data<-read.csv("/Users/samanthabouwmeester/Documents/Out of the Box Plot/CWTL/Copy of RCT_data_full.csv")
### Changes in Copy of RCT_data_full.csv that are processed in datacleaning file. ####
data$read_2[data$index==262]=data$read_1[data$index==262]
data$read_2[data$index==4]=data$read_1[data$index==4]
data$read_2[data$index==5]=data$read_1[data$index==5]
data$read_2[data$index==7]=data$read_1[data$index==7]
data$read_2[data$index==8]=data$read_1[data$index==8]
data$Attendance<-rowSums(data[,which(substring(colnames(data),1,4)=="week")],na.rm = TRUE)
data$Attendance_dich=1
data$Attendance_dich[data$Attendance<21*5*.8]=0
# Missings values
#baseline num
bas.num<-data[,c("total_nid","total_qds","total_mis","total_add","total_sub","total_prb")]
#Are there any missings values?
any(is.na(rowSums(bas.num)))
## [1] FALSE
# FALSE, so no missing values
#baseline lit
bas.lit<-data[,c("total_lid","total_pho","total_muw","total_non","total_com","total_lis","total_wrt","read_1","read_2")]
bas.lit$read_2[is.na(bas.lit$read_2)]=bas.lit$read_1[is.na(bas.lit$read_2)]
bas.lit$read_1[is.na(bas.lit$read_1)]=0 #One Na in read1 has to be 0.
# Are there any missings values?
any(is.na(rowSums(bas.lit)))
## [1] FALSE
# FALSE, so no missing values
#endline num
end.num<-data[,c("total_nid_end","total_qds_end","total_mis_end","total_add_end","total_sub_end","total_prb_end")]
# Are there any missings values?
any(is.na(rowSums(end.num)))
## [1] TRUE
# TRUE, so missing values: multiple imputation
mis.number=rep(NA,6)
for(i in 1:ncol(end.num))
mis.number[i]=length(which(is.na(end.num[,i])))
mis.number
## [1] 69 69 69 69 69 69
# 69 participants miss the endline data for numericy all tasks. This is 69/1507=.046, 4.6%
# These endline scores were imputed.
library(mice)
scores.mice<-mice(end.num,print=FALSE)
end.num.MI<-complete(scores.mice)
data[,c("total_nid_end","total_qds_end","total_mis_end","total_add_end","total_sub_end","total_prb_end")]=end.num.MI
#check
end.num<-data[,c("total_nid_end","total_qds_end","total_mis_end","total_add_end","total_sub_end","total_prb_end")]
any(is.na(rowSums(end.num)))
## [1] FALSE
# FALSE: no missings anymore
### total scores in percentages
totals.num_perc_bas<-data.frame(data$total_nid/15,
data$total_qds/10,
data$total_mis/10,
data$total_add/25,
data$total_sub/25,
data$total_prb/6)
totals.num_perc_end<-data.frame(data$total_nid_end/15,
data$total_qds_end/10,
data$total_mis_end/10,
data$total_add_end/25,
data$total_sub_end/25,
data$total_prb_end/6)
end.num$tot.num_end<-rowSums(totals.num_perc_end)/6. #divided by 6 to get scores between 0 and 1
bas.num$tot.num<-rowSums(totals.num_perc_bas)/6. #divided by 6 to get scores between 0 and 1
#endline lit
end.lit<-data[,c("total_lid_end","total_pho_end","total_muw_end","total_non_end","total_com_end","total_lis_end","total_wrt_end","RCP1_end",
"RCP2_end")]
# Are there any missings values?
any(is.na(rowSums(end.lit)))
## [1] TRUE
# TRUE, so missing values: multiple imputation
mis.lit=rep(NA,9)
for(i in 1:ncol(end.lit))
mis.lit[i]=length(which(is.na(end.lit[,i])))
mis.lit
## [1] 69 69 69 69 416 69 69 69 416
# 69 participants miss the endline data for literacy all tasks. This is 69/1507=.046, 4.6%
# Task total_com and Read_2 has 416 missings values, this is 416/1507=.276, 27.6%
# These endline scores were imputed.
scores.mice<-mice(end.lit,print=FALSE)
end.lit.MI<-complete(scores.mice)
data[,c("total_lid_end","total_pho_end","total_muw_end","total_non_end","total_com_end","total_lis_end","total_wrt_end","RCP1_end","RCP2_end")]=end.lit.MI
#check
end.lit<-data[,c("total_lid_end","total_pho_end","total_muw_end","total_non_end","total_com_end","total_lis_end","total_wrt_end"
,"RCP1_end","RCP2_end")]
any(is.na(rowSums(end.lit)))
## [1] FALSE
# FALSE: no missings anymore
### Add total literacy score as a percentage note that READ_2 is not included
totals.lit_perc_bas<-data.frame(data$total_lid/26,
data$total_pho/10,
data$total_muw/20,
data$total_non/16,
data$total_com/5,
data$total_lis/5,
data$total_wrt/10,
data$read_1/99)
totals.lit_perc_end<-data.frame(data$total_lid_end/26,
data$total_pho_end/10,
data$total_muw_end/20,
data$total_non_end/16,
data$total_com_end/5,
data$total_lis_end/5,
data$total_wrt_end/10,
data$RCP1_end/99)
end.lit$tot.lit_end<-rowSums(totals.lit_perc_end)/8
bas.lit$tot.lit<-rowSums(totals.lit_perc_bas)/8
### Add total wellbeing score
wellbeing<-data[,which(substring(colnames(data),1,4)=="SCWS")]
for(i in 1:ncol(wellbeing)){
wellbeing[,i][wellbeing[,i]=="Never"]=0
wellbeing[,i][wellbeing[,i]=="Not much of the time"]=1
wellbeing[,i][wellbeing[,i]=="Some of the time"]=2
wellbeing[,i][wellbeing[,i]=="Quite a lot of the time"]=3
wellbeing[,i][wellbeing[,i]=="All of the time"]=4
wellbeing[,i][wellbeing[,i]=="Refused to answer"]=NA
}
wellbeing<-apply(wellbeing,2,as.numeric)
scores.mice<-mice(wellbeing,print=FALSE)
wellbeing<-complete(scores.mice)
wb.bas<-cbind(data[,c(2:4,620)],wellbeing[,1:12])
wb.end<-cbind(wb.bas[,1:4],wellbeing[,13:24])
colnames(wb.end)<-colnames(wb.bas)
WB.long<-rbind(wb.bas,wb.end)
#head(WB.long)
WB.long$totaal<-rowSums(WB.long[,5:16])
### Long datafile ###.
baseline<-cbind(data$participantID,data$GenderChild,data$School,data$Group,data$Attendance,data$Attendance_dich,bas.num,bas.lit)
colnames(baseline)<-c("participantID","GenderChild","School" ,"Group" , "Attendance" , "Attendance_dich",colnames(baseline[7:23]))
endline<-cbind(baseline[,1:6],end.num,end.lit)
colnames(endline)=colnames(baseline)
longdata<-rbind(baseline,endline)
longdata<-longdata[order(longdata$participantID),]
longdata$WB_total<-WB.long$totaal
longdata$time<-rep(c("baseline","endline"),nrow(baseline))
write.csv(longdata,"/Users/samanthabouwmeester/Documents/Out of the Box Plot/CWTL/longdata.csv")
dm<-t(descriptives_Num)
colnames(dm)<-c("Baseline A","Endline A","Baseline B","Endline B")
data.table(dm[-c(1,2),],keep.rownames=TRUE)
## rn Baseline A Endline A Baseline B Endline B
## 1: mean total_nid 12.25 14.12 12.17 13.75
## 2: sd total_nid 2.90 1.63 2.95 2.11
## 3: mean total_qds 8.29 9.44 8.25 9.06
## 4: sd total_qds 2.05 1.10 2.14 1.52
## 5: mean total_mis 5.82 7.69 5.27 7.02
## 6: sd total_mis 2.81 2.18 2.94 2.68
## 7: mean total_add 6.97 9.86 5.83 8.35
## 8: sd total_add 4.10 4.25 3.70 4.27
## 9: mean total_sub 4.63 7.24 3.97 5.43
## 10: sd total_sub 3.66 3.96 2.91 3.38
## 11: mean total_prb 3.51 4.74 3.44 4.43
## 12: sd total_prb 1.92 1.38 1.89 1.60
## 13: mean tot.num 0.55 0.69 0.52 0.64
## 14: sd tot.num 0.16 0.12 0.16 0.14
dl<-t(descriptives_Lit)
colnames(dl)<-c("Baseline A","Endline A","Baseline B","Endline B")
data.table(dl[-c(1,2),],keep.rownames=TRUE)
## rn Baseline A Endline A Baseline B Endline B
## 1: mean total_lid 19.39 23.69 20.41 23.13
## 2: sd total_lid 8.14 4.45 7.19 4.91
## 3: mean total_pho 3.71 6.82 2.16 2.91
## 4: sd total_pho 3.51 3.03 2.83 3.15
## 5: mean total_muw 8.37 13.87 7.46 12.11
## 6: sd total_muw 6.91 6.27 6.54 6.95
## 7: mean total_non 3.73 7.99 2.81 5.71
## 8: sd total_non 4.72 5.31 4.15 5.25
## 9: mean total_com 0.80 1.75 0.60 1.53
## 10: sd total_com 1.27 1.50 1.09 1.45
## 11: mean total_lis 0.86 1.48 0.64 1.20
## 12: sd total_lis 1.26 1.41 1.04 1.32
## 13: mean total_wrt 3.06 4.78 2.51 4.52
## 14: sd total_wrt 2.92 3.26 2.73 3.29
## 15: mean read_1 13.72 29.90 10.32 23.62
## 16: sd read_1 15.90 23.04 13.31 20.44
## 17: mean read_2 28.22 60.97 23.63 52.62
## 18: sd read_2 31.68 28.20 30.39 28.93
## 19: mean tot.lit 0.32 0.53 0.27 0.42
## 20: sd tot.lit 0.20 0.22 0.18 0.22
tab_model(fit_nid,fit_nid1)
| total_nid | total_nid | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 11.12 | 10.61 – 11.63 | <0.001 | 11.09 | 10.56 – 11.62 | <0.001 |
| GenderChild [Male] | 0.27 | 0.03 – 0.52 | 0.030 | 0.27 | 0.02 – 0.52 | 0.032 |
| time [endline] | 1.86 | 1.37 – 2.35 | <0.001 | 1.75 | 1.26 – 2.25 | <0.001 |
| Attendance | 0.01 | 0.01 – 0.02 | <0.001 | 0.01 | 0.01 – 0.02 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.20 | -0.46 – 0.05 | 0.121 | -0.19 | -0.44 – 0.07 | 0.147 |
|
time [endline] × Attendance |
-0.00 | -0.01 – 0.01 | 0.873 | -0.00 | -0.01 – 0.01 | 0.735 |
| Group [1] | 0.05 | -0.30 – 0.40 | 0.784 | |||
|
time [endline] × Group [1] |
0.29 | 0.03 – 0.55 | 0.026 | |||
| Random Effects | ||||||
| σ2 | 3.20 | 3.19 | ||||
| τ00 | 2.70 participantID:School | 2.70 participantID:School | ||||
| 0.13 School | 0.12 School | |||||
