The goal here is to predict which houses are in the top 25% of the dataset. Success will be measured as the percentage of correctly classified cases. To acheive this, we will split the data into a training and a test sample of the original data.

Neural Network Model

Results

[1] "Training Accuracy: 0.968253968253968"
[1] "Test Accuracy: 0.860759493670886"
LS0tDQp0aXRsZTogIkhXMTQgLSBOb2FoIFN0YWN5ICINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNClRoZSBnb2FsIGhlcmUgaXMgdG8gcHJlZGljdCB3aGljaCBob3VzZXMgYXJlIGluIHRoZSB0b3AgMjUlIG9mIHRoZSBkYXRhc2V0LiANClN1Y2Nlc3Mgd2lsbCBiZSBtZWFzdXJlZCBhcyB0aGUgcGVyY2VudGFnZSBvZiBjb3JyZWN0bHkgY2xhc3NpZmllZCBjYXNlcy4NClRvIGFjaGVpdmUgdGhpcywgd2Ugd2lsbCBzcGxpdCB0aGUgZGF0YSBpbnRvIGEgdHJhaW5pbmcgYW5kIGEgdGVzdCBzYW1wbGUgb2YgdGhlIG9yaWdpbmFsIGRhdGEuDQoNCmBgYHtyIGluY2x1ZGU9RkFMU0V9DQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkobmV1cmFsbmV0KQ0Kb3B0aW9ucyhzY2lwZW4gPSA5OTkpDQoNCnRfcmF3IDwtIHJlYWRfY3N2KCJIb3VzaW5nRGF0YS5jc3YiLCANCiAgICBjb21tZW50ID0gIiMiKQ0KDQp0IDwtIG5hLm9taXQodF9yYXcpDQp0IDwtIHQgJT4lIGRpc3RpbmN0KCkNCg0KI05vcm1hbGl6ZSBhbGwgdmFsdWVzDQp0IDwtIHQgJT4lIA0KICBtdXRhdGUoYWNyb3NzKC5jb2xzID0gd2hlcmUoaXMubnVtZXJpYyksIC5mbnMgPSB+ICgueCAtIG1lYW4oLngpKSAvIHNkKC54KSkpDQoNCnF1YW50aWxlX3ZhbHVlIDwtIHF1YW50aWxlKHQkTUVEViwgMC43NSkNCg0Kc2V0LnNlZWQoMSkNCg0KaW5kaWNlcyA8LSBzYW1wbGUoMTpucm93KHQpLCBzaXplID0gMC44ICogbnJvdyh0KSkNCnRyYWluIDwtIHRbaW5kaWNlcywgXQ0KdGVzdCA8LSB0Wy1pbmRpY2VzLCBdDQoNCnRyYWluJFRvcDI1IDwtIGlmZWxzZSh0cmFpbiRNRURWID4gcXVhbnRpbGVfdmFsdWUsIDEsIDApDQp0ZXN0JFRvcDI1IDwtIGlmZWxzZSh0ZXN0JE1FRFYgPiBxdWFudGlsZV92YWx1ZSwgMSwgMCkNCg0Kbm5fZm9ybXVsYSA8LSBUb3AyNSB+IENSSU0gKyBaTiArIElORFVTICsgQ0hBUyArIE5PWCArIFJNICsgQUdFICsgRElTICsgUkFEICsgVEFYICsgUFRSQVRJTyArIEIgKyBMU1RBVA0KDQpubl9tb2RlbCA8LSBuZXVyYWxuZXQobm5fZm9ybXVsYSwgZGF0YSA9IHRyYWluLCBoaWRkZW4gPSAxLCBsaW5lYXIub3V0cHV0ID0gRkFMU0UpDQoNCmBgYA0KIyBOZXVyYWwgTmV0d29yayBNb2RlbA0KYGBge3IgZWNobz1GQUxTRX0NCnBsb3Qobm5fbW9kZWwpDQpgYGANCg0KYGBge3IgaW5jbHVkZT1GQUxTRX0NCnRyYWluX3ByZWRpY3Rpb25zIDwtIGNvbXB1dGUobm5fbW9kZWwsIHRyYWluWywgLXdoaWNoKG5hbWVzKHRyYWluKSA9PSAiVG9wMjUiKV0pDQoNCnRyYWluX3Jlc3VsdHMgPC0gdGliYmxlKA0KICBhY3R1YWwgPSB0cmFpbiRUb3AyNSwNCiAgcHJlZGljdGlvbiA9IHRyYWluX3ByZWRpY3Rpb25zJG5ldC5yZXN1bHQsDQogIHByZWRpY3Rpb24wMSA9IHJvdW5kKHByZWRpY3Rpb24sIGRpZ2l0cz0wKSwNCiAgcHJlZGljdGlvbllOID0gaWZlbHNlKHByZWRpY3Rpb24wMSA9PSAxLCAnWScsICdOJykNCikNCg0KdHJhaW5fY29uZnVzaW9uIDwtIHRhYmxlKGFjdHVhbCA9IHRyYWluX3Jlc3VsdHMkYWN0dWFsLCBwcmVkaWN0ZWQgPSB0cmFpbl9yZXN1bHRzJHByZWRpY3Rpb25ZTikNCg0KdHJhaW5fYWNjdXJhY3kgPC0gKHRyYWluX2NvbmZ1c2lvblsxLDFdICsgdHJhaW5fY29uZnVzaW9uWzIsMl0pIC8gc3VtKHRyYWluX2NvbmZ1c2lvbikNCg0KDQoNCnRlc3RfcHJlZGljdGlvbnMgPC0gY29tcHV0ZShubl9tb2RlbCwgdGVzdFssIC13aGljaChuYW1lcyh0ZXN0KSA9PSAiVG9wMjUiKV0pDQoNCg0KdGVzdF9yZXN1bHRzIDwtIHRpYmJsZSgNCiAgYWN0dWFsID0gdGVzdCRUb3AyNSwNCiAgcHJlZGljdGlvbiA9IHRlc3RfcHJlZGljdGlvbnMkbmV0LnJlc3VsdCwNCiAgcHJlZGljdGlvbjAxID0gcm91bmQocHJlZGljdGlvbiwgZGlnaXRzPTApLA0KICBwcmVkaWN0aW9uWU4gPSBpZmVsc2UocHJlZGljdGlvbjAxID09IDEsICdZJywgJ04nKQ0KKQ0KDQoNCnRlc3RfY29uZnVzaW9uIDwtIHRhYmxlKGFjdHVhbCA9IHRlc3RfcmVzdWx0cyRhY3R1YWwsIHByZWRpY3RlZCA9IHRlc3RfcmVzdWx0cyRwcmVkaWN0aW9uWU4pDQoNCnRlc3RfYWNjdXJhY3kgPC0gKHRlc3RfY29uZnVzaW9uWzEsMV0gKyB0ZXN0X2NvbmZ1c2lvblsyLDJdKSAvIHN1bSh0ZXN0X2NvbmZ1c2lvbikNCg0KDQpgYGANCiMgUmVzdWx0cw0KYGBge3IgZWNobz1GQUxTRX0NCnByaW50KHBhc3RlKCJUcmFpbmluZyBBY2N1cmFjeToiLCB0cmFpbl9hY2N1cmFjeSkpDQpgYGANCmBgYHtyIGVjaG89RkFMU0V9DQpwcmludChwYXN0ZSgiVGVzdCBBY2N1cmFjeToiLCB0ZXN0X2FjY3VyYWN5KSkNCmBgYA0KDQo=