 0.026 0.077
##                                                     
## Value       10.4  10.8  11.0  11.2  11.4  11.6  11.8
## Frequency      2     1     3     2     2     3     3
## Proportion 0.051 0.026 0.077 0.051 0.051 0.077 0.077
## 
## For the frequency table, variable is rounded to the nearest 0
sd(N$CNS_Score, na.rm = TRUE)
## [1] 1.23952
hist(N$CNS_Score)

N$CNS_Scale <- data.frame(N$CNS1, N$CNS2, N$CNS3, N$CNS4R, N$CNS5R)
psych::alpha(N$CNS_Scale)
## 
## Reliability analysis   
## Call: psych::alpha(x = N$CNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.82      0.84    0.87      0.51 5.2 0.045   10 1.2     0.46
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.72  0.82  0.90
## Duhachek  0.73  0.82  0.91
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## N.CNS1       0.78      0.80    0.81      0.49 3.9    0.058 0.032  0.46
## N.CNS2       0.74      0.76    0.78      0.44 3.1    0.066 0.040  0.40
## N.CNS3       0.76      0.78    0.80      0.47 3.6    0.059 0.030  0.46
## N.CNS4R      0.82      0.83    0.85      0.55 4.9    0.047 0.068  0.60
## N.CNS5R      0.82      0.86    0.85      0.60 5.9    0.048 0.040  0.60
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean  sd
## N.CNS1  39  0.77  0.81  0.78   0.67 10.5 1.2
## N.CNS2  39  0.87  0.89  0.88   0.79 10.4 1.5
## N.CNS3  39  0.82  0.84  0.83   0.69 10.0 1.7
## N.CNS4R 39  0.76  0.72  0.61   0.55  9.6 2.1
## N.CNS5R 39  0.67  0.65  0.53   0.49  9.5 1.6
## 
## Non missing response frequency for each item
##            6    7    8    9   10   11   12 miss
## N.CNS1  0.00 0.05 0.00 0.05 0.36 0.33 0.21 0.03
## N.CNS2  0.00 0.05 0.08 0.10 0.28 0.21 0.28 0.03
## N.CNS3  0.03 0.08 0.10 0.13 0.21 0.23 0.23 0.03
## N.CNS4R 0.03 0.21 0.15 0.08 0.08 0.18 0.28 0.03
## N.CNS5R 0.00 0.13 0.15 0.21 0.21 0.18 0.13 0.03
describe(N$CNS_Scale)
## N$CNS_Scale 
## 
##  5  Variables      40  Observations
## --------------------------------------------------------------------------------
## N.CNS1 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        5    0.908    10.54    1.233 
##                                         
## Value          7     9    10    11    12
## Frequency      2     2    14    13     8
## Proportion 0.051 0.051 0.359 0.333 0.205
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.CNS2 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        6    0.945    10.36    1.622 
##                                               
## Value          7     8     9    10    11    12
## Frequency      2     3     4    11     8    11
## Proportion 0.051 0.077 0.103 0.282 0.205 0.282
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.CNS3 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        7    0.964    10.03    1.906 
##                                                     
## Value          6     7     8     9    10    11    12
## Frequency      1     3     4     5     8     9     9
## Proportion 0.026 0.077 0.103 0.128 0.205 0.231 0.231
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.CNS4R 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        7    0.959    9.641    2.337 
##                                                     
## Value          6     7     8     9    10    11    12
## Frequency      1     8     6     3     3     7    11
## Proportion 0.026 0.205 0.154 0.077 0.077 0.179 0.282
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
## N.CNS5R 
##        n  missing distinct     Info     Mean      Gmd 
##       39        1        6     0.97    9.538    1.825 
##                                               
## Value          7     8     9    10    11    12
## Frequency      5     6     8     8     7     5
## Proportion 0.128 0.154 0.205 0.205 0.179 0.128
## 
## For the frequency table, variable is rounded to the nearest 0
## --------------------------------------------------------------------------------
#Correlation CNS
psych::alpha(N$CNS_Scale)
## 
## Reliability analysis   
## Call: psych::alpha(x = N$CNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.82      0.84    0.87      0.51 5.2 0.045   10 1.2     0.46
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.72  0.82  0.90
## Duhachek  0.73  0.82  0.91
## 
##  Reliability if an item is dropped:
##         raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## N.CNS1       0.78      0.80    0.81      0.49 3.9    0.058 0.032  0.46
## N.CNS2       0.74      0.76    0.78      0.44 3.1    0.066 0.040  0.40
## N.CNS3       0.76      0.78    0.80      0.47 3.6    0.059 0.030  0.46
## N.CNS4R      0.82      0.83    0.85      0.55 4.9    0.047 0.068  0.60
## N.CNS5R      0.82      0.86    0.85      0.60 5.9    0.048 0.040  0.60
## 
##  Item statistics 
##          n raw.r std.r r.cor r.drop mean  sd
## N.CNS1  39  0.77  0.81  0.78   0.67 10.5 1.2
## N.CNS2  39  0.87  0.89  0.88   0.79 10.4 1.5
## N.CNS3  39  0.82  0.84  0.83   0.69 10.0 1.7
## N.CNS4R 39  0.76  0.72  0.61   0.55  9.6 2.1
## N.CNS5R 39  0.67  0.65  0.53   0.49  9.5 1.6
## 
## Non missing response frequency for each item
##            6    7    8    9   10   11   12 miss
## N.CNS1  0.00 0.05 0.00 0.05 0.36 0.33 0.21 0.03
## N.CNS2  0.00 0.05 0.08 0.10 0.28 0.21 0.28 0.03
## N.CNS3  0.03 0.08 0.10 0.13 0.21 0.23 0.23 0.03
## N.CNS4R 0.03 0.21 0.15 0.08 0.08 0.18 0.28 0.03
## N.CNS5R 0.00 0.13 0.15 0.21 0.21 0.18 0.13 0.03