| ICC | 0.47 | 0.47 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.120 / 0.533 | 0.122 / 0.534 | ||||
plot(colnames(dat)[10])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_qds,fit_qds1)
| total_qds | total_qds | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 7.86 | 7.50 – 8.22 | <0.001 | 7.84 | 7.47 – 8.22 | <0.001 |
| GenderChild [Male] | -0.01 | -0.18 – 0.17 | 0.946 | -0.01 | -0.19 – 0.17 | 0.911 |
| time [endline] | 0.79 | 0.39 – 1.18 | <0.001 | 0.66 | 0.26 – 1.05 | 0.001 |
| Attendance | 0.01 | 0.00 – 0.01 | 0.013 | 0.01 | 0.00 – 0.01 | 0.011 |
|
GenderChild [Male] × time [endline] |
-0.12 | -0.33 – 0.08 | 0.230 | -0.11 | -0.31 – 0.09 | 0.291 |
|
time [endline] × Attendance |
0.00 | -0.00 – 0.01 | 0.160 | 0.00 | -0.00 – 0.01 | 0.252 |
| Group [1] | 0.01 | -0.23 – 0.25 | 0.926 | |||
|
time [endline] × Group [1] |
0.34 | 0.13 – 0.54 | 0.001 | |||
| Random Effects | ||||||
| σ2 | 2.04 | 2.02 | ||||
| τ00 | 0.98 participantID:School | 0.99 participantID:School | ||||
| 0.06 School | 0.05 School | |||||
| ICC | 0.34 | 0.34 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.080 / 0.392 | 0.085 / 0.396 | ||||
plot(colnames(dat)[11])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_mis,fit_mis1)
| total_mis | total_mis | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 4.26 | 3.69 – 4.83 | <0.001 | 4.03 | 3.44 – 4.62 | <0.001 |
| GenderChild [Male] | 0.25 | -0.02 – 0.51 | 0.070 | 0.25 | -0.01 – 0.52 | 0.063 |
| time [endline] | 1.75 | 1.23 – 2.27 | <0.001 | 1.72 | 1.18 – 2.25 | <0.001 |
| Attendance | 0.02 | 0.01 – 0.02 | <0.001 | 0.02 | 0.01 – 0.02 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.32 | -0.59 – -0.05 | 0.021 | -0.32 | -0.59 – -0.04 | 0.023 |
|
time [endline] × Attendance |
0.00 | -0.00 – 0.01 | 0.364 | 0.00 | -0.00 – 0.01 | 0.394 |
| Group [1] | 0.51 | 0.09 – 0.94 | 0.018 | |||
|
time [endline] × Group [1] |
0.09 | -0.18 – 0.36 | 0.521 | |||
| Random Effects | ||||||
| σ2 | 3.64 | 3.65 | ||||
| τ00 | 3.19 participantID:School | 3.19 participantID:School | ||||
| 0.28 School | 0.21 School | |||||
| ICC | 0.49 | 0.48 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.119 / 0.549 | 0.129 / 0.549 | ||||
plot(colnames(dat)[12])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_add,fit_add1)
| total_add | total_add | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 4.66 | 3.80 – 5.53 | <0.001 | 4.28 | 3.44 – 5.12 | <0.001 |
| GenderChild [Male] | 0.22 | -0.19 – 0.63 | 0.300 | 0.22 | -0.19 – 0.63 | 0.287 |
| time [endline] | 1.86 | 0.95 – 2.76 | <0.001 | 1.75 | 0.83 – 2.67 | <0.001 |
| Attendance | 0.02 | 0.01 – 0.03 | <0.001 | 0.02 | 0.01 – 0.03 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.53 | -1.01 – -0.06 | 0.027 | -0.52 | -0.99 – -0.05 | 0.031 |
|
time [endline] × Attendance |
0.02 | 0.00 – 0.03 | 0.009 | 0.02 | 0.00 – 0.03 | 0.012 |
| Group [1] | 1.09 | 0.59 – 1.59 | <0.001 | |||
|
time [endline] × Group [1] |
0.29 | -0.18 – 0.77 | 0.228 | |||
| Random Effects | ||||||
| σ2 | 10.94 | 10.94 | ||||
| τ00 | 5.32 participantID:School | 5.33 participantID:School | ||||
| 0.55 School | 0.16 School | |||||
| ICC | 0.35 | 0.33 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.118 / 0.426 | 0.138 / 0.426 | ||||
plot(colnames(dat)[13])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_sub,fit_sub1)
| total_sub | total_sub | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 3.20 | 2.45 – 3.95 | <0.001 | 2.99 | 2.26 – 3.71 | <0.001 |
| GenderChild [Male] | 0.26 | -0.10 – 0.61 | 0.154 | 0.24 | -0.11 – 0.59 | 0.186 |
| time [endline] | 1.20 | 0.41 – 1.99 | 0.003 | 0.77 | -0.03 – 1.57 | 0.058 |
| Attendance | 0.01 | 0.00 – 0.02 | 0.004 | 0.01 | 0.00 – 0.02 | 0.008 |
|
GenderChild [Male] × time [endline] |
0.13 | -0.28 – 0.55 | 0.528 | 0.18 | -0.23 – 0.59 | 0.379 |
|
time [endline] × Attendance |
0.01 | 0.00 – 0.02 | 0.040 | 0.01 | -0.00 – 0.02 | 0.101 |
| Group [1] | 0.64 | 0.20 – 1.07 | 0.004 | |||
|
time [endline] × Group [1] |
1.12 | 0.70 – 1.53 | <0.001 | |||
| Random Effects | ||||||
| σ2 | 8.37 | 8.22 | ||||
| τ00 | 3.73 participantID:School | 3.81 participantID:School | ||||
| 0.49 School | 0.13 School | |||||
| ICC | 0.34 | 0.32 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.088 / 0.394 | 0.119 / 0.404 | ||||
plot(colnames(dat)[14])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_prb,fit_prb1)
| total_prb | total_prb | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 2.99 | 2.62 – 3.36 | <0.001 | 2.95 | 2.55 – 3.34 | <0.001 |
| GenderChild [Male] | 0.19 | 0.02 – 0.36 | 0.030 | 0.19 | 0.02 – 0.36 | 0.033 |
| time [endline] | 1.40 | 1.02 – 1.79 | <0.001 | 1.31 | 0.92 – 1.71 | <0.001 |
| Attendance | 0.01 | 0.00 – 0.01 | 0.017 | 0.01 | 0.00 – 0.01 | 0.015 |
|
GenderChild [Male] × time [endline] |
-0.25 | -0.45 – -0.04 | 0.017 | -0.24 | -0.44 – -0.03 | 0.022 |
|
time [endline] × Attendance |
-0.00 | -0.01 – 0.00 | 0.367 | -0.00 | -0.01 – 0.00 | 0.278 |
| Group [1] | 0.06 | -0.26 – 0.38 | 0.698 | |||
|
time [endline] × Group [1] |
0.24 | 0.03 – 0.44 | 0.022 | |||
| Random Effects | ||||||
| σ2 | 1.99 | 1.98 | ||||
| τ00 | 0.81 participantID:School | 0.81 participantID:School | ||||
| 0.15 School | 0.14 School | |||||
| ICC | 0.32 | 0.33 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.099 / 0.391 | 0.102 / 0.394 | ||||
plot(colnames(dat)[15])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_nu,fit_nu1)
| tot.num | tot.num | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 0.46 | 0.43 – 0.49 | <0.001 | 0.45 | 0.42 – 0.48 | <0.001 |
| GenderChild [Male] | 0.02 | 0.00 – 0.03 | 0.035 | 0.02 | 0.00 – 0.03 | 0.035 |
| time [endline] | 0.12 | 0.10 – 0.15 | <0.001 | 0.11 | 0.09 – 0.14 | <0.001 |
| Attendance | 0.00 | 0.00 – 0.00 | <0.001 | 0.00 | 0.00 – 0.00 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.02 | -0.03 – -0.01 | 0.004 | -0.02 | -0.03 – -0.01 | 0.006 |
|
time [endline] × Attendance |
0.00 | -0.00 – 0.00 | 0.180 | 0.00 | -0.00 – 0.00 | 0.307 |
| Group [1] | 0.02 | 0.00 – 0.04 | 0.048 | |||
|
time [endline] × Group [1] |
0.03 | 0.01 – 0.04 | <0.001 | |||
| Random Effects | ||||||
| σ2 | 0.01 | 0.01 | ||||
| τ00 | 0.01 participantID:School | 0.01 participantID:School | ||||
| 0.00 School | 0.00 School | |||||
| ICC | 0.61 | 0.61 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.179 / 0.680 | 0.194 / 0.683 | ||||
plot(colnames(dat)[16])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_lid,fit_lid1)
| total_lid | total_lid | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 17.83 | 16.43 – 19.24 | <0.001 | 18.30 | 16.75 – 19.85 | <0.001 |
| GenderChild [Male] | -0.16 | -0.78 – 0.46 | 0.618 | -0.20 | -0.82 – 0.42 | 0.534 |
| time [endline] | 3.39 | 2.01 – 4.78 | <0.001 | 2.80 | 1.40 – 4.20 | <0.001 |
| Attendance | 0.03 | 0.01 – 0.05 | <0.001 | 0.03 | 0.02 – 0.05 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.37 | -1.09 – 0.35 | 0.313 | -0.30 | -1.02 – 0.42 | 0.413 |
|
time [endline] × Attendance |
0.00 | -0.01 – 0.02 | 0.634 | 0.00 | -0.02 – 0.02 | 0.892 |
| Group [1] | -1.13 | -2.52 – 0.26 | 0.112 | |||
|
time [endline] × Group [1] |
1.56 | 0.84 – 2.28 | <0.001 | |||
| Random Effects | ||||||
| σ2 | 25.56 | 25.28 | ||||
| τ00 | 11.82 participantID:School | 11.97 participantID:School | ||||
| 2.94 School | 3.03 School | |||||
| ICC | 0.37 | 0.37 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.081 / 0.417 | 0.084 / 0.425 | ||||
plot(colnames(dat)[17])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_pho,fit_pho1)
| total_pho | total_pho | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 3.17 | 2.29 – 4.05 | <0.001 | 2.28 | 1.43 – 3.14 | <0.001 |
| GenderChild [Male] | -0.29 | -0.59 – 0.01 | 0.055 | -0.34 | -0.64 – -0.05 | 0.023 |
| time [endline] | -0.06 | -0.85 – 0.73 | 0.880 | -0.93 | -1.70 – -0.16 | 0.018 |
| Attendance | -0.00 | -0.01 – 0.01 | 0.761 | 0.00 | -0.01 – 0.01 | 0.837 |
|
GenderChild [Male] × time [endline] |
-0.07 | -0.48 – 0.34 | 0.730 | 0.03 | -0.36 – 0.43 | 0.874 |
|
time [endline] × Attendance |
0.03 | 0.02 – 0.04 | <0.001 | 0.02 | 0.01 – 0.03 | <0.001 |
| Group [1] | 1.53 | 0.62 – 2.44 | 0.001 | |||
|
time [endline] × Group [1] |
2.29 | 1.89 – 2.69 | <0.001 | |||
| Random Effects | ||||||
| σ2 | 8.31 | 7.66 | ||||
| τ00 | 0.40 participantID:School | 0.72 participantID:School | ||||
| 3.24 School | 1.44 School | |||||
| ICC | 0.30 | 0.22 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.085 / 0.363 | 0.251 / 0.416 | ||||
