Participant Information
##
## Non-White White
## 0.3354839 0.6645161
Main Effects
Tokenism
{Supervisor}’s behavior made me… - worry that I stand out because I am a woman - feel like my skills and knowledge as a woman were made salient - feel like a “token” representative of women
## [,1] [,2]
## condition "sexism" "trad"
## mean_token "3.395699" "2.537634"
## sd_token "1.705093" "1.575144"
Belonging
{supervisor’s} behavior made me… - feel like I didn’t belong.- feel like I didn’t fit in.
## [,1] [,2]
## condition "sexism" "trad"
## mean_belong "2.003247" "1.661290"
## sd_belong "1.574404" "1.359115"
Implicit Voice Theories - Negative Career Outcomes
In terms of {sexism at work/your job} • If you want advancement
opportunities in today’s world, you have to be careful about pointing
out needs for [reducing sexism in your workplace/improving your
workplace].
• You are more likely to be rewarded in organizational life by “going
along quietly” than by speaking up about [reducing sexism in your
workplace/improving your workplace].
• Pointing out problems, errors, or inefficiencies about [reducing
sexism/improving your workplace] might very well result in lowered job
evaluations.
• Speaking up about [reducing sexism in your workplace/improving your
workplace] sets you up for retribution by those above you who felt
threatened by your comments.
## [,1] [,2]
## condition "sexism" "trad"
## mean_ivtneg "3.312903" "3.193182"
## sd_ivtneg "1.846063" "1.696672"
Implicit Voice Theories - Presumed Target Identification
In terms of {sexism at work/your job} • It’s risky to challenge existing processes because it may be seen as questioning the status quo.• Speaking up to suggest a better way is likely to offend them
• It is not good to question the way things are done because they are likely to take it personally.
## [,1] [,2]
## condition "sexism" "trad"
## mean_ivtpt "3.270968" "2.926407"
## sd_ivtpt "1.826843" "1.707026"
Organizational Commitment
- I was willing to put in a great deal of effort beyond that normally
expected in order to help this organization be successful.
- I wanted to talk up this organization to other women as a great
organization to work for.
- I wondered if my values and the organization’s values are
similar.
- I was extremely glad that I chose this organization to work for,
over others I was considering at the time I joined.
- I felt that working for this organization was a definite mistake on my part.
## [,1] [,2]
## condition "sexism" "trad"
## mean_comm "4.490323" "4.774510"
## sd_comm "1.430161" "1.337947"
Controls
Tokenism - Still significant
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition + formaltrain_job + formaltrain_sexism + voicesol +
## voice_work + voice_sexm + sentiment_1 + sup_gend + ethn_bin +
## age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "token", ]
##
## REML criterion at convergence: 1128.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.02505 -0.62252 -0.07515 0.55407 2.68553
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 1.240 1.114
## Residual 1.285 1.133
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.461585 0.832511 142.730090 2.957 0.00364 **
