Now, the question is “does first birth affect women’s life satisfaction?” Prepare the dataset
library(tidyverse) # Add the tidyverse package to my current library.
library(haven) # Handle labelled data.
library(splitstackshape) #transform wide data (with stacked variables) to long data
library(ggplot2)
library(plm)
library(lmtest)
##Import 6 waves of women data
for (i in 1:6) {
assign(paste0("women", i), #assign is similar to <-; paste0 is to combine wave and i into a name, i ranges from 1 to 6.
read_dta(paste0("wave", i, "_women.dta"))
)
}
##Clean 6 waves of women data
clean_fun <- function(df) { df %>%
transmute(
id=zap_label(id), #remove label of id
age=zap_label(age), #remove label of age
wave=as.numeric(wave),
relstat=as_factor(relstat), #make relstat as a factor
relstat=case_when(relstat== "-7 Incomplete data" ~ as.character(NA), #specify when is missing for relstat
TRUE ~ as.character(relstat))%>% as_factor(), #make relstat as a factor again
hlt=case_when(hlt1<0 ~ as.numeric(NA), #specify when hlt1 is missing
TRUE ~ as.numeric(hlt1)),
nkidsbio=case_when(nkidsbio==-7~ as.numeric(NA), #specify when is missing for relstat
TRUE ~ as.numeric(nkidsbio)),
sat=case_when(sat6<0 ~ as.numeric(NA), #specify when sat6 is missing
TRUE ~ as.numeric(sat6)),
)%>% drop_na() }
women1a <- clean_fun(women1)
women2a <- clean_fun(women2)
women3a <- clean_fun(women3)
women4a <- clean_fun(women4)
women5a <- clean_fun(women5)
women6a <- clean_fun(women6)
women1b <- women1a %>% filter(nkidsbio==0)%>% #keep individuals who are childless in the first wave
rename(wave.1=wave, age.1=age, relstat.1=relstat, hlt.1=hlt, nkidsbio.1=nkidsbio, sat.1=sat ) #rename variables
women2b <- women2a %>%
rename(wave.2=wave, age.2=age, relstat.2=relstat, hlt.2=hlt, nkidsbio.2=nkidsbio, sat.2=sat )
women3b <- women3a %>%
rename(wave.3=wave, age.3=age, relstat.3=relstat, hlt.3=hlt, nkidsbio.3=nkidsbio, sat.3=sat )
women4b <- women4a %>%
rename(wave.4=wave, age.4=age, relstat.4=relstat, hlt.4=hlt, nkidsbio.4=nkidsbio, sat.4=sat )
women5b <- women5a %>%
rename(wave.5=wave, age.5=age, relstat.5=relstat, hlt.5=hlt, nkidsbio.5=nkidsbio, sat.5=sat )
women6b <- women6a %>%
rename(wave.6=wave, age.6=age, relstat.6=relstat, hlt.6=hlt, nkidsbio.6=nkidsbio, sat.6=sat )
women_wide <- left_join(women1b, women2b, by = "id") %>% # left join women1b and women2b
left_join(women3b, by = "id") %>% # left join with women3b
left_join(women4b, by = "id") %>% # left join with women4b
left_join(women5b, by = "id") %>% # left join with women5b
left_join(women6b, by = "id") # left join with women6b
#by using left_join I keep those have no kids in the first wave and follow them
women_long<- merged.stack(women_wide, #dataset for transfrom
var.stubs = c("age", "wave", "relstat", "hlt","nkidsbio", "sat"),
#var.stubs is to specify the prefixes of the variable groups
sep = ".") %>%
#sep is to specify the character that separates the "variable name" from the "times" in the source
drop_na(wave)
#drop the observations which did not join the wave
women_long <- women_long %>%
group_by(id) %>%
mutate(
firstkid=case_when( nkidsbio!=dplyr::lag(nkidsbio, 1) & dplyr::lag(nkidsbio, 1)==0 & nkidsbio>0 ~ 1,
TRUE ~ 0),
firstkid2=case_when( nkidsbio!=dplyr::lag(nkidsbio, 1) & dplyr::lag(nkidsbio, 1)==0 & nkidsbio==2 ~ 1,
TRUE ~ 0)
) #to identify individual whose first childbearing is twins
twinid <- women_long$id[women_long$firstkid2==1]
women_long <- women_long[!(women_long$id %in% twinid),] #remove respondents whose first childbearing is twins
women_long <- filter(women_long, nkidsbio<2) # remove repeated event of childbearing, only focus on having first child
panel_data <- pdata.frame(women_long, index=c("id", "wave")) #define panel data
Run a fixed effect model with robust standard error to investigate the impact of first birth on women’s subjective wellbeing, and see what is the difference with a normal fixed effect
model1 <- plm(sat ~ nkidsbio, data=women_long, model="within") #fixed effect model (within-person demean)
summary(model1) #the normal results of fixed effect
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = sat ~ nkidsbio, data = women_long, model = "within")
##
## Unbalanced Panel: n = 3753, T = 1-6, N = 14809
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -8.00000 -0.50000 0.00000 0.59092 5.66667
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## nkidsbio 0.181837 0.068196 2.6664 0.007679 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 16966
## Residual Sum of Squares: 16956
## R-Squared: 0.00064269
## Adj. R-Squared: -0.33862
## F-statistic: 7.10949 on 1 and 11055 DF, p-value: 0.0076788
coeftest(model1, vcov. = vcovHC, type = "HC1") #get results with robust standard error
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## nkidsbio 0.181837 0.078189 2.3256 0.02006 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#The difference is that the significance level has changed.