plot(colnames(dat)[18])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_muw,fit_muw1)
| total_muw | total_muw | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 4.18 | 2.73 – 5.63 | <0.001 | 3.81 | 2.24 – 5.37 | <0.001 |
| GenderChild [Male] | -0.77 | -1.41 – -0.13 | 0.019 | -0.78 | -1.42 – -0.14 | 0.018 |
| time [endline] | 4.25 | 3.32 – 5.19 | <0.001 | 3.95 | 3.00 – 4.90 | <0.001 |
| Attendance | 0.06 | 0.04 – 0.08 | <0.001 | 0.06 | 0.04 – 0.08 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.19 | -0.68 – 0.30 | 0.447 | -0.15 | -0.64 – 0.33 | 0.539 |
|
time [endline] × Attendance |
0.01 | 0.00 – 0.03 | 0.038 | 0.01 | -0.00 – 0.02 | 0.069 |
| Group [1] | 0.70 | -0.63 – 2.02 | 0.303 | |||
|
time [endline] × Group [1] |
0.80 | 0.32 – 1.29 | 0.001 | |||
| Random Effects | ||||||
| σ2 | 11.60 | 11.53 | ||||
| τ00 | 28.34 participantID:School | 28.38 participantID:School | ||||
| 2.81 School | 2.61 School | |||||
| ICC | 0.73 | 0.73 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.163 / 0.773 | 0.171 / 0.775 | ||||
plot(colnames(dat)[19])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_non,fit_non1)
| total_non | total_non | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 1.77 | 0.71 – 2.83 | 0.001 | 1.35 | 0.29 – 2.41 | 0.013 |
| GenderChild [Male] | -0.00 | -0.49 – 0.49 | 0.997 | -0.01 | -0.50 – 0.47 | 0.958 |
| time [endline] | 2.79 | 1.86 – 3.73 | <0.001 | 2.30 | 1.36 – 3.24 | <0.001 |
| Attendance | 0.02 | 0.01 – 0.04 | 0.002 | 0.02 | 0.01 – 0.03 | 0.001 |
|
GenderChild [Male] × time [endline] |
-0.46 | -0.94 – 0.03 | 0.065 | -0.40 | -0.88 – 0.09 | 0.106 |
|
time [endline] × Attendance |
0.01 | 0.00 – 0.03 | 0.021 | 0.01 | -0.00 – 0.02 | 0.058 |
| Group [1] | 0.86 | 0.13 – 1.58 | 0.020 | |||
|
time [endline] × Group [1] |
1.30 | 0.82 – 1.79 | <0.001 | |||
| Random Effects | ||||||
| σ2 | 11.62 | 11.41 | ||||
| τ00 | 11.51 participantID:School | 11.61 participantID:School | ||||
| 1.11 School | 0.56 School | |||||
| ICC | 0.52 | 0.52 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.128 / 0.582 | 0.154 / 0.590 | ||||
plot(colnames(dat)[20])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_com,fit_com1)
| total_com | total_com | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 0.20 | -0.09 – 0.48 | 0.180 | 0.11 | -0.19 – 0.42 | 0.471 |
| GenderChild [Male] | -0.03 | -0.16 – 0.10 | 0.640 | -0.03 | -0.16 – 0.10 | 0.659 |
| time [endline] | 0.62 | 0.35 – 0.90 | <0.001 | 0.62 | 0.34 – 0.90 | <0.001 |
| Attendance | 0.01 | 0.00 – 0.01 | <0.001 | 0.01 | 0.00 – 0.01 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.12 | -0.26 – 0.03 | 0.115 | -0.12 | -0.26 – 0.03 | 0.116 |
|
time [endline] × Attendance |
0.01 | 0.00 – 0.01 | 0.004 | 0.01 | 0.00 – 0.01 | 0.004 |
| Group [1] | 0.18 | -0.06 – 0.42 | 0.150 | |||
|
time [endline] × Group [1] |
0.00 | -0.14 – 0.15 | 0.983 | |||
| Random Effects | ||||||
| σ2 | 1.02 | 1.02 | ||||
| τ00 | 0.65 participantID:School | 0.65 participantID:School | ||||
| 0.08 School | 0.08 School | |||||
| ICC | 0.42 | 0.42 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.131 / 0.496 | 0.136 / 0.497 | ||||
plot(colnames(dat)[21])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_lis,fit_lis1)
| total_lis | total_lis | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 0.43 | 0.15 – 0.71 | 0.002 | 0.34 | 0.03 – 0.64 | 0.030 |
| GenderChild [Male] | -0.15 | -0.27 – -0.03 | 0.016 | -0.15 | -0.27 – -0.03 | 0.017 |
| time [endline] | 0.36 | 0.09 – 0.62 | 0.008 | 0.34 | 0.07 – 0.61 | 0.013 |
| Attendance | 0.01 | 0.00 – 0.01 | 0.001 | 0.01 | 0.00 – 0.01 | 0.001 |
|
GenderChild [Male] × time [endline] |
0.03 | -0.11 – 0.17 | 0.646 | 0.03 | -0.10 – 0.17 | 0.623 |
|
time [endline] × Attendance |
0.00 | -0.00 – 0.01 | 0.080 | 0.00 | -0.00 – 0.01 | 0.092 |
| Group [1] | 0.19 | -0.07 – 0.46 | 0.152 | |||
|
time [endline] × Group [1] |
0.05 | -0.09 – 0.19 | 0.477 | |||
| Random Effects | ||||||
| σ2 | 0.92 | 0.92 | ||||
| τ00 | 0.55 participantID:School | 0.55 participantID:School | ||||
| 0.12 School | 0.11 School | |||||
| ICC | 0.42 | 0.42 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.066 / 0.459 | 0.075 / 0.461 | ||||
plot(colnames(dat)[22])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_wrt,fit_wrt1)
| total_wrt | total_wrt | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 1.34 | 0.68 – 1.99 | <0.001 | 1.14 | 0.43 – 1.85 | 0.002 |
| GenderChild [Male] | -0.49 | -0.78 – -0.19 | 0.001 | -0.48 | -0.77 – -0.18 | 0.001 |
| time [endline] | 1.15 | 0.70 – 1.60 | <0.001 | 1.29 | 0.83 – 1.74 | <0.001 |
| Attendance | 0.02 | 0.02 – 0.03 | <0.001 | 0.02 | 0.02 – 0.03 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.17 | -0.40 – 0.07 | 0.162 | -0.18 | -0.42 – 0.05 | 0.125 |
|
time [endline] × Attendance |
0.01 | 0.01 – 0.02 | <0.001 | 0.01 | 0.01 – 0.02 | <0.001 |
| Group [1] | 0.47 | -0.13 – 1.06 | 0.126 | |||
|
time [endline] × Group [1] |
-0.35 | -0.58 – -0.11 | 0.004 | |||
| Random Effects | ||||||
| σ2 | 2.70 | 2.68 | ||||
| τ00 | 5.65 participantID:School | 5.66 participantID:School | ||||
| 0.53 School | 0.53 School | |||||
| ICC | 0.70 | 0.70 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.129 / 0.735 | 0.133 / 0.737 | ||||
plot(colnames(dat)[23])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_read1,fit_read11)
| read_1 | read_1 | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 5.12 | 1.03 – 9.20 | 0.014 | 3.55 | -0.83 – 7.93 | 0.112 |
| GenderChild [Male] | -1.40 | -3.20 – 0.39 | 0.126 | -1.43 | -3.22 – 0.37 | 0.119 |
| time [endline] | 9.21 | 6.29 – 12.13 | <0.001 | 8.28 | 5.31 – 11.25 | <0.001 |
| Attendance | 0.11 | 0.06 – 0.16 | <0.001 | 0.11 | 0.06 – 0.16 | <0.001 |
|
GenderChild [Male] × time [endline] |
-2.94 | -4.47 – -1.42 | <0.001 | -2.83 | -4.36 – -1.31 | <0.001 |
|
time [endline] × Attendance |
0.10 | 0.06 – 0.14 | <0.001 | 0.10 | 0.06 – 0.14 | <0.001 |
| Group [1] | 3.00 | -0.73 – 6.73 | 0.115 | |||
|
time [endline] × Group [1] |
2.45 | 0.93 – 3.98 | 0.002 | |||
| Random Effects | ||||||
| σ2 | 114.05 | 113.38 | ||||
| τ00 | 196.80 participantID:School | 197.13 participantID:School | ||||
| 24.64 School | 20.96 School | |||||
| ICC | 0.66 | 0.66 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.168 / 0.717 | 0.182 / 0.720 | ||||
plot(colnames(dat)[24])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_read2,fit_read21)
| read_2 | read_2 | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 11.27 | 4.87 – 17.67 | 0.001 | 9.28 | 2.53 – 16.04 | 0.007 |
| GenderChild [Male] | -2.38 | -5.30 – 0.54 | 0.111 | -2.40 | -5.33 – 0.52 | 0.107 |
| time [endline] | 28.41 | 23.64 – 33.17 | <0.001 | 27.06 | 22.21 – 31.91 | <0.001 |
| Attendance | 0.23 | 0.15 – 0.31 | <0.001 | 0.23 | 0.15 – 0.31 | <0.001 |
|
GenderChild [Male] × time [endline] |
-1.82 | -4.31 – 0.66 | 0.151 | -1.66 | -4.15 – 0.82 | 0.190 |
|
time [endline] × Attendance |
0.05 | -0.01 – 0.11 | 0.132 | 0.04 | -0.02 – 0.11 | 0.201 |
| Group [1] | 3.78 | -1.46 – 9.03 | 0.157 | |||
|
time [endline] × Group [1] |
3.55 | 1.05 – 6.04 | 0.005 | |||
| Random Effects | ||||||
| σ2 | 303.41 | 302.05 | ||||
| τ00 | 521.53 participantID:School | 522.18 participantID:School | ||||
| 43.19 School | 37.05 School | |||||
| ICC | 0.65 | 0.65 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.235 / 0.732 | 0.243 / 0.735 | ||||
plot(colnames(dat)[25])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_tot.lit,fit_tot.lit1)
| tot.lit | tot.lit | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 0.20 | 0.16 – 0.25 | <0.001 | 0.18 | 0.13 – 0.23 | <0.001 |
| GenderChild [Male] | -0.02 | -0.04 – -0.00 | 0.032 | -0.02 | -0.04 – -0.00 | 0.027 |
| time [endline] | 0.11 | 0.08 – 0.15 | <0.001 | 0.09 | 0.06 – 0.13 | <0.001 |
| Attendance | 0.00 | 0.00 – 0.00 | <0.001 | 0.00 | 0.00 – 0.00 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.02 | -0.03 – 0.00 | 0.063 | -0.01 | -0.03 – 0.00 | 0.111 |
|
time [endline] × Attendance |
0.00 | 0.00 – 0.00 | <0.001 | 0.00 | 0.00 – 0.00 | <0.001 |
| Group [1] | 0.04 | 0.00 – 0.08 | 0.029 | |||
|
time [endline] × Group [1] |
0.05 | 0.04 – 0.07 | <0.001 | |||
| Random Effects | ||||||
| σ2 | 0.01 | 0.01 | ||||
| τ00 | 0.03 participantID:School | 0.03 participantID:School | ||||
| 0.00 School | 0.00 School | |||||
| ICC | 0.70 | 0.69 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3013 | 3013 | ||||
| Marginal R2 / Conditional R2 | 0.194 / 0.755 | 0.223 / 0.763 | ||||
plot(colnames(dat)[26])