## conditiontrad -0.855263 0.130006 151.000000 -6.579 7.33e-10 ***
## formaltrain_job 0.034774 0.100405 141.000003 0.346 0.72961
## formaltrain_sexism 0.123594 0.077658 141.000000 1.592 0.11373
## voicesol -0.075588 0.125964 140.999999 -0.600 0.54942
## voice_work 0.036741 0.130928 140.999999 0.281 0.77942
## voice_sexm 0.050602 0.112843 141.000000 0.448 0.65453
## sentiment_1 -0.130512 0.085473 141.000000 -1.527 0.12902
## sup_gendFemale -0.358556 0.236351 141.000000 -1.517 0.13149
## ethn_binWhite -0.399882 0.248919 141.000000 -1.606 0.11041
## age 0.021221 0.011195 141.000000 1.896 0.06005 .
## tenure 0.005246 0.017844 141.000000 0.294 0.76919
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnt frmltrn_j frmltrn_s voicsl vc_wrk vc_sxm sntm_1
## conditintrd -0.078
## formltrn_jb -0.415 0.000
## frmltrn_sxs -0.024 0.000 -0.162
## voicesol -0.313 0.000 -0.136 -0.005
## voice_work -0.366 0.000 -0.050 0.002 -0.227
## voice_sexm 0.201 0.000 -0.035 -0.261 -0.210 -0.579
## sentiment_1 0.153 0.000 0.027 -0.133 -0.280 0.034 -0.103
## sup_gendFml -0.138 0.000 -0.098 -0.017 -0.176 0.184 0.075 -0.098
## ethn_binWht -0.130 0.000 -0.168 0.263 0.114 -0.098 0.009 -0.134
## age -0.567 0.000 0.040 -0.145 -0.034 0.294 -0.133 0.029
## tenure 0.306 0.000 -0.145 -0.015 -0.002 -0.216 0.138 -0.022
## sp_gnF ethn_W age
## conditintrd
## formltrn_jb
## frmltrn_sxs
## voicesol
## voice_work
## voice_sexm
## sentiment_1
## sup_gendFml
## ethn_binWht 0.009
## age 0.045 -0.070
## tenure -0.027 -0.011 -0.495
Belonging - Still significant
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition + formaltrain_job + formaltrain_sexism + voicesol +
## voice_work + voice_sexm + sentiment_1 + sup_gend + ethn_bin +
## age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "belong", ]
##
## REML criterion at convergence: 1016.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.6531 -0.4660 -0.1738 0.2395 4.1281
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 0.4316 0.657
## Residual 1.1297 1.063
## Number of obs: 303, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.523e+00 6.070e-01 1.433e+02 5.804 3.99e-08 ***
## conditiontrad -3.748e-01 1.222e-01 1.506e+02 -3.067 0.00256 **
## formaltrain_job -7.195e-02 7.308e-02 1.405e+02 -0.985 0.32649
## formaltrain_sexism 1.255e-01 5.662e-02 1.411e+02 2.217 0.02825 *
## voicesol -2.200e-01 9.170e-02 1.406e+02 -2.399 0.01777 *
## voice_work -1.376e-01 9.528e-02 1.405e+02 -1.444 0.15106
## voice_sexm 7.298e-02 8.211e-02 1.404e+02 0.889 0.37559
## sentiment_1 -2.966e-01 6.220e-02 1.404e+02 -4.769 4.58e-06 ***
## sup_gendFemale -2.672e-01 1.722e-01 1.409e+02 -1.552 0.12294
## ethn_binWhite -2.191e-02 1.813e-01 1.408e+02 -0.121 0.90400
## age 1.062e-02 8.155e-03 1.408e+02 1.302 0.19488
## tenure 5.668e-04 1.299e-02 1.406e+02 0.044 0.96526
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnt frmltrn_j frmltrn_s voicsl vc_wrk vc_sxm sntm_1
## conditintrd -0.101
## formltrn_jb -0.415 0.002
## frmltrn_sxs -0.023 -0.004 -0.163
## voicesol -0.312 0.002 -0.135 -0.007
## voice_work -0.365 -0.001 -0.051 0.004 -0.228
## voice_sexm 0.201 0.001 -0.035 -0.261 -0.210 -0.579
## sentiment_1 0.153 0.001 0.027 -0.134 -0.279 0.034 -0.103
## sup_gendFml -0.137 -0.003 -0.099 -0.014 -0.178 0.185 0.074 -0.099
## ethn_binWht -0.130 0.003 -0.167 0.259 0.116 -0.099 0.009 -0.133
## age -0.564 -0.003 0.038 -0.141 -0.036 0.294 -0.133 0.029
## tenure 0.305 0.002 -0.145 -0.017 -0.001 -0.217 0.138 -0.022
## sp_gnF ethn_W age
## conditintrd
## formltrn_jb
## frmltrn_sxs
## voicesol
## voice_work
## voice_sexm
## sentiment_1
## sup_gendFml
## ethn_binWht 0.007
## age 0.047 -0.073
## tenure -0.029 -0.010 -0.495
Implicit Voice Theory - Presumed Target Identification - Still significant