Run a fixed effect model to see the linear impact of first birth on women’s subjective wellbeing
Step 1: create a duration variable to measure years since the first childbearing
Step 2: run a fix effect model to specify the linear impact of first childbearing on women’s life satisfaction
women_long <- women_long %>%
select(-firstkid2)%>%
group_by(id) %>%
mutate(
wave=as.numeric(wave),
birthwave=case_when(firstkid==1 ~ wave), #identify the timing of first birth
birthwave1=min(birthwave, na.rm = TRUE), #generate a variable for timing of first birth
index=wave - birthwave1,
duration=case_when(index<0 ~ 0, index>=0 ~ index, TRUE ~ 0), #linear setup
)
#There will be many warnings, whenever you attempt to find the minimum or maximum value of a vector that has a length of zero. It won’t actually prevent your code from running.
women_long$index[is.infinite(women_long$birthwave1)] <- NA
model2 <- plm(sat ~ nkidsbio + duration, data=women_long, model="within") #fixed effect model (within-person demean)
summary(model2)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = sat ~ nkidsbio + duration, data = women_long, model = "within")
##
## Unbalanced Panel: n = 3753, T = 1-6, N = 14809
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -8.00000 -0.50000 0.00000 0.58882 5.66667
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## nkidsbio 0.373101 0.076486 4.878 1.086e-06 ***
## duration -0.241469 0.043944 -5.495 3.995e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 16966
## Residual Sum of Squares: 16909
## R-Squared: 0.003365
## Adj. R-Squared: -0.3351
## F-statistic: 18.6614 on 2 and 11054 DF, p-value: 8.1117e-09
coeftest(model2, vcov. = vcovHC, type = "HC1") #get results with robust standard error
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## nkidsbio 0.373101 0.085119 4.3833 1.180e-05 ***
## duration -0.241469 0.042712 -5.6534 1.612e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Run a fixed effect model to see the dummy impact of first birth on women’s subjective wellbeing
Step 1: create dummy variables to indicate different years before and after first childbearing
Step 2: run a fix effect model to specify the different impact of first childbearing over time on women’s life satisfaction
women_long <- women_long %>%
mutate(
index=as.numeric(index),
dummy=case_when(
is.na(index)==TRUE ~ "2+ year before",
index %in% c(-2:-5) ~ "2+ year before",
index==-1 ~ "1 year before",
index==0 ~ "year of childbearing",
index==1 ~ "1 year after",
index>1 ~ "2+ year after"
) %>% as_factor()
) #setup for dummy impact
model3 <- plm(sat ~ dummy, data=women_long, model="within") #fixed effect model (within-person demean)
#note that, here we do not use sat ~ nkidsbio + dummy,
summary(model3)
## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = sat ~ dummy, data = women_long, model = "within")
##
## Unbalanced Panel: n = 3753, T = 1-6, N = 14809
##
## Residuals:
## Min. 1st Qu. Median 3rd Qu. Max.
## -8.0522 -0.5000 0.0000 0.5998 5.6667
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## dummy1 year before 0.407299 0.096119 4.2374 2.279e-05 ***
## dummyyear of childbearing 0.679484 0.092315 7.3605 1.962e-13 ***
## dummy1 year after 0.060706 0.107714 0.5636 0.573
## dummy2+ year after 0.049500 0.116916 0.4234 0.672
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 16966
## Residual Sum of Squares: 16855
## R-Squared: 0.0065595
## Adj. R-Squared: -0.33106
## F-statistic: 18.2435 on 4 and 11052 DF, p-value: 5.9849e-15
coeftest(model3, vcov. = vcovHC, type = "HC1") #get results with robust standard error
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## dummy1 year before 0.407299 0.092703 4.3936 1.125e-05 ***
## dummyyear of childbearing 0.679484 0.103584 6.5597 5.632e-11 ***
## dummy1 year after 0.060706 0.117366 0.5172 0.6050
## dummy2+ year after 0.049500 0.121827 0.4063 0.6845
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1