# The thin lines are the means of the schools, thick lines are the overall means.
dw<-t(descriptives_WB)
colnames(dw)<-c("Baseline A","Endline A","Baseline B","Endline B")
data.table(dw[-c(1,2),],keep.rownames=TRUE)
## rn Baseline A Endline A Baseline B Endline B
## 1: mean total wellbeing 28.22 60.97 23.63 52.62
## 2: sd total wellbeing 31.68 28.20 30.39 28.93
fit_WB <- lmer(WB_total ~ GenderChild*time+Attendance*time+ (1|participantID:School) + (1 | School), data =longdata )
fit_WB1 <- lmer(WB_total ~ GenderChild*time+Attendance+Attendance*time+time*Group+ (1|participantID:School) + (1 | School), data =longdata )
tab_model(fit_WB,fit_WB1)
| WB_total | WB_total | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 33.56 | 32.11 – 35.01 | <0.001 | 32.40 | 31.02 – 33.77 | <0.001 |
| GenderChild [Male] | -0.26 | -0.92 – 0.39 | 0.429 | -0.25 | -0.91 – 0.40 | 0.445 |
| time [endline] | -0.98 | -2.72 – 0.77 | 0.272 | -1.26 | -3.03 – 0.52 | 0.166 |
| Attendance | 0.01 | -0.01 – 0.02 | 0.482 | 0.00 | -0.01 – 0.02 | 0.662 |
|
GenderChild [Male] × time [endline] |
0.31 | -0.60 – 1.22 | 0.504 | 0.34 | -0.57 – 1.26 | 0.459 |
|
time [endline] × Attendance |
0.00 | -0.02 – 0.03 | 0.726 | 0.00 | -0.02 – 0.03 | 0.823 |
| Group [1] | 2.66 | 1.77 – 3.55 | <0.001 | |||
|
time [endline] × Group [1] |
0.73 | -0.18 – 1.65 | 0.116 | |||
| Random Effects | ||||||
| σ2 | 40.63 | 40.59 | ||||
| τ00 | 0.64 participantID:School | 0.66 participantID:School | ||||
| 3.04 School | 0.72 School | |||||
| ICC | 0.08 | 0.03 | ||||
| N | 1507 participantID | 1507 participantID | ||||
| 30 School | 30 School | |||||
| Observations | 3014 | 3014 | ||||
| Marginal R2 / Conditional R2 | 0.002 / 0.085 | 0.055 / 0.086 | ||||
plot(colnames(dat)[26])
# wellbeing including group
fit_Wbg <- lmer(WB_total ~ GenderChild*time*Group+Attendance+Attendance*time+time*Group+ (1|participantID:School) + (1 | School), data =longdata )
wellbeing_g<-tab_model(fit_Wbg)
#install.packages("devtools")
#library("devtools")
#install_github("jdstorey/qvalue")
#browseVignettes(package = "qvalue")
pvalues<-na.omit(pvalue)
qvalue_truncp <- function(p, fdr.level = NULL, pfdr = FALSE, lfdr.out = TRUE, pi0 = NULL,...){
# Argument checks
p_in <- qvals_out <- lfdr_out <- p
rm_na <- !is.na(p)
p <- p[rm_na]
if (min(p) < 0 || max(p) > 1) {
stop("p-values not in valid range [0, 1].")
} else if (!is.null(fdr.level) && (fdr.level <= 0 || fdr.level > 1)) {
stop("'fdr.level' must be in (0, 1].")
}
p <- p / max(p)
# Calculate pi0 estimate
if (is.null(pi0)) {
pi0s <- pi0est(p, ...)
} else {
if (pi0 > 0 && pi0 <= 1) {
pi0s = list()
pi0s$pi0 = pi0
} else {
stop("pi0 is not (0,1]")
}
}
# Calculate q-value estimates
m <- length(p)
i <- m:1L
o <- order(p, decreasing = TRUE)
ro <- order(o)
if (pfdr) {
qvals <- pi0s$pi0 * pmin(1, cummin(p[o] * m / (i * (1 - (1 - p[o]) ^ m))))[ro]
} else {
qvals <- pi0s$pi0 * pmin(1, cummin(p[o] * m /i ))[ro]
}
qvals_out[rm_na] <- qvals
# Calculate local FDR estimates
if (lfdr.out) {
lfdr <- lfdr(p = p, pi0 = pi0s$pi0, ...)
lfdr_out[rm_na] <- lfdr
} else {
lfdr_out <- NULL
}
# Return results
if (!is.null(fdr.level)) {
retval <- list(call = match.call(), pi0 = pi0s$pi0, qvalues = qvals_out,
pvalues = p_in, lfdr = lfdr_out, fdr.level = fdr.level,
significant = (qvals <= fdr.level),
pi0.lambda = pi0s$pi0.lambda, lambda = pi0s$lambda,
pi0.smooth = pi0s$pi0.smooth)
} else {
retval <- list(call = match.call(), pi0 = pi0s$pi0, qvalues = qvals_out,
pvalues = p_in, lfdr = lfdr_out, pi0.lambda = pi0s$pi0.lambda,
lambda = pi0s$lambda, pi0.smooth = pi0s$pi0.smooth)
}
class(retval) <- "qvalue"
return(retval)
}
qobj <- qvalue_truncp(p = pvalues)
test<-c("nid","qds","mis","add","sub","prb","nu","lid","pho","muw","non",
"com","lis","wrt","read1","read2","lit")
qvalues <- qobj$qvalues
q<-data.frame(test,pvalues,qvalues)
# unique effect interaction time * group
colnames(q)<-c("(Sub)Task","P-value","Q-value")
data.table(q,keep.rownames=FALSE)
## (Sub)Task P-value Q-value
## 1: nid 2.636084e-02 2.409921e-02
## 2: qds 1.226402e-03 1.851864e-03
## 3: mis 5.207866e-01 3.868359e-01
## 4: add 2.279202e-01 1.934825e-01
## 5: sub 1.211668e-07 4.683122e-07
## 6: prb 2.216959e-02 2.195651e-02
## 7: nu 6.786598e-05 1.344274e-04
## 8: lid 2.306199e-05 5.481682e-05
## 9: pho 1.874023e-28 2.227213e-27
## 10: muw 1.246557e-03 1.851864e-03
## 11: non 1.576190e-07 4.683122e-07
## 12: com 9.829968e-01 6.872111e-01
## 13: lis 4.774235e-01 3.782680e-01
## 14: wrt 3.591746e-03 4.268670e-03
## 15: read1 1.676024e-03 2.213220e-03
## 16: read2 5.368335e-03 5.800079e-03
## 17: lit 3.907119e-10 2.321740e-09
Cohen’s d was calculated without a correction for variance by school or covariates.
library(rstatix)
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
## filter
cd=list()
for(i in 1:17){
df.effs<-data.frame(diff=endline[,i+6]-baseline[,i+6],group=baseline$Group)
cd[[i]]<-df.effs %>% cohens_d(diff ~ group, var.equal = TRUE)}
test<-c("nid","qds","mis","add","sub","prb","nu","lid","pho","muw","non",
"com","lis","wrt","read1","read2","lit")
df.cohensd<-cd[[1]]
for(i in 2:17)
df.cohensd<-rbind(df.cohensd,cd[[i]])
df<-data.frame(test,round(df.cohensd[,c(4)],2))
colnames(df)<-c("(Sub)Task","Cohen's d")
data.table(df,keep.rownames=FALSE)
## (Sub)Task Cohen's d
## 1: nid 0.12
## 2: qds 0.17
## 3: mis 0.04
## 4: add 0.08
## 5: sub 0.28
## 6: prb 0.12
## 7: nu 0.22
## 8: lid 0.22
## 9: pho 0.60
## 10: muw 0.18
## 11: non 0.28
## 12: com 0.02
## 13: lis 0.04
## 14: wrt -0.13
## 15: read1 0.19
## 16: read2 0.15
## 17: lit 0.35
tab_model(fit_nid,fit_nid1)
| total_nid | total_nid | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 12.73 | 12.27 – 13.19 | <0.001 | 12.51 | 11.94 – 13.09 | <0.001 |
| GenderChild [Male] | -0.40 | -0.95 – 0.14 | 0.148 | -0.39 | -0.94 – 0.16 | 0.163 |
| time [endline] | 1.75 | 1.37 – 2.14 | <0.001 | 1.74 | 1.28 – 2.19 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.16 | -0.70 – 0.37 | 0.552 | -0.16 | -0.70 – 0.38 | 0.558 |
| Group [1] | 0.44 | -0.29 – 1.16 | 0.237 | |||
|
time [endline] × Group [1] |
0.04 | -0.51 – 0.58 | 0.890 | |||
| Random Effects | ||||||
| σ2 | 3.07 | 3.08 | ||||
| τ00 | 3.16 participantID:School | 3.15 participantID:School | ||||
| 0.25 School | 0.22 School | |||||
| ICC | 0.53 | 0.52 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.105 / 0.575 | 0.112 / 0.576 | ||||
plot(colnames(dat)[10])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_qds,fit_qds1)
| total_qds | total_qds | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 8.67 | 8.38 – 8.96 | <0.001 | 8.59 | 8.23 – 8.95 | <0.001 |
| GenderChild [Male] | -0.47 | -0.82 – -0.12 | 0.009 | -0.47 | -0.82 – -0.12 | 0.009 |
| time [endline] | 0.98 | 0.69 – 1.26 | <0.001 | 0.89 | 0.55 – 1.23 | <0.001 |
|
GenderChild [Male] × time [endline] |
0.08 | -0.32 – 0.49 | 0.681 | 0.09 | -0.31 – 0.50 | 0.647 |
| Group [1] | 0.14 | -0.31 – 0.60 | 0.535 | |||
|
time [endline] × Group [1] |
0.19 | -0.23 – 0.60 | 0.375 | |||
| Random Effects | ||||||
| σ2 | 1.75 | 1.75 | ||||
| τ00 | 0.82 participantID:School | 0.82 participantID:School | ||||
| 0.09 School | 0.08 School | |||||
| ICC | 0.34 | 0.34 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.103 / 0.409 | 0.108 / 0.411 | ||||
plot(colnames(dat)[11])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_mis,fit_mis1)
| total_mis | total_mis | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 6.03 | 5.50 – 6.56 | <0.001 | 5.40 | 4.82 – 5.98 | <0.001 |
| GenderChild [Male] | -0.24 | -0.79 – 0.31 | 0.391 | -0.21 | -0.76 – 0.34 | 0.458 |
| time [endline] | 2.16 | 1.76 – 2.56 | <0.001 | 2.23 | 1.75 – 2.70 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.45 | -1.01 – 0.12 | 0.119 | -0.46 | -1.02 – 0.11 | 0.113 |
| Group [1] | 1.21 | 0.48 – 1.95 | 0.001 | |||
|
time [endline] × Group [1] |
-0.15 | -0.72 – 0.43 | 0.618 | |||
| Random Effects | ||||||
| σ2 | 3.39 | 3.40 | ||||
| τ00 | 2.95 participantID:School | 2.94 participantID:School | ||||
| 0.52 School | 0.23 School | |||||
| ICC | 0.51 | 0.48 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.127 / 0.569 | 0.168 / 0.570 | ||||
plot(colnames(dat)[12])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_add,fit_add1)
| total_add | total_add | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 7.20 | 6.32 – 8.08 | <0.001 | 6.44 | 5.45 – 7.43 | <0.001 |
| GenderChild [Male] | -0.49 | -1.39 – 0.41 | 0.288 | -0.47 | -1.37 – 0.43 | 0.306 |