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition + formaltrain_job + formaltrain_sexism + voicesol +
## voice_work + voice_sexm + sentiment_1 + sup_gend + ethn_bin +
## age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "ivtpt", ]
##
## REML criterion at convergence: 1113.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.21998 -0.45711 -0.06542 0.41539 3.09742
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 1.335 1.155
## Residual 1.147 1.071
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 4.113589 0.837977 142.524188 4.909 2.47e-06 ***
## conditiontrad -0.348684 0.122872 151.000000 -2.838 0.00517 **
## formaltrain_job 0.059976 0.101101 141.000000 0.593 0.55398
## formaltrain_sexism -0.039747 0.078196 141.000000 -0.508 0.61204
## voicesol -0.194773 0.126837 141.000000 -1.536 0.12687
## voice_work -0.003331 0.131836 140.999998 -0.025 0.97988
## voice_sexm -0.031020 0.113625 140.999999 -0.273 0.78525
## sentiment_1 -0.367615 0.086066 140.999999 -4.271 3.55e-05 ***
## sup_gendFemale 0.059744 0.237989 140.999999 0.251 0.80215
## ethn_binWhite -0.709029 0.250645 140.999999 -2.829 0.00535 **
## age 0.027130 0.011272 140.999999 2.407 0.01739 *
## tenure -0.013533 0.017968 140.999999 -0.753 0.45261
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnt frmltrn_j frmltrn_s voicsl vc_wrk vc_sxm sntm_1
## conditintrd -0.073
## formltrn_jb -0.415 0.000
## frmltrn_sxs -0.024 0.000 -0.162
## voicesol -0.313 0.000 -0.136 -0.005
## voice_work -0.366 0.000 -0.050 0.002 -0.227
## voice_sexm 0.201 0.000 -0.035 -0.261 -0.210 -0.579
## sentiment_1 0.153 0.000 0.027 -0.133 -0.280 0.034 -0.103
## sup_gendFml -0.138 0.000 -0.098 -0.017 -0.176 0.184 0.075 -0.098
## ethn_binWht -0.130 0.000 -0.168 0.263 0.114 -0.098 0.009 -0.134
## age -0.567 0.000 0.040 -0.145 -0.034 0.294 -0.133 0.029
## tenure 0.306 0.000 -0.145 -0.015 -0.002 -0.216 0.138 -0.022
## sp_gnF ethn_W age
## conditintrd
## formltrn_jb
## frmltrn_sxs
## voicesol
## voice_work
## voice_sexm
## sentiment_1
## sup_gendFml
## ethn_binWht 0.009
## age 0.045 -0.070
## tenure -0.027 -0.011 -0.495
Implicit Voice Theory - Negative Career Outcomes - Still NOT significant
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition + formaltrain_job + formaltrain_sexism + voicesol +
## voice_work + voice_sexm + sentiment_1 + sup_gend + ethn_bin +
## age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "ivtneg", ]
##
## REML criterion at convergence: 1102.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.07119 -0.49551 0.00264 0.43613 2.69245
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 1.354 1.164
## Residual 1.074 1.037
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.40503 0.83403 142.44039 4.083 7.39e-05 ***
## conditiontrad -0.09539 0.11890 151.00000 -0.802 0.423645
## formaltrain_job 0.12519 0.10064 141.00000 1.244 0.215589
## formaltrain_sexism 0.02818 0.07784 141.00000 0.362 0.717872
## voicesol -0.24041 0.12626 141.00000 -1.904 0.058935 .
## voice_work 0.04968 0.13123 141.00000 0.379 0.705602
## voice_sexm -0.06917 0.11311 141.00000 -0.612 0.541817
## sentiment_1 -0.33437 0.08567 141.00000 -3.903 0.000147 ***
## sup_gendFemale -0.15339 0.23690 141.00000 -0.647 0.518381
## ethn_binWhite -0.73801 0.24950 141.00000 -2.958 0.003633 **
## age 0.03847 0.01122 141.00000 3.428 0.000797 ***
## tenure -0.02961 0.01789 141.00000 -1.655 0.100075
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnt frmltrn_j frmltrn_s voicsl vc_wrk vc_sxm sntm_1
