library(tidyLPA)
## Warning: package 'tidyLPA' was built under R version 4.3.2
## You can use the function citation('tidyLPA') to create a citation for the use of {tidyLPA}.
## Mplus is not installed. Use only package = 'mclust' when calling estimate_profiles().
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.3.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(mclust)
## Warning: package 'mclust' was built under R version 4.4.0
## Package 'mclust' version 6.0.1
## Type 'citation("mclust")' for citing this R package in publications.
Data <- read.csv("G:/Shared Data/Research/Administration/Evaluation/Assessment/2023 Amira Study/Data/Exploratory Analysis/Latent Profile Analysis - School - Classroom - For R.csv")
Data<- Data %>%
rename("Classroom" = "Class")
prof1 <- Data %>%
select(Amira.Weeks.Lapsed, Amira.Average.Weekly.Practice) %>%
single_imputation() %>%
estimate_profiles(1:6, variances = "varying", covariances = "zero")
prof1
## tidyLPA analysis using mclust:
##
## Model Classes AIC BIC Entropy prob_min prob_max n_min n_max BLRT_p
## 2 1 157341.28 157371.67 1.00 1.00 1.00 1.00 1.00
## 2 2 144281.82 144350.19 0.74 0.73 0.99 0.14 0.86 0.01
## 2 3 137757.94 137864.30 0.72 0.79 0.92 0.10 0.45 0.01
## 2 4 135502.60 135646.95 0.69 0.57 0.91 0.09 0.46 0.01
## 2 5 133680.90 133863.23 0.69 0.65 0.90 0.04 0.36 0.01
## 2 6 132803.84 133024.16 0.69 0.57 0.89 0.04 0.33 0.01
plot_profiles(prof1[[3]], rawdata=FALSE)
## Estimates for the variables
prof3 <- Data %>%
select(Amira.Weeks.Lapsed, Amira.Average.Weekly.Practice) %>%
single_imputation() %>%
estimate_profiles(3, variances = "varying", covariances = "zero")
estimate3 <- get_estimates(prof3)
print(estimate3, n = 24)
## # A tibble: 12 × 8
## Category Parameter Estimate se p Class Model Classes
## <chr> <chr> <dbl> <dbl> <dbl> <int> <dbl> <dbl>
## 1 Means Amira.Weeks.Lapsed 34.1 0.0405 0 1 2 3
## 2 Means Amira.Average.Weekly… 1.07 0.0198 0 1 2 3
## 3 Variances Amira.Weeks.Lapsed 5.54 0.163 6.88e-254 1 2 3
## 4 Variances Amira.Average.Weekly… 0.482 0.0185 2.19e-149 1 2 3
## 5 Means Amira.Weeks.Lapsed 36.7 0.0280 0 2 2 3
## 6 Means Amira.Average.Weekly… 3.91 0.0386 0 2 2 3
## 7 Variances Amira.Weeks.Lapsed 2.68 0.0568 0 2 2 3
## 8 Variances Amira.Average.Weekly… 3.97 0.136 1.39e-187 2 2 3
## 9 Means Amira.Weeks.Lapsed 25.2 0.266 0 3 2 3
## 10 Means Amira.Average.Weekly… 3.61 0.162 4.79e-110 3 2 3
## 11 Variances Amira.Weeks.Lapsed 66.3 1.75 0 3 2 3
## 12 Variances Amira.Average.Weekly… 20.1 1.38 5.11e- 48 3 2 3
AmiraUsageProfile <- get_data(prof3)
#Exporting the Model3 file
write.csv(AmiraUsageProfile, "G:\\Shared Data\\Research\\Administration\\Evaluation\\Assessment\\2023 Amira Study\\Data\\Exploratory Analysis\\Amira Usage Profile.csv")