| time [endline] | 3.10 | 2.36 – 3.84 | <0.001 | 3.01 | 2.13 – 3.90 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.14 | -1.19 – 0.90 | 0.791 | -0.13 | -1.18 – 0.92 | 0.807 |
| Group [1] | 1.50 | 0.23 – 2.77 | 0.021 | |||
|
time [endline] × Group [1] |
0.19 | -0.87 – 1.26 | 0.718 | |||
| Random Effects | ||||||
| σ2 | 11.62 | 11.65 | ||||
| τ00 | 5.20 participantID:School | 5.23 participantID:School | ||||
| 1.55 School | 0.82 School | |||||
| ICC | 0.37 | 0.34 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.114 / 0.440 | 0.146 / 0.438 | ||||
plot(colnames(dat)[13])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_sub,fit_sub1)
| total_sub | total_sub | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 4.85 | 4.05 – 5.65 | <0.001 | 4.33 | 3.52 – 5.14 | <0.001 |
| GenderChild [Male] | -0.06 | -0.86 – 0.74 | 0.877 | -0.10 | -0.89 – 0.69 | 0.813 |
| time [endline] | 2.07 | 1.37 – 2.76 | <0.001 | 1.15 | 0.34 – 1.95 | 0.005 |
|
GenderChild [Male] × time [endline] |
0.09 | -0.88 – 1.07 | 0.849 | 0.20 | -0.75 – 1.16 | 0.677 |
| Group [1] | 0.78 | -0.24 – 1.80 | 0.132 | |||
|
time [endline] × Group [1] |
2.04 | 1.08 – 3.01 | <0.001 | |||
| Random Effects | ||||||
| σ2 | 10.19 | 9.71 | ||||
| τ00 | 3.07 participantID:School | 3.35 participantID:School | ||||
| 1.39 School | 0.40 School | |||||
| ICC | 0.30 | 0.28 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.071 / 0.354 | 0.139 / 0.379 | ||||
plot(colnames(dat)[14])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_prb,fit_prb1)
| total_prb | total_prb | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 3.80 | 3.46 – 4.13 | <0.001 | 3.61 | 3.21 – 4.01 | <0.001 |
| GenderChild [Male] | 0.23 | -0.12 – 0.57 | 0.201 | 0.23 | -0.11 – 0.58 | 0.189 |
| time [endline] | 0.94 | 0.65 – 1.24 | <0.001 | 0.81 | 0.46 – 1.17 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.28 | -0.70 – 0.14 | 0.189 | -0.27 | -0.69 – 0.15 | 0.215 |
| Group [1] | 0.35 | -0.17 – 0.86 | 0.189 | |||
|
time [endline] × Group [1] |
0.29 | -0.13 – 0.72 | 0.179 | |||
| Random Effects | ||||||
| σ2 | 1.88 | 1.88 | ||||
| τ00 | 0.63 participantID:School | 0.63 participantID:School | ||||
| 0.20 School | 0.15 School | |||||
| ICC | 0.31 | 0.29 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.058 / 0.347 | 0.080 / 0.351 | ||||
plot(colnames(dat)[15])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_nu,fit_nu1)
| tot.num | tot.num | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 0.57 | 0.54 – 0.60 | <0.001 | 0.54 | 0.51 – 0.58 | <0.001 |
| GenderChild [Male] | -0.01 | -0.04 – 0.02 | 0.367 | -0.01 | -0.04 – 0.02 | 0.405 |
| time [endline] | 0.13 | 0.11 – 0.15 | <0.001 | 0.12 | 0.10 – 0.14 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.02 | -0.04 – 0.01 | 0.246 | -0.01 | -0.04 – 0.01 | 0.285 |
| Group [1] | 0.05 | 0.01 – 0.10 | 0.019 | |||
|
time [endline] × Group [1] |
0.02 | -0.00 – 0.05 | 0.084 | |||
| Random Effects | ||||||
| σ2 | 0.01 | 0.01 | ||||
| τ00 | 0.01 participantID:School | 0.01 participantID:School | ||||
| 0.00 School | 0.00 School | |||||
| ICC | 0.63 | 0.61 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.160 / 0.688 | 0.202 / 0.690 | ||||
plot(colnames(dat)[16])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_lid,fit_lid1)
| total_lid | total_lid | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 21.91 | 20.68 – 23.15 | <0.001 | 21.32 | 19.69 – 22.94 | <0.001 |
| GenderChild [Male] | -1.56 | -2.71 – -0.40 | 0.008 | -1.53 | -2.69 – -0.38 | 0.009 |
| time [endline] | 2.72 | 1.71 – 3.73 | <0.001 | 2.79 | 1.59 – 4.00 | <0.001 |
|
GenderChild [Male] × time [endline] |
0.62 | -0.80 – 2.04 | 0.391 | 0.61 | -0.81 – 2.04 | 0.399 |
| Group [1] | 1.19 | -0.94 – 3.33 | 0.273 | |||
|
time [endline] × Group [1] |
-0.16 | -1.60 – 1.29 | 0.833 | |||
| Random Effects | ||||||
| σ2 | 21.48 | 21.54 | ||||
| τ00 | 5.98 participantID:School | 5.96 participantID:School | ||||
| 3.74 School | 3.61 School | |||||
| ICC | 0.31 | 0.31 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.080 / 0.367 | 0.089 / 0.370 | ||||
plot(colnames(dat)[17])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_pho,fit_pho1)
| total_pho | total_pho | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 3.47 | 2.37 – 4.56 | <0.001 | 2.25 | 1.11 – 3.39 | <0.001 |
| GenderChild [Male] | -0.24 | -0.86 – 0.37 | 0.435 | -0.28 | -0.88 – 0.32 | 0.356 |
| time [endline] | 2.59 | 2.02 – 3.17 | <0.001 | 1.54 | 0.89 – 2.19 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.41 | -1.21 – 0.40 | 0.323 | -0.28 | -1.05 – 0.49 | 0.471 |
| Group [1] | 2.06 | 0.54 – 3.58 | 0.008 | |||
|
time [endline] × Group [1] |
2.33 | 1.56 – 3.11 | <0.001 | |||
| Random Effects | ||||||
| σ2 | 6.89 | 6.24 | ||||
| τ00 | 0.85 participantID:School | 1.17 participantID:School | ||||
| 4.93 School | 2.33 School | |||||
| ICC | 0.46 | 0.36 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.105 / 0.513 | 0.311 / 0.559 | ||||
plot(colnames(dat)[18])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_muw,fit_muw1)
| total_muw | total_muw | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 11.62 | 10.16 – 13.09 | <0.001 | 10.73 | 8.80 – 12.65 | <0.001 |
| GenderChild [Male] | -2.23 | -3.50 – -0.96 | 0.001 | -2.20 | -3.47 – -0.93 | 0.001 |
| time [endline] | 5.33 | 4.64 – 6.03 | <0.001 | 5.37 | 4.55 – 6.20 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.35 | -1.33 – 0.62 | 0.480 | -0.36 | -1.33 – 0.62 | 0.475 |
| Group [1] | 1.77 | -0.79 – 4.33 | 0.175 | |||
|
time [endline] × Group [1] |
-0.09 | -1.08 – 0.90 | 0.859 | |||
| Random Effects | ||||||
| σ2 | 10.11 | 10.15 | ||||
| τ00 | 22.82 participantID:School | 22.80 participantID:School | ||||
| 5.85 School | 5.51 School | |||||
| ICC | 0.74 | 0.74 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.173 / 0.784 | 0.188 / 0.786 | ||||
plot(colnames(dat)[19])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_non,fit_non1)
| total_non | total_non | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 4.46 | 3.26 – 5.66 | <0.001 | 3.68 | 2.24 – 5.11 | <0.001 |
| GenderChild [Male] | -0.51 | -1.56 – 0.53 | 0.335 | -0.51 | -1.55 – 0.53 | 0.334 |
| time [endline] | 4.93 | 4.18 – 5.68 | <0.001 | 4.12 | 3.24 – 4.99 | <0.001 |
|
GenderChild [Male] × time [endline] |
-1.43 | -2.48 – -0.37 | 0.008 | -1.33 | -2.37 – -0.29 | 0.012 |
| Group [1] | 1.37 | -0.52 – 3.27 | 0.155 | |||
|
time [endline] × Group [1] |
1.81 | 0.76 – 2.86 | 0.001 | |||
| Random Effects | ||||||
| σ2 | 11.84 | 11.47 | ||||
| τ00 | 10.59 participantID:School | 10.79 participantID:School | ||||
| 3.95 School | 2.74 School | |||||
| ICC | 0.55 | 0.54 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.158 / 0.622 | 0.205 / 0.635 | ||||
plot(colnames(dat)[20])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_com,fit_com1)
| total_com | total_com | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 1.01 | 0.70 – 1.33 | <0.001 | 0.91 | 0.48 – 1.33 | <0.001 |
| GenderChild [Male] | -0.10 | -0.39 – 0.20 | 0.513 | -0.09 | -0.39 – 0.20 | 0.532 |
| time [endline] | 1.32 | 1.10 – 1.54 | <0.001 | 1.34 | 1.08 – 1.61 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.10 | -0.41 – 0.21 | 0.511 | -0.11 | -0.42 – 0.21 | 0.502 |
| Group [1] | 0.21 | -0.35 – 0.77 | 0.452 | |||
|
time [endline] × Group [1] |
-0.05 | -0.36 – 0.27 | 0.770 | |||
| Random Effects | ||||||
| σ2 | 1.03 | 1.03 | ||||
| τ00 | 0.78 participantID:School | 0.78 participantID:School | ||||
| 0.24 School | 0.25 School | |||||
| ICC | 0.50 | 0.50 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.167 / 0.582 | 0.169 / 0.584 | ||||
plot(colnames(dat)[21])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_lis,fit_lis1)
| total_lis | total_lis | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 1.13 | 0.82 – 1.43 | <0.001 | 1.06 | 0.66 – 1.47 | <0.001 |
| GenderChild [Male] | -0.20 | -0.50 – 0.09 | 0.182 | -0.20 | -0.50 – 0.09 | 0.180 |
| time [endline] | 0.69 | 0.45 – 0.92 | <0.001 | 0.61 | 0.33 – 0.88 | <0.001 |
|
GenderChild [Male] × time [endline] |
0.01 | -0.31 – 0.34 | 0.934 | 0.02 | -0.30 – 0.35 | 0.890 |
| Group [1] | 0.12 | -0.41 – 0.65 | 0.660 | |||
|
time [endline] × Group [1] |
0.17 | -0.15 – 0.50 | 0.299 | |||
| Random Effects | ||||||
| σ2 | 1.11 | 1.11 | ||||
| τ00 | 0.69 participantID:School | 0.70 participantID:School | ||||
| 0.21 School | 0.21 School | |||||