Correlations Between Scales

length(N$TPTNS_Score)
## [1] 40
N$cor1 <- data.frame(N$TPTNS_Score, N$CCB_Score, N$CNS_Score, N$ATNS_Score, N$IDEO)

mydata.cor1 = cor(N$cor1, use = "pairwise.complete.obs")
head(round(mydata.cor1,2))
##               N.TPTNS_Score N.CCB_Score N.CNS_Score N.ATNS_Score N.IDEO
## N.TPTNS_Score          1.00        0.15        0.01        -0.29   0.21
## N.CCB_Score            0.15        1.00        0.54         0.20   0.53
## N.CNS_Score            0.01        0.54        1.00         0.25   0.39
## N.ATNS_Score          -0.29        0.20        0.25         1.00   0.10
## N.IDEO                 0.21        0.53        0.39         0.10   1.00
library("Hmisc")
mydata.rcorr1 = rcorr(as.matrix(mydata.cor1))
mydata.rcorr1
##               N.TPTNS_Score N.CCB_Score N.CNS_Score N.ATNS_Score N.IDEO
## N.TPTNS_Score          1.00       -0.24       -0.51        -0.89   0.00
## N.CCB_Score           -0.24        1.00        0.55        -0.11   0.52
## N.CNS_Score           -0.51        0.55        1.00         0.13   0.23
## N.ATNS_Score          -0.89       -0.11        0.13         1.00  -0.34
## N.IDEO                 0.00        0.52        0.23        -0.34   1.00
## 
## n= 5 
## 
## 
## P
##               N.TPTNS_Score N.CCB_Score N.CNS_Score N.ATNS_Score N.IDEO
## N.TPTNS_Score               0.6965      0.3778      0.0429       0.9979
## N.CCB_Score   0.6965                    0.3388      0.8592       0.3715
## N.CNS_Score   0.3778        0.3388                  0.8359       0.7139
## N.ATNS_Score  0.0429        0.8592      0.8359                   0.5815
## N.IDEO        0.9979        0.3715      0.7139      0.5815
library(corrplot)
## corrplot 0.92 loaded
corrplot(mydata.cor1, method="color")

corrplot(mydata.cor1, addCoef.col = 1,  number.cex = 0.3, method = 'number')

# Tendency to Perceive Technology as Natural Scale & Aversion to Tampering with Nature
cor.test(N$TPTNS_Score, N$ATNS_Score)
## 
##  Pearson's product-moment correlation
## 
## data:  N$TPTNS_Score and N$ATNS_Score
## t = -1.8669, df = 37, p-value = 0.06985
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.55733347  0.02435972
## sample estimates:
##        cor 
## -0.2934125
# Tendency to Perceive Technology as Natural Scale & Political Ideology
cor.test(N$TPTNS_Score, N$IDEO)
## 
##  Pearson's product-moment correlation
## 
## data:  N$TPTNS_Score and N$IDEO
## t = 1.3308, df = 37, p-value = 0.1914
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1091542  0.4958066
## sample estimates:
##       cor 
## 0.2137235

Exploratory Factor Analysis: TPTNS

library(psych)

# TPTNS Scale 
N$TPTNS_Scale <- cbind(N$T1, N$T2, N$T3R, N$T4, N$T5R, N$T6, N$T7R, N$T8, N$T9R, N$T10, N$T11, N$T12R, N$T13, N$T14, N$T15R)