## conditintrd -0.071
## formltrn_jb -0.416 0.000
## frmltrn_sxs -0.024 0.000 -0.162
## voicesol -0.313 0.000 -0.136 -0.005
## voice_work -0.366 0.000 -0.050 0.002 -0.227
## voice_sexm 0.201 0.000 -0.035 -0.261 -0.210 -0.579
## sentiment_1 0.153 0.000 0.027 -0.133 -0.280 0.034 -0.103
## sup_gendFml -0.138 0.000 -0.098 -0.017 -0.176 0.184 0.075 -0.098
## ethn_binWht -0.130 0.000 -0.168 0.263 0.114 -0.098 0.009 -0.134
## age -0.567 0.000 0.040 -0.145 -0.034 0.294 -0.133 0.029
## tenure 0.307 0.000 -0.145 -0.015 -0.002 -0.216 0.138 -0.022
## sp_gnF ethn_W age
## conditintrd
## formltrn_jb
## frmltrn_sxs
## voicesol
## voice_work
## voice_sexm
## sentiment_1
## sup_gendFml
## ethn_binWht 0.009
## age 0.045 -0.070
## tenure -0.027 -0.011 -0.495
Organizational Commitment - Still significant
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition + formaltrain_job + formaltrain_sexism + voicesol +
## voice_work + voice_sexm + sentiment_1 + sup_gend + ethn_bin +
## age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "orgcomm", ]
##
## REML criterion at convergence: 894.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7324 -0.4142 0.0482 0.4673 4.0813
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 0.6393 0.7995
## Residual 0.5381 0.7336
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.172679 0.578080 142.501867 3.758 0.000249 ***
## conditiontrad 0.268092 0.084146 151.000032 3.186 0.001753 **
## formaltrain_job -0.052106 0.069748 140.999939 -0.747 0.456270
## formaltrain_sexism 0.068351 0.053946 140.999942 1.267 0.207230
## voicesol 0.264241 0.087502 140.999940 3.020 0.003003 **
## voice_work 0.078145 0.090951 140.999939 0.859 0.391687
## voice_sexm 0.065301 0.078388 140.999941 0.833 0.406225
## sentiment_1 0.347837 0.059375 140.999942 5.858 3.15e-08 ***
## sup_gendFemale -0.390935 0.164184 140.999942 -2.381 0.018598 *
## ethn_binWhite 0.417430 0.172915 140.999942 2.414 0.017058 *
## age -0.006897 0.007777 140.999938 -0.887 0.376674
## tenure 0.016926 0.012396 140.999941 1.366 0.174270
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) cndtnt frmltrn_j frmltrn_s voicsl vc_wrk vc_sxm sntm_1
## conditintrd -0.073
## formltrn_jb -0.416 0.000
## frmltrn_sxs -0.024 0.000 -0.162
## voicesol -0.313 0.000 -0.136 -0.005
## voice_work -0.366 0.000 -0.050 0.002 -0.227
## voice_sexm 0.201 0.000 -0.035 -0.261 -0.210 -0.579
## sentiment_1 0.153 0.000 0.027 -0.133 -0.280 0.034 -0.103
## sup_gendFml -0.138 0.000 -0.098 -0.017 -0.176 0.184 0.075 -0.098
## ethn_binWht -0.130 0.000 -0.168 0.263 0.114 -0.098 0.009 -0.134
## age -0.567 0.000 0.040 -0.145 -0.034 0.294 -0.133 0.029
## tenure 0.307 0.000 -0.145 -0.015 -0.002 -0.216 0.138 -0.022
## sp_gnF ethn_W age
## conditintrd
## formltrn_jb
## frmltrn_sxs
## voicesol
## voice_work
## voice_sexm
## sentiment_1
## sup_gendFml
## ethn_binWht 0.009
## age 0.045 -0.070
## tenure -0.027 -0.011 -0.495
Interactions
Summary
Moderator | Significant DV |
---|---|
Supervisor gender | Belonging |
Formal Training in sexism | Fear of Social retaliation |
Formal Training in sexism | Belonging |
Formal Training in sexism | Organizational Commitment |
Formal Training at work | Fear of social retaliation |
Formal Training in sexism | Belonging |
Formal Training in sexism | IVT - Presumed Target Identification |
Formal Training in sexism | Negative Career Outcomes |
Supervisor Gender
Tokenism
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition * sup_gend + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "token", ]
##
## REML criterion at convergence: 1117.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2077 -0.5678 -0.0625 0.5742 2.5875
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 1.146 1.071
## Residual 1.271 1.128
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.577829 0.881290 135.171101 2.925 0.00404