| ICC | 0.45 | 0.45 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.060 / 0.482 | 0.066 / 0.486 | ||||
plot(colnames(dat)[22])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_wrt,fit_wrt1)
| total_wrt | total_wrt | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 4.40 | 3.66 – 5.13 | <0.001 | 3.91 | 2.93 – 4.88 | <0.001 |
| GenderChild [Male] | -0.92 | -1.54 – -0.30 | 0.004 | -0.90 | -1.52 – -0.28 | 0.005 |
| time [endline] | 2.47 | 2.11 – 2.83 | <0.001 | 2.62 | 2.20 – 3.05 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.36 | -0.87 – 0.15 | 0.162 | -0.38 | -0.89 – 0.13 | 0.142 |
| Group [1] | 0.99 | -0.31 – 2.28 | 0.136 | |||
|
time [endline] × Group [1] |
-0.34 | -0.86 – 0.17 | 0.189 | |||
| Random Effects | ||||||
| σ2 | 2.72 | 2.72 | ||||
| τ00 | 5.16 participantID:School | 5.16 participantID:School | ||||
| 1.52 School | 1.46 School | |||||
| ICC | 0.71 | 0.71 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.147 / 0.753 | 0.162 / 0.756 | ||||
plot(colnames(dat)[23])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_read1,fit_read11)
| read_1 | read_1 | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 20.62 | 15.38 – 25.86 | <0.001 | 17.44 | 10.47 – 24.41 | <0.001 |
| GenderChild [Male] | -4.12 | -8.14 – -0.10 | 0.044 | -4.07 | -8.09 – -0.05 | 0.047 |
| time [endline] | 19.96 | 17.65 – 22.27 | <0.001 | 19.34 | 16.59 – 22.09 | <0.001 |
|
GenderChild [Male] × time [endline] |
-5.13 | -8.38 – -1.88 | 0.002 | -5.06 | -8.31 – -1.80 | 0.002 |
| Group [1] | 6.09 | -3.23 – 15.40 | 0.200 | |||
|
time [endline] × Group [1] |
1.38 | -1.92 – 4.67 | 0.413 | |||
| Random Effects | ||||||
| σ2 | 112.28 | 112.39 | ||||
| τ00 | 217.55 participantID:School | 217.52 participantID:School | ||||
| 87.48 School | 80.93 School | |||||
| ICC | 0.73 | 0.73 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.175 / 0.778 | 0.197 / 0.780 | ||||
plot(colnames(dat)[24])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_read2,fit_read21)
| read_2 | read_2 | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 41.32 | 34.30 – 48.33 | <0.001 | 37.36 | 28.19 – 46.53 | <0.001 |
| GenderChild [Male] | -8.35 | -14.54 – -2.16 | 0.008 | -8.23 | -14.42 – -2.04 | 0.009 |
| time [endline] | 33.19 | 29.54 – 36.84 | <0.001 | 32.52 | 28.18 – 36.85 | <0.001 |
|
GenderChild [Male] × time [endline] |
-3.69 | -8.81 – 1.44 | 0.159 | -3.61 | -8.75 – 1.53 | 0.169 |
| Group [1] | 7.70 | -4.45 – 19.85 | 0.214 | |||
|
time [endline] × Group [1] |
1.50 | -3.70 – 6.70 | 0.572 | |||
| Random Effects | ||||||
| σ2 | 279.42 | 280.00 | ||||
| τ00 | 506.72 participantID:School | 506.50 participantID:School | ||||
| 130.58 School | 121.03 School | |||||
| ICC | 0.70 | 0.69 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.229 / 0.765 | 0.243 / 0.766 | ||||
plot(colnames(dat)[25])
# The thin lines are the means of the schools, thick lines are the overall means.
tab_model(fit_tot.lit,fit_tot.lit1)
| tot.lit | tot.lit | |||||
|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 0.39 | 0.34 – 0.44 | <0.001 | 0.35 | 0.28 – 0.41 | <0.001 |
| GenderChild [Male] | -0.05 | -0.09 – -0.01 | 0.011 | -0.05 | -0.09 – -0.01 | 0.012 |
| time [endline] | 0.22 | 0.20 – 0.25 | <0.001 | 0.20 | 0.18 – 0.23 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.03 | -0.06 – 0.00 | 0.076 | -0.03 | -0.06 – 0.01 | 0.100 |
| Group [1] | 0.08 | -0.01 – 0.17 | 0.072 | |||
|
time [endline] × Group [1] |
0.04 | 0.01 – 0.07 | 0.009 | |||
| Random Effects | ||||||
| σ2 | 0.01 | 0.01 | ||||
| τ00 | 0.02 participantID:School | 0.02 participantID:School | ||||
| 0.01 School | 0.01 School | |||||
| ICC | 0.75 | 0.74 | ||||
| N | 328 participantID | 328 participantID | ||||
| 20 School | 20 School | |||||
| Observations | 656 | 656 | ||||
| Marginal R2 / Conditional R2 | 0.218 / 0.808 | 0.266 / 0.813 | ||||
plot(colnames(dat)[26])
# The thin lines are the means of the schools, thick lines are the overall means.
The first model shows that there is a significant relationship between group and attendance. Children in group A (=Group 1) have higher attendance scores (3.15) than children in group B (=Group 0). The second model shows that there is a significant relationship between total literacy score and attendance. Children with higher attendance have higher scores on literacy score (averaged over baseline and endline) and they improve more from baseline to endline with higher attendance scores. In the third model shows that children in group A have higher total literacy scores (averaged over baseline and endline) and children in group A improve more than children in group B. In the fourth model it is shown that higher attendance and being in group A results in significant improvement in literacy scores at endline. The final model shows a significant three way interaction between time group and attendance. Higher attendance in group A results in more improvement from baseline to endline than higher attendance in group B. Note that this final model does not have significant interaction effects anymore for time x attendance and time x group. So this would lead to the conclusion that attendance is both a mediator and a moderator.
| Attendance | tot.lit | tot.lit | tot.lit | tot.lit | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 67.83 | 66.85 – 68.82 | <0.001 | 0.19 | 0.15 – 0.24 | <0.001 | 0.27 | 0.24 – 0.30 | <0.001 | 0.17 | 0.12 – 0.21 | <0.001 | 0.19 | 0.13 – 0.24 | <0.001 |
| Group [1] | 3.15 | 1.76 – 4.54 | <0.001 | 0.05 | 0.01 – 0.09 | 0.026 | 0.04 | 0.01 – 0.08 | 0.025 | -0.00 | -0.09 – 0.09 | 0.991 | |||
| time [endline] | 0.11 | 0.08 – 0.14 | <0.001 | 0.15 | 0.14 – 0.16 | <0.001 | 0.09 | 0.06 – 0.12 | <0.001 | 0.10 | 0.07 – 0.14 | <0.001 | |||
| Attendance | 0.00 | 0.00 – 0.00 | <0.001 | 0.00 | 0.00 – 0.00 | <0.001 | 0.00 | 0.00 – 0.00 | 0.001 | ||||||
|
time [endline] × Attendance |
0.00 | 0.00 – 0.00 | <0.001 | 0.00 | 0.00 – 0.00 | <0.001 | 0.00 | 0.00 – 0.00 | 0.006 | ||||||
|
time [endline] × Group [1] |
0.05 | 0.04 – 0.07 | <0.001 | 0.05 | 0.04 – 0.07 | <0.001 | 0.01 | -0.05 – 0.07 | 0.699 | ||||||
| Attendance × Group [1] | 0.00 | -0.00 – 0.00 | 0.253 | ||||||||||||
|
(time [endline] × Attendance) × Group [1] |
0.00 | -0.00 – 0.00 | 0.178 | ||||||||||||
| Random Effects | |||||||||||||||
| σ2 | 0.01 | 0.01 | 0.01 | 0.01 | |||||||||||
| τ00 | 0.03 participantID:School | 0.03 participantID:School | 0.03 participantID:School | 0.03 participantID:School | |||||||||||
| 0.00 School | 0.00 School | 0.00 School | 0.00 School | ||||||||||||
| ICC | 0.70 | 0.70 | 0.70 | 0.69 | |||||||||||
| N | 1507 participantID | 1507 participantID | 1507 participantID | 1507 participantID | |||||||||||
| 30 School | 30 School | 30 School | 30 School | ||||||||||||
| Observations | 3014 | 3013 | 3013 | 3013 | 3013 | ||||||||||
| R2 / R2 adjusted | 0.006 / 0.006 | 0.189 / 0.755 | 0.188 / 0.760 | 0.219 / 0.762 | 0.220 / 0.762 | ||||||||||
There is no significant interaction effect for gender x time x group on Math scales
numericy_g
| total_nid | total_qds | total_mis | total_add | total_sub | total_prb | tot.num | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 11.15 | 10.60 – 11.69 | <0.001 | 7.89 | 7.51 – 8.28 | <0.001 | 4.01 | 3.40 – 4.62 | <0.001 | 4.29 | 3.42 – 5.15 | <0.001 | 2.96 | 2.21 – 3.71 | <0.001 | 2.97 | 2.56 – 3.38 | <0.001 | 0.45 | 0.42 – 0.48 | <0.001 |
| GenderChild [Male] | 0.16 | -0.19 – 0.51 | 0.368 | -0.11 | -0.36 – 0.14 | 0.403 | 0.29 | -0.08 – 0.67 | 0.128 | 0.22 | -0.36 – 0.80 | 0.458 | 0.28 | -0.22 – 0.78 | 0.266 | 0.14 | -0.10 – 0.38 | 0.244 | 0.01 | -0.01 – 0.03 | 0.235 |
| time [endline] | 1.69 | 1.18 – 2.21 | <0.001 | 0.63 | 0.22 – 1.04 | 0.003 | 1.72 | 1.16 – 2.27 | <0.001 | 1.71 | 0.75 – 2.67 | <0.001 | 0.79 | -0.04 – 1.62 | 0.062 | 1.30 | 0.89 – 1.70 | <0.001 | 0.11 | 0.08 – 0.14 | <0.001 |
| Group [1] | -0.06 | -0.50 – 0.37 | 0.776 | -0.09 | -0.39 – 0.22 | 0.573 | 0.55 | 0.05 – 1.06 | 0.032 | 1.08 | 0.43 – 1.74 | 0.001 | 0.69 | 0.12 – 1.25 | 0.018 | 0.02 | -0.34 – 0.38 | 0.914 | 0.02 | -0.01 – 0.05 | 0.158 |
| Attendance | 0.01 | 0.01 – 0.02 | <0.001 | 0.01 | 0.00 – 0.01 | 0.010 | 0.02 | 0.01 – 0.02 | <0.001 | 0.02 | 0.01 – 0.03 | <0.001 | 0.01 | 0.00 – 0.02 | 0.008 | 0.01 | 0.00 – 0.01 | 0.014 | 0.00 | 0.00 – 0.00 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.08 | -0.44 – 0.28 | 0.675 | -0.06 | -0.35 – 0.23 | 0.681 | -0.32 | -0.71 – 0.07 | 0.106 | -0.45 | -1.12 – 0.22 | 0.187 | 0.15 | -0.43 – 0.73 | 0.607 | -0.20 | -0.49 – 0.08 | 0.161 | -0.01 | -0.03 – 0.00 | 0.110 |