# Specify the name of the column corresponding to your items
column_name <- "TPTNS_Scale"

# Create a new data frame "N" with only the specified column
TPTNS <- N[, column_name, drop = FALSE]
print
## standardGeneric for "print" defined from package "base"
## 
## function (x, ...) 
## standardGeneric("print")
## <environment: 0x105578d48>
## Methods may be defined for arguments: x
## Use  showMethods(print)  for currently available ones.
# Check the first few rows of your new data frame
head(TPTNS)
# Run factor analysis with 5 factors
fa_result_5factors <- fa(TPTNS, nfactors = 5, rotate = "varimax")
## In fa, too many factors requested for this number of variables to use SMC for communality estimates, 1s are used instead
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect.  Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected.  Examine the results carefully
# Print factor loadings for 5 factors
print(fa_result_5factors$loadings, digits = 2)
## 
## Loadings:
##                MR1   MR2   MR4   MR3   MR5  
## TPTNS_Scale.1   0.27  0.17  0.36        0.89
## TPTNS_Scale.2   0.36  0.20        0.34  0.38
## TPTNS_Scale.3  -0.10 -0.24 -0.21  0.60      
## TPTNS_Scale.4   0.66  0.42  0.15        0.14
## TPTNS_Scale.5                     0.72  0.11
## TPTNS_Scale.6   0.82 -0.27              0.14
## TPTNS_Scale.7   0.51  0.18  0.40  0.23      
## TPTNS_Scale.8   0.54 -0.25  0.50 -0.25      
## TPTNS_Scale.9   0.28        0.40  0.50      
## TPTNS_Scale.10  0.80  0.13  0.13        0.21
## TPTNS_Scale.11  0.15  0.32  0.73        0.22
## TPTNS_Scale.12        0.59  0.44        0.25
## TPTNS_Scale.13 -0.12  0.58       -0.20      
## TPTNS_Scale.14  0.28  0.23  0.31        0.19
## TPTNS_Scale.15  0.29  0.65  0.20            
## 
##                 MR1  MR2  MR4  MR3  MR5
## SS loadings    2.80 1.74 1.68 1.43 1.21
## Proportion Var 0.19 0.12 0.11 0.10 0.08
## Cumulative Var 0.19 0.30 0.41 0.51 0.59
nvar_fa_result <- length(fa_result_5factors$loadings)
print(nvar_fa_result)
## [1] 75
# Run factor analysis with 3 factors
fa_result_3factors <- fa(TPTNS, nfactors = 3, rotate = "varimax")
## In fa, too many factors requested for this number of variables to use SMC for communality estimates, 1s are used instead
# Print factor loadings for 2 factors
print(fa_result_3factors$loadings, digits = 2)
## 
## Loadings:
##                MR1   MR2   MR3  
## TPTNS_Scale.1   0.42  0.53  0.19
## TPTNS_Scale.2   0.29  0.23  0.38
## TPTNS_Scale.3  -0.18 -0.36  0.57
## TPTNS_Scale.4   0.57  0.46      
## TPTNS_Scale.5               0.77
## TPTNS_Scale.6   0.87 -0.13  0.14
## TPTNS_Scale.7   0.49  0.31  0.27
## TPTNS_Scale.8   0.67       -0.12
## TPTNS_Scale.9   0.32  0.17  0.53
## TPTNS_Scale.10  0.76  0.24  0.17
## TPTNS_Scale.11  0.30  0.64      
## TPTNS_Scale.12        0.80      
## TPTNS_Scale.13 -0.21  0.49 -0.20
## TPTNS_Scale.14  0.31  0.41  0.14
## TPTNS_Scale.15  0.19  0.63      
## 
##                MR1  MR2  MR3
## SS loadings    3.0 2.73 1.57
## Proportion Var 0.2 0.18 0.10
## Cumulative Var 0.2 0.38 0.49
# Run factor analysis with 2 factors
fa_result_2factors <- fa(TPTNS, nfactors = 2, rotate = "varimax")
## In fa, too many factors requested for this number of variables to use SMC for communality estimates, 1s are used instead
# Print factor loadings for 2 factors
print(fa_result_2factors$loadings, digits = 2)
## 
## Loadings:
##                MR1   MR2  
## TPTNS_Scale.1   0.55  0.43
## TPTNS_Scale.2   0.47      
## TPTNS_Scale.3        -0.48
## TPTNS_Scale.4   0.61  0.40
## TPTNS_Scale.5   0.33 -0.21
## TPTNS_Scale.6   0.75 -0.16
## TPTNS_Scale.7   0.61  0.19
## TPTNS_Scale.8   0.52  0.10
## TPTNS_Scale.9   0.55      
## TPTNS_Scale.10  0.79  0.14
## TPTNS_Scale.11  0.42  0.56
## TPTNS_Scale.12  0.14  0.75
## TPTNS_Scale.13 -0.20  0.55
## TPTNS_Scale.14  0.41  0.33
## TPTNS_Scale.15  0.29  0.59
## 
##                 MR1  MR2
## SS loadings    3.62 2.35
## Proportion Var 0.24 0.16
## Cumulative Var 0.24 0.40