## conditiontrad -1.082126 0.191970 150.000013 -5.637 8.34e-08
## sup_gendFemale -0.530926 0.278090 202.100369 -1.909 0.05765
## ordertraditional_sexism -0.237030 0.230735 131.999979 -1.027 0.30616
## sexism_voiceselect1 0.533999 0.287391 131.999979 1.858 0.06538
## sexism_voiceselect2 0.287310 0.298705 131.999979 0.962 0.33788
## sexism_voiceselect3 0.184151 0.281080 131.999979 0.655 0.51351
## sexism_voiceselect4 0.625815 0.303647 131.999979 2.061 0.04127
## trad_voiceselect1 0.299199 0.319671 131.999979 0.936 0.35100
## trad_voiceselect2 -0.264441 0.277176 131.999979 -0.954 0.34180
## trad_voiceselect3 -0.173098 0.277564 131.999979 -0.624 0.53395
## trad_voiceselect4 -0.194487 0.298791 131.999979 -0.651 0.51623
## formaltrain_job 0.026694 0.100529 131.999979 0.266 0.79101
## formaltrain_sexism 0.073126 0.077521 131.999979 0.943 0.34725
## voicesol -0.136872 0.127600 131.999979 -1.073 0.28538
## voice_work 0.003023 0.136592 131.999979 0.022 0.98238
## voice_sexm 0.071330 0.116323 131.999978 0.613 0.54079
## sentiment_1 -0.104686 0.085365 131.999979 -1.226 0.22226
## ethn_binWhite -0.282535 0.260036 131.999979 -1.087 0.27923
## age 0.019531 0.011198 131.999977 1.744 0.08347
## tenure 0.004482 0.018142 131.999979 0.247 0.80524
## conditiontrad:sup_gendFemale 0.415459 0.259786 150.000013 1.599 0.11187
##
## (Intercept) **
## conditiontrad ***
## sup_gendFemale .
## ordertraditional_sexism
## sexism_voiceselect1 .
## sexism_voiceselect2
## sexism_voiceselect3
## sexism_voiceselect4 *
## trad_voiceselect1
## trad_voiceselect2
## trad_voiceselect3
## trad_voiceselect4
## formaltrain_job
## formaltrain_sexism
## voicesol
## voice_work
## voice_sexm
## sentiment_1
## ethn_binWhite
## age .
## tenure
## conditiontrad:sup_gendFemale
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Belonging - Significant
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition * sup_gend + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "belong", ]
##
## REML criterion at convergence: 1013.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5327 -0.4862 -0.1285 0.2589 4.0951
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 0.4174 0.6461
## Residual 1.1091 1.0531
## Number of obs: 303, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.599e+00 6.532e-01 1.365e+02 5.510 1.73e-07
## conditiontrad -6.377e-01 1.793e-01 1.491e+02 -3.557 0.000504
## sup_gendFemale -4.877e-01 2.190e-01 2.348e+02 -2.227 0.026917
## ordertraditional_sexism -3.050e-01 1.706e-01 1.317e+02 -1.788 0.075998
## sexism_voiceselect1 3.929e-01 2.126e-01 1.320e+02 1.848 0.066824
## sexism_voiceselect2 1.750e-01 2.209e-01 1.318e+02 0.792 0.429667
## sexism_voiceselect3 2.113e-01 2.076e-01 1.315e+02 1.018 0.310560
## sexism_voiceselect4 2.265e-01 2.244e-01 1.317e+02 1.009 0.314649
## trad_voiceselect1 -4.301e-02 2.362e-01 1.316e+02 -0.182 0.855820
## trad_voiceselect2 -3.282e-01 2.047e-01 1.314e+02 -1.604 0.111217
## trad_voiceselect3 4.890e-02 2.050e-01 1.315e+02 0.239 0.811864
## trad_voiceselect4 -1.659e-01 2.207e-01 1.315e+02 -0.752 0.453455
## formaltrain_job -9.492e-02 7.425e-02 1.314e+02 -1.278 0.203357
## formaltrain_sexism 1.000e-01 5.735e-02 1.320e+02 1.744 0.083479
## voicesol -2.268e-01 9.425e-02 1.315e+02 -2.406 0.017502
## voice_work -1.094e-01 1.009e-01 1.314e+02 -1.085 0.280034
## voice_sexm 7.709e-02 8.591e-02 1.314e+02 0.897 0.371163
## sentiment_1 -3.025e-01 6.305e-02 1.315e+02 -4.798 4.28e-06
## ethn_binWhite 2.127e-02 1.922e-01 1.317e+02 0.111 0.912033
## age 1.073e-02 8.276e-03 1.317e+02 1.296 0.197235
## tenure -6.304e-04 1.341e-02 1.318e+02 -0.047 0.962589
## conditiontrad:sup_gendFemale 4.839e-01 2.431e-01 1.495e+02 1.991 0.048352
##
## (Intercept) ***
## conditiontrad ***
## sup_gendFemale *
## ordertraditional_sexism .
## sexism_voiceselect1 .
## sexism_voiceselect2
## sexism_voiceselect3
## sexism_voiceselect4
## trad_voiceselect1
## trad_voiceselect2
## trad_voiceselect3
## trad_voiceselect4
## formaltrain_job
## formaltrain_sexism .
## voicesol *
## voice_work
## voice_sexm
## sentiment_1 ***
## ethn_binWhite
## age
## tenure
## conditiontrad:sup_gendFemale *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
### Implicit Voice Theory - Presumed Target Identification
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition * sup_gend + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "ivtpt", ]
##
## REML criterion at convergence: 1114.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.20874 -0.44737 -0.09207 0.38196 3.09397
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 1.365 1.168
## Residual 1.155 1.075
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.812184 0.919087 134.643074 4.148 5.91e-05
## conditiontrad -0.367150 0.182964 150.000001 -2.007 0.04658
## sup_gendFemale 0.167317 0.284984 191.435450 0.587 0.55782
## ordertraditional_sexism -0.030896 0.240868 131.999997 -0.128 0.89813
## sexism_voiceselect1 -0.038359 0.300014 131.999997 -0.128 0.89846
## sexism_voiceselect2 0.206131 0.311824 131.999997 0.661 0.50973
## sexism_voiceselect3 0.375909 0.293425 131.999997 1.281 0.20240
## sexism_voiceselect4 0.373152 0.316983 131.999998 1.177 0.24124
## trad_voiceselect1 0.170786 0.333711 131.999997 0.512 0.60966
## trad_voiceselect2 -0.135830 0.289349 131.999997 -0.469 0.63954
## trad_voiceselect3 0.017348 0.289754 131.999997 0.060 0.95235
## trad_voiceselect4 -0.132777 0.311913 131.999998 -0.426 0.67103
## formaltrain_job 0.073447 0.104944 131.999995 0.700 0.48524
## formaltrain_sexism -0.077278 0.080925 131.999997 -0.955 0.34136
## voicesol -0.238986 0.133204 131.999998 -1.794 0.07508
## voice_work 0.013533 0.142591 131.999997 0.095 0.92453
## voice_sexm -0.008751 0.121431 131.999998 -0.072 0.94266
## sentiment_1 -0.366493 0.089115 131.999997 -4.113 6.84e-05
## ethn_binWhite -0.712129 0.271457 131.999997 -2.623 0.00973
## age 0.028383 0.011690 131.999996 2.428 0.01653
## tenure -0.019562 0.018938 131.999997 -1.033 0.30353
## conditiontrad:sup_gendFemale 0.033816 0.247599 150.000001 0.137 0.89155
##
## (Intercept) ***
## conditiontrad *
## sup_gendFemale
## ordertraditional_sexism
## sexism_voiceselect1
## sexism_voiceselect2
## sexism_voiceselect3
## sexism_voiceselect4
## trad_voiceselect1
## trad_voiceselect2
## trad_voiceselect3
## trad_voiceselect4
## formaltrain_job
## formaltrain_sexism
## voicesol .
## voice_work
## voice_sexm
## sentiment_1 ***
## ethn_binWhite **
## age *
## tenure
## conditiontrad:sup_gendFemale
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Implicit Voice Theory - Negative Career Outcomes
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition * sup_gend + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "ivtneg", ]
##
## REML criterion at convergence: 1098.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.18819 -0.48497 -0.05303 0.43664 2.69450
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 1.308 1.144
## Residual 1.082 1.040
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.254512 0.896652 134.600352 3.630 0.000402
## conditiontrad -0.097826 0.177064 150.000000 -0.552 0.581436
## sup_gendFemale 0.008814 0.277625 190.547313 0.032 0.974706
## ordertraditional_sexism -0.074474 0.235008 131.999999 -0.317 0.751819
## sexism_voiceselect1 0.045940 0.292714 131.999999 0.157 0.875528
## sexism_voiceselect2 0.273284 0.304236 131.999999 0.898 0.370681
## sexism_voiceselect3 0.228258 0.286285 131.999999 0.797 0.426702
## sexism_voiceselect4 0.637585 0.309270 131.999999 2.062 0.041210
## trad_voiceselect1 0.006062 0.325591 131.999999 0.019 0.985174
## trad_voiceselect2 0.047168 0.282309 131.999999 0.167 0.867564
## trad_voiceselect3 0.202100 0.282704 131.999999 0.715 0.475944
## trad_voiceselect4 -0.728211 0.304324 131.999999 -2.393 0.018125
## formaltrain_job 0.116470 0.102391 131.999996 1.138 0.257387
## formaltrain_sexism -0.013874 0.078956 131.999999 -0.176 0.860784
## voicesol -0.283151 0.129963 131.999997 -2.179 0.031129
## voice_work 0.041228 0.139122 132.000000 0.296 0.767430
## voice_sexm 0.009753 0.118477 132.000000 0.082 0.934518
## sentiment_1 -0.334368 0.086946 131.999999 -3.846 0.000186
## ethn_binWhite -0.775483 0.264852 131.999999 -2.928 0.004019
## age 0.038534 0.011405 131.999999 3.379 0.000958
## tenure -0.037261 0.018478 131.999999 -2.017 0.045770
## conditiontrad:sup_gendFemale 0.004453 0.239615 150.000000 0.019 0.985199
##
## (Intercept) ***
## conditiontrad
## sup_gendFemale
## ordertraditional_sexism
## sexism_voiceselect1
## sexism_voiceselect2
## sexism_voiceselect3
## sexism_voiceselect4 *
## trad_voiceselect1
## trad_voiceselect2
## trad_voiceselect3
## trad_voiceselect4 *
## formaltrain_job
## formaltrain_sexism
## voicesol *
## voice_work
## voice_sexm
## sentiment_1 ***
## ethn_binWhite **
## age ***
## tenure *
## conditiontrad:sup_gendFemale
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Org Commitment
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition * sup_gend + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "orgcomm", ]
##
## REML criterion at convergence: 903.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6610 -0.4466 0.0291 0.4544 4.0474
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 0.6628 0.8141
## Residual 0.5397 0.7347
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.086891 0.636829 134.571976 3.277 0.00133