|
GenderChild [Male] × Group [1] |
0.22 | -0.27 – 0.71 | 0.385 | 0.19 | -0.16 – 0.54 | 0.285 | -0.08 | -0.61 – 0.45 | 0.768 | 0.01 | -0.81 – 0.82 | 0.990 | -0.09 | -0.79 – 0.61 | 0.801 | 0.08 | -0.26 – 0.42 | 0.627 | 0.01 | -0.02 – 0.04 | 0.668 |
|
time [endline] × Group [1] |
0.40 | 0.04 – 0.77 | 0.030 | 0.39 | 0.10 – 0.68 | 0.009 | 0.09 | -0.30 – 0.48 | 0.660 | 0.36 | -0.31 – 1.04 | 0.293 | 1.08 | 0.49 – 1.67 | <0.001 | 0.27 | -0.02 – 0.56 | 0.069 | 0.03 | 0.01 – 0.05 | 0.002 |
|
time [endline] × Attendance |
-0.00 | -0.01 – 0.01 | 0.734 | 0.00 | -0.00 – 0.01 | 0.253 | 0.00 | -0.00 – 0.01 | 0.394 | 0.02 | 0.00 – 0.03 | 0.012 | 0.01 | -0.00 – 0.02 | 0.101 | -0.00 | -0.01 – 0.00 | 0.278 | 0.00 | -0.00 – 0.00 | 0.308 |
|
(GenderChild [Male] × time [endline]) × Group [1] |
-0.22 | -0.73 – 0.29 | 0.393 | -0.10 | -0.51 – 0.31 | 0.637 | 0.00 | -0.54 – 0.55 | 0.991 | -0.14 | -1.09 – 0.81 | 0.770 | 0.06 | -0.76 – 0.88 | 0.880 | -0.06 | -0.47 – 0.34 | 0.758 | -0.01 | -0.03 – 0.02 | 0.629 |
| Random Effects | |||||||||||||||||||||
| σ2 | 3.19 | 2.02 | 3.65 | 10.94 | 8.22 | 1.98 | 0.01 | ||||||||||||||
| τ00 | 2.70 participantID:School | 0.99 participantID:School | 3.19 participantID:School | 5.33 participantID:School | 3.81 participantID:School | 0.81 participantID:School | 0.01 participantID:School | ||||||||||||||
| 0.12 School | 0.06 School | 0.21 School | 0.16 School | 0.13 School | 0.14 School | 0.00 School | |||||||||||||||
| ICC | 0.47 | 0.34 | 0.48 | 0.33 | 0.32 | 0.33 | 0.61 | ||||||||||||||
| N | 1507 participantID | 1507 participantID | 1507 participantID | 1507 participantID | 1507 participantID | 1507 participantID | 1507 participantID | ||||||||||||||
| 30 School | 30 School | 30 School | 30 School | 30 School | 30 School | 30 School | |||||||||||||||
| Observations | 3014 | 3014 | 3014 | 3014 | 3014 | 3014 | 3014 | ||||||||||||||
| Marginal R2 / Conditional R2 | 0.123 / 0.535 | 0.085 / 0.397 | 0.129 / 0.549 | 0.138 / 0.426 | 0.119 / 0.404 | 0.102 / 0.394 | 0.194 / 0.683 | ||||||||||||||
There is a one significant effect for the interaction gender x time x group. Boys in group B improved more (4.23) on read 1 than Girls in group B.
literacy_g
| total_lid | total_pho | total_muw | total_non | total_com | total_lis | total_wrt | read_1 | read_2 | tot.lit | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 18.39 | 16.81 – 19.97 | <0.001 | 2.27 | 1.40 – 3.14 | <0.001 | 3.84 | 2.24 – 5.44 | <0.001 | 1.38 | 0.29 – 2.47 | 0.013 | 0.14 | -0.17 – 0.45 | 0.369 | 0.35 | 0.04 – 0.66 | 0.027 | 1.07 | 0.34 – 1.80 | 0.004 | 3.86 | -0.61 – 8.33 | 0.090 | 9.87 | 2.95 – 16.79 | 0.005 | 0.18 | 0.13 – 0.23 | <0.001 |
| GenderChild [Male] | -0.37 | -1.25 – 0.51 | 0.413 | -0.31 | -0.73 – 0.11 | 0.145 | -0.84 | -1.75 – 0.07 | 0.072 | -0.08 | -0.77 – 0.61 | 0.813 | -0.09 | -0.27 – 0.10 | 0.360 | -0.17 | -0.35 – 0.00 | 0.051 | -0.34 | -0.76 – 0.07 | 0.106 | -2.00 | -4.54 – 0.54 | 0.123 | -3.51 | -7.65 – 0.63 | 0.096 | -0.02 | -0.05 – 0.00 | 0.082 |
| time [endline] | 2.58 | 1.12 – 4.03 | 0.001 | -1.02 | -1.82 – -0.22 | 0.013 | 3.82 | 2.84 – 4.81 | <0.001 | 2.16 | 1.18 – 3.13 | <0.001 | 0.55 | 0.26 – 0.84 | <0.001 | 0.28 | 0.00 – 0.56 | 0.047 | 1.30 | 0.83 – 1.77 | <0.001 | 7.23 | 4.15 – 10.30 | <0.001 | 26.03 | 21.00 – 31.05 | <0.001 | 0.09 | 0.05 – 0.12 | <0.001 |
| Group [1] | -1.30 | -2.84 – 0.23 | 0.095 | 1.56 | 0.61 – 2.52 | 0.001 | 0.64 | -0.84 – 2.11 | 0.399 | 0.78 | -0.10 – 1.66 | 0.081 | 0.12 | -0.16 – 0.39 | 0.404 | 0.17 | -0.12 – 0.47 | 0.256 | 0.60 | -0.07 – 1.27 | 0.077 | 2.42 | -1.74 – 6.58 | 0.255 | 2.65 | -3.39 – 8.69 | 0.390 | 0.04 | -0.00 – 0.09 | 0.069 |
| Attendance | 0.03 | 0.02 – 0.05 | <0.001 | 0.00 | -0.01 – 0.01 | 0.849 | 0.06 | 0.04 – 0.08 | <0.001 | 0.02 | 0.01 – 0.03 | 0.001 | 0.01 | 0.00 – 0.01 | <0.001 | 0.01 | 0.00 – 0.01 | 0.001 | 0.02 | 0.02 – 0.03 | <0.001 | 0.11 | 0.06 – 0.16 | <0.001 | 0.23 | 0.15 – 0.31 | <0.001 | 0.00 | 0.00 – 0.00 | <0.001 |
|
GenderChild [Male] × time [endline] |
0.12 | -0.90 – 1.14 | 0.818 | 0.20 | -0.37 – 0.76 | 0.495 | 0.08 | -0.60 – 0.77 | 0.813 | -0.13 | -0.81 – 0.56 | 0.713 | 0.02 | -0.18 – 0.23 | 0.841 | 0.14 | -0.05 – 0.33 | 0.157 | -0.21 | -0.54 – 0.12 | 0.210 | -0.85 | -3.00 – 1.30 | 0.437 | 0.27 | -3.24 – 3.79 | 0.878 | 0.00 | -0.02 – 0.03 | 0.791 |
|
GenderChild [Male] × Group [1] |
0.34 | -0.90 – 1.58 | 0.591 | -0.06 | -0.65 – 0.53 | 0.837 | 0.12 | -1.17 – 1.40 | 0.858 | 0.14 | -0.84 – 1.12 | 0.778 | 0.11 | -0.15 – 0.38 | 0.393 | 0.05 | -0.20 – 0.29 | 0.716 | -0.27 | -0.85 – 0.32 | 0.375 | 1.14 | -2.45 – 4.73 | 0.535 | 2.21 | -3.64 – 8.06 | 0.459 | 0.01 | -0.03 – 0.04 | 0.803 |
|
time [endline] × Group [1] |
1.99 | 0.96 – 3.02 | <0.001 | 2.46 | 1.89 – 3.02 | <0.001 | 1.04 | 0.35 – 1.74 | 0.003 | 1.58 | 0.89 – 2.27 | <0.001 | 0.14 | -0.07 – 0.35 | 0.180 | 0.16 | -0.04 – 0.36 | 0.115 | -0.38 | -0.72 – -0.04 | 0.027 | 4.48 | 2.30 – 6.66 | <0.001 | 5.53 | 1.96 – 9.10 | 0.002 | 0.07 | 0.04 – 0.09 | <0.001 |
|
time [endline] × Attendance |
0.00 | -0.02 – 0.02 | 0.894 | 0.02 | 0.01 – 0.03 | <0.001 | 0.01 | -0.00 – 0.02 | 0.069 | 0.01 | -0.00 – 0.02 | 0.059 | 0.01 | 0.00 – 0.01 | 0.004 | 0.00 | -0.00 – 0.01 | 0.093 | 0.01 | 0.01 – 0.02 | <0.001 | 0.10 | 0.06 – 0.14 | <0.001 | 0.04 | -0.02 – 0.11 | 0.201 | 0.00 | 0.00 – 0.00 | <0.001 |
|
(GenderChild [Male] × time [endline]) × Group [1] |
-0.84 | -2.28 – 0.60 | 0.253 | -0.33 | -1.12 – 0.47 | 0.420 | -0.47 | -1.44 – 0.50 | 0.343 | -0.54 | -1.51 – 0.43 | 0.275 | -0.27 | -0.56 – 0.02 | 0.064 | -0.21 | -0.49 – 0.06 | 0.132 | 0.06 | -0.41 – 0.53 | 0.810 | -3.95 | -6.99 – -0.91 | 0.011 | -3.87 | -8.84 – 1.10 | 0.127 | -0.03 | -0.06 – -0.00 | 0.050 |
| Random Effects | ||||||||||||||||||||||||||||||
| σ2 | 25.27 | 7.66 | 11.53 | 11.41 | 1.02 | 0.92 | 2.69 | 112.97 | 301.78 | 0.01 | ||||||||||||||||||||
| τ00 | 11.99 participantID:School | 0.72 participantID:School | 28.40 participantID:School | 11.62 participantID:School | 0.65 participantID:School | 0.55 participantID:School | 5.66 participantID:School | 197.47 participantID:School | 522.76 participantID:School | 0.03 participantID:School | ||||||||||||||||||||
| 3.03 School | 1.44 School | 2.61 School | 0.55 School | 0.08 School | 0.11 School | 0.53 School | 20.90 School | 37.08 School | 0.00 School | |||||||||||||||||||||
| ICC | 0.37 | 0.22 | 0.73 | 0.52 | 0.42 | 0.42 | 0.70 | 0.66 | 0.65 | 0.69 | ||||||||||||||||||||
| N | 1507 participantID | 1507 participantID | 1507 participantID | 1507 participantID | 1507 participantID | 1507 participantID | 1507 participantID | 1507 participantID | 1507 participantID | 1507 participantID | ||||||||||||||||||||
| 30 School | 30 School | 30 School | 30 School | 30 School | 30 School | 30 School | 30 School | 30 School | 30 School | |||||||||||||||||||||
| Observations | 3014 | 3014 | 3014 | 3014 | 3014 | 3014 | 3014 | 3014 | 3014 | 3013 | ||||||||||||||||||||
| Marginal R2 / Conditional R2 | 0.085 / 0.426 | 0.251 / 0.416 | 0.171 / 0.775 | 0.154 / 0.591 | 0.136 / 0.498 | 0.075 / 0.462 | 0.133 / 0.737 | 0.183 / 0.721 | 0.243 / 0.735 | 0.224 / 0.763 | ||||||||||||||||||||
There is no significant interaction effect for gender x time x group on wellbeing
wellbeing_g
| WB_total | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 32.19 | 30.77 – 33.61 | <0.001 |
| GenderChild [Male] | 0.14 | -0.78 – 1.07 | 0.760 |
| time [endline] | -1.11 | -2.96 – 0.73 | 0.237 |
| Group [1] | 3.06 | 1.95 – 4.18 | <0.001 |
| Attendance | 0.00 | -0.01 – 0.02 | 0.670 |
|
GenderChild [Male] × time [endline] |
0.07 | -1.22 – 1.36 | 0.910 |
|
GenderChild [Male] × Group [1] |
-0.79 | -2.10 – 0.51 | 0.233 |
|
time [endline] × Group [1] |
0.46 | -0.85 – 1.76 | 0.494 |
|
time [endline] × Attendance |
0.00 | -0.02 – 0.03 | 0.822 |
|
(GenderChild [Male] × time [endline]) × Group [1] |
0.54 | -1.29 – 2.36 | 0.563 |
| Random Effects | |||
| σ2 | 40.61 | ||
| τ00 participantID:School | 0.65 | ||
| τ00 School | 0.72 | ||
| ICC | 0.03 | ||
| N participantID | 1507 | ||
| N School | 30 | ||
| Observations | 3014 | ||
| Marginal R2 / Conditional R2 | 0.055 / 0.086 | ||
There is a main effect for total_nid for gender. Boys scored .37 higher than girls, p=.031. There is one significant interaction effect gender x time. On the total math score, girls improved 3% more than boys (p=.007).
numericy_g
| total_nid | total_qds | total_mis | total_add | total_sub | total_prb | tot.num | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 12.07 | 11.80 – 12.34 | <0.001 | 8.25 | 8.04 – 8.45 | <0.001 | 5.72 | 5.37 – 6.08 | <0.001 | 6.86 | 6.41 – 7.32 | <0.001 | 4.55 | 4.15 – 4.95 | <0.001 | 3.40 | 3.12 – 3.68 | <0.001 | 0.54 | 0.52 – 0.55 | <0.001 |
| GenderChild [Male] | 0.37 | 0.04 – 0.71 | 0.030 | 0.08 | -0.15 – 0.32 | 0.481 | 0.21 | -0.15 – 0.56 | 0.254 | 0.22 | -0.38 – 0.82 | 0.472 | 0.18 | -0.37 – 0.72 | 0.522 | 0.22 | -0.01 – 0.45 | 0.060 | 0.02 | -0.00 – 0.04 | 0.066 |
| time [endline] | 2.02 | 1.77 – 2.27 | <0.001 | 1.23 | 1.03 – 1.44 | <0.001 | 2.02 | 1.76 – 2.28 | <0.001 | 3.17 | 2.68 – 3.67 | <0.001 | 2.50 | 2.05 – 2.95 | <0.001 | 1.36 | 1.16 – 1.56 | <0.001 | 0.15 | 0.14 – 0.17 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.30 | -0.66 – 0.06 | 0.102 | -0.16 | -0.45 – 0.13 | 0.289 | -0.32 | -0.68 – 0.05 | 0.090 | -0.59 | -1.30 – 0.11 | 0.101 | 0.22 | -0.43 – 0.86 | 0.510 | -0.27 | -0.55 – 0.02 | 0.064 | -0.02 | -0.04 – -0.00 | 0.023 |
| Random Effects | |||||||||||||||||||||
| σ2 | 3.16 | 2.10 | 3.27 | 12.21 | 10.04 | 1.95 | 0.01 | ||||||||||||||
| τ00 | 2.31 participantID:School | 0.55 participantID:School | 2.83 participantID:School | 5.10 participantID:School | 4.45 participantID:School | 0.65 participantID:School | 0.01 participantID:School | ||||||||||||||
| 0.07 School | 0.07 School | 0.25 School | 0.14 School | 0.06 School | 0.20 School | 0.00 School | |||||||||||||||
| ICC | 0.43 | 0.23 | 0.48 | 0.30 | 0.31 | 0.30 | 0.57 | ||||||||||||||
| N | 753 participantID | 753 participantID | 753 participantID | 753 participantID | 753 participantID | 753 participantID | 753 participantID | ||||||||||||||
| 15 School | 15 School | 15 School | 15 School | 15 School | 15 School | 15 School | |||||||||||||||
| Observations | 1506 | 1506 | 1506 | 1506 | 1506 | 1506 | 1506 | ||||||||||||||
| Marginal R2 / Conditional R2 | 0.139 / 0.509 | 0.110 / 0.312 | 0.122 / 0.548 | 0.108 / 0.376 | 0.106 / 0.383 | 0.121 / 0.387 | 0.211 / 0.662 | ||||||||||||||
There is one significant effect for the main effect of gender on total_wrt. Girls scores .62 higher than boys. There are three significant interaction effects gender x time. On total_com girls improved .3 more than boys, p=.004. On read_1 girls improved 4.4 more than boys, p<.001. On tot.lit girls improved 2 percent more than boys, p<.037.
literacy_g
| total_lid | total_pho | total_muw | total_non | total_com | total_lis | total_wrt | read_1 | read_2 | tot.lit | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
| (Intercept) | 19.41 | 18.23 – 20.60 | <0.001 | 3.89 | 3.25 – 4.54 | <0.001 | 8.74 | 7.49 – 9.98 | <0.001 | 3.71 | 3.03 – 4.39 | <0.001 | 0.79 | 0.56 – 1.02 | <0.001 | 0.92 | 0.70 – 1.15 | <0.001 | 3.37 | 2.79 – 3.96 | <0.001 | 14.17 | 10.56 – 17.78 | <0.001 | 28.90 | 23.85 – 33.94 | <0.001 | 0.33 | 0.29 – 0.37 | <0.001 |
| GenderChild [Male] | -0.05 | -0.95 – 0.86 | 0.918 | -0.38 | -0.82 – 0.07 | 0.096 | -0.74 | -1.64 – 0.17 | 0.110 | 0.06 | -0.66 – 0.77 | 0.879 | 0.02 | -0.17 – 0.22 | 0.802 | -0.13 | -0.32 – 0.06 | 0.168 | -0.62 | -1.04 – -0.20 | 0.004 | -0.89 | -3.60 – 1.81 | 0.518 | -1.34 | -5.50 – 2.82 | 0.527 | -0.02 | -0.05 – 0.01 | 0.167 |
| time [endline] | 4.66 | 3.89 – 5.42 | <0.001 | 3.17 | 2.76 – 3.59 | <0.001 | 5.69 | 5.22 – 6.16 | <0.001 | 4.58 | 4.10 – 5.07 | <0.001 | 1.07 | 0.92 – 1.22 | <0.001 | 0.65 | 0.51 – 0.80 | <0.001 | 1.79 | 1.57 – 2.01 | <0.001 | 18.54 | 16.95 – 20.13 | <0.001 | 34.51 | 31.99 – 37.02 | <0.001 | 0.22 | 0.21 – 0.24 | <0.001 |
|
GenderChild [Male] × time [endline] |
-0.72 | -1.81 – 0.37 | 0.196 | -0.13 | -0.73 – 0.47 | 0.668 | -0.39 | -1.06 – 0.28 | 0.259 | -0.67 | -1.36 – 0.03 | 0.060 | -0.25 | -0.46 – -0.04 | 0.018 | -0.07 | -0.28 – 0.14 | 0.502 | -0.15 | -0.47 – 0.16 | 0.342 | -4.81 | -7.08 – -2.53 | <0.001 | -3.59 | -7.19 – -0.00 | 0.050 | -0.03 | -0.05 – -0.01 | 0.013 |
| Random Effects | ||||||||||||||||||||||||||||||
| σ2 | 29.03 | 8.76 | 11.02 | 11.80 | 1.07 | 1.05 | 2.50 | 126.28 | 315.77 | 0.01 | ||||||||||||||||||||
| τ00 | 10.41 participantID:School | 0.79 participantID:School | 28.05 participantID:School | 12.64 participantID:School | 0.74 participantID:School | 0.62 participantID:School | 6.04 participantID:School | 226.92 participantID:School | 519.06 participantID:School | 0.03 participantID:School | ||||||||||||||||||||
| 3.93 School | 1.25 School | 4.51 School | 0.84 School | 0.14 School | 0.13 School | 1.00 School | 36.88 School | 66.41 School | 0.00 School | |||||||||||||||||||||
| ICC | 0.33 | 0.19 | 0.75 | 0.53 | 0.45 | 0.41 | 0.74 | 0.68 | 0.65 | 0.72 | ||||||||||||||||||||
| N | 753 participantID | 753 participantID | 753 participantID | 753 participantID | 753 participantID | 753 participantID | 753 participantID | 753 participantID | 753 participantID | 753 participantID | ||||||||||||||||||||
| 15 School | 15 School | 15 School | 15 School | 15 School | 15 School | 15 School | 15 School | 15 School | 15 School | |||||||||||||||||||||
| Observations | 1506 | 1506 | 1506 | 1506 | 1506 | 1506 | 1506 | 1506 | 1506 | 1506 | ||||||||||||||||||||
| Marginal R2 / Conditional R2 | 0.098 / 0.396 | 0.186 / 0.340 | 0.152 / 0.785 | 0.153 / 0.605 | 0.106 / 0.508 | 0.054 / 0.446 | 0.083 / 0.760 | 0.152 / 0.725 | 0.232 / 0.731 | 0.200 / 0.776 | ||||||||||||||||||||