## conditiontrad 0.336957 0.125075 150.000001 2.694 0.00786
## sup_gendFemale -0.334079 0.196988 189.955509 -1.696 0.09154
## ordertraditional_sexism 0.266887 0.166918 131.999999 1.599 0.11223
## sexism_voiceselect1 -0.082315 0.207905 131.999999 -0.396 0.69280
## sexism_voiceselect2 -0.025678 0.216089 131.999999 -0.119 0.90559
## sexism_voiceselect3 -0.014643 0.203339 131.999999 -0.072 0.94270
## sexism_voiceselect4 -0.020136 0.219665 131.999999 -0.092 0.92710
## trad_voiceselect1 0.166252 0.231257 131.999999 0.719 0.47347
## trad_voiceselect2 0.100682 0.200515 131.999999 0.502 0.61642
## trad_voiceselect3 -0.204613 0.200795 131.999999 -1.019 0.31006
## trad_voiceselect4 0.093216 0.216151 131.999999 0.431 0.66699
## formaltrain_job -0.034550 0.072725 131.999997 -0.475 0.63552
## formaltrain_sexism 0.075550 0.056080 131.999999 1.347 0.18023
## voicesol 0.252373 0.092308 131.999998 2.734 0.00712
## voice_work 0.049926 0.098814 132.000000 0.505 0.61422
## voice_sexm 0.057500 0.084150 131.999999 0.683 0.49561
## sentiment_1 0.358014 0.061755 131.999999 5.797 4.72e-08
## ethn_binWhite 0.410666 0.188115 131.999999 2.183 0.03080
## age -0.007027 0.008101 131.999999 -0.867 0.38730
## tenure 0.017441 0.013124 132.000000 1.329 0.18617
## conditiontrad:sup_gendFemale -0.126113 0.169260 150.000001 -0.745 0.45739
##
## (Intercept) **
## conditiontrad **
## sup_gendFemale .
## ordertraditional_sexism
## sexism_voiceselect1
## sexism_voiceselect2
## sexism_voiceselect3
## sexism_voiceselect4
## trad_voiceselect1
## trad_voiceselect2
## trad_voiceselect3
## trad_voiceselect4
## formaltrain_job
## formaltrain_sexism
## voicesol **
## voice_work
## voice_sexm
## sentiment_1 ***
## ethn_binWhite *
## age
## tenure
## conditiontrad:sup_gendFemale
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Formal training in sexism
Tokenism
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## Value ~ condition * formaltrain_sexism + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "token", ]
##
## REML criterion at convergence: 1119.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.28970 -0.57639 -0.03911 0.53868 2.59843
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 1.149 1.072
## Residual 1.267 1.126
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 2.701343 0.888741 139.713713 3.040
## conditiontrad -1.329155 0.299344 150.000001 -4.440
## formaltrain_sexism 0.006920 0.086215 192.440479 0.080
## ordertraditional_sexism -0.237030 0.230735 131.999998 -1.027
## sexism_voiceselect1 0.533999 0.287391 131.999998 1.858
## sexism_voiceselect2 0.287310 0.298705 131.999998 0.962
## sexism_voiceselect3 0.184151 0.281080 131.999998 0.655
## sexism_voiceselect4 0.625815 0.303647 131.999998 2.061
## trad_voiceselect1 0.299199 0.319671 131.999998 0.936
## trad_voiceselect2 -0.264441 0.277176 131.999998 -0.954
## trad_voiceselect3 -0.173098 0.277564 131.999998 -0.624
## trad_voiceselect4 -0.194487 0.298791 131.999998 -0.651
## formaltrain_job 0.026694 0.100529 131.999998 0.266
## voicesol -0.136872 0.127600 131.999998 -1.073
## voice_work 0.003023 0.136592 131.999998 0.022
## voice_sexm 0.071330 0.116323 131.999998 0.613
## sentiment_1 -0.104686 0.085365 131.999998 -1.226
## sup_gendFemale -0.323196 0.245890 131.999998 -1.314
## ethn_binWhite -0.282535 0.260036 131.999998 -1.087
## age 0.019531 0.011198 131.999998 1.744
## tenure 0.004482 0.018142 131.999998 0.247
## conditiontrad:formaltrain_sexism 0.132411 0.075459 150.000001 1.755
## Pr(>|t|)
## (Intercept) 0.00283 **
## conditiontrad 1.73e-05 ***
## formaltrain_sexism 0.93611
## ordertraditional_sexism 0.30616
## sexism_voiceselect1 0.06538 .
## sexism_voiceselect2 0.33788
## sexism_voiceselect3 0.51351
## sexism_voiceselect4 0.04127 *
## trad_voiceselect1 0.35100
## trad_voiceselect2 0.34180
## trad_voiceselect3 0.53395
## trad_voiceselect4 0.51623
## formaltrain_job 0.79101
## voicesol 0.28538
## voice_work 0.98238
## voice_sexm 0.54079
## sentiment_1 0.22226
## sup_gendFemale 0.19099
## ethn_binWhite 0.27923
## age 0.08347 .
## tenure 0.80524
## conditiontrad:formaltrain_sexism 0.08135 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Implicit Voice Theory - Negative Career Outcomes
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## Value ~ condition * formaltrain_sexism + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "ivtneg", ]
##
## REML criterion at convergence: 1100.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1473 -0.4930 -0.0687 0.4373 2.6877
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 1.309 1.144
## Residual 1.080 1.039
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 3.316201 0.902905 138.336322 3.673
## conditiontrad -0.221204 0.276338 150.000000 -0.800
## formaltrain_sexism -0.031450 0.086297 182.296751 -0.364
## ordertraditional_sexism -0.074474 0.235008 131.999999 -0.317
## sexism_voiceselect1 0.045940 0.292714 131.999999 0.157
## sexism_voiceselect2 0.273284 0.304236 131.999999 0.898
## sexism_voiceselect3 0.228258 0.286285 131.999999 0.797
## sexism_voiceselect4 0.637585 0.309270 131.999999 2.062
## trad_voiceselect1 0.006062 0.325591 131.999999 0.019
## trad_voiceselect2 0.047168 0.282309 131.999999 0.167
## trad_voiceselect3 0.202100 0.282704 131.999999 0.715
## trad_voiceselect4 -0.728211 0.304324 131.999999 -2.393
## formaltrain_job 0.116470 0.102391 131.999998 1.138
## voicesol -0.283151 0.129963 132.000001 -2.179
## voice_work 0.041228 0.139122 131.999998 0.296
## voice_sexm 0.009753 0.118477 131.999999 0.082
## sentiment_1 -0.334368 0.086946 131.999999 -3.846
## sup_gendFemale 0.011040 0.250444 131.999999 0.044
## ethn_binWhite -0.775483 0.264852 131.999999 -2.928
## age 0.038534 0.011405 132.000000 3.379
## tenure -0.037261 0.018478 131.999999 -2.017
## conditiontrad:formaltrain_sexism 0.035153 0.069660 150.000000 0.505
## Pr(>|t|)
## (Intercept) 0.000342 ***
## conditiontrad 0.424697
## formaltrain_sexism 0.715950
## ordertraditional_sexism 0.751819
## sexism_voiceselect1 0.875528
## sexism_voiceselect2 0.370681
## sexism_voiceselect3 0.426702
## sexism_voiceselect4 0.041210 *
## trad_voiceselect1 0.985174
## trad_voiceselect2 0.867564
## trad_voiceselect3 0.475944
## trad_voiceselect4 0.018125 *
## formaltrain_job 0.257387
## voicesol 0.031129 *
## voice_work 0.767430
## voice_sexm 0.934518
## sentiment_1 0.000186 ***
## sup_gendFemale 0.964904
## ethn_binWhite 0.004019 **
## age 0.000958 ***
## tenure 0.045770 *
## conditiontrad:formaltrain_sexism 0.614558
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Org Commitment - Marginal
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## Value ~ condition * formaltrain_sexism + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "orgcomm", ]
##
## REML criterion at convergence: 902.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5832 -0.4443 0.0443 0.4532 3.9655
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 0.6685 0.8176
## Residual 0.5283 0.7268
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 1.951073 0.641077 138.144801 3.043
## conditiontrad 0.608592 0.193286 150.000000 3.149
## formaltrain_sexism 0.123120 0.061143 180.853800 2.014
## ordertraditional_sexism 0.266887 0.166918 132.000000 1.599
## sexism_voiceselect1 -0.082315 0.207905 132.000000 -0.396
## sexism_voiceselect2 -0.025678 0.216089 131.999999 -0.119
## sexism_voiceselect3 -0.014643 0.203339 132.000000 -0.072
## sexism_voiceselect4 -0.020136 0.219665 131.999999 -0.092
## trad_voiceselect1 0.166252 0.231257 132.000000 0.719
## trad_voiceselect2 0.100682 0.200515 131.999999 0.502
## trad_voiceselect3 -0.204613 0.200795 131.999999 -1.019
## trad_voiceselect4 0.093216 0.216151 131.999999 0.431
## formaltrain_job -0.034550 0.072725 132.000001 -0.475
## voicesol 0.252373 0.092308 132.000000 2.734
## voice_work 0.049926 0.098814 131.999999 0.505
## voice_sexm 0.057500 0.084150 131.999999 0.683
## sentiment_1 0.358014 0.061755 131.999999 5.797
## sup_gendFemale -0.397135 0.177882 131.999999 -2.233
## ethn_binWhite 0.410666 0.188115 131.999999 2.183
## age -0.007027 0.008101 132.000003 -0.867
## tenure 0.017441 0.013124 132.000001 1.329
## conditiontrad:formaltrain_sexism -0.095140 0.048724 150.000000 -1.953
## Pr(>|t|)
## (Intercept) 0.00280 **
## conditiontrad 0.00198 **
## formaltrain_sexism 0.04553 *
## ordertraditional_sexism 0.11223
## sexism_voiceselect1 0.69280
## sexism_voiceselect2 0.90559
## sexism_voiceselect3 0.94270
## sexism_voiceselect4 0.92710
## trad_voiceselect1 0.47347
## trad_voiceselect2 0.61642
## trad_voiceselect3 0.31006
## trad_voiceselect4 0.66699
## formaltrain_job 0.63552
## voicesol 0.00712 **
## voice_work 0.61422
## voice_sexm 0.49561
## sentiment_1 4.72e-08 ***
## sup_gendFemale 0.02726 *
## ethn_binWhite 0.03080 *
## age 0.38730
## tenure 0.18617
## conditiontrad:formaltrain_sexism 0.05273 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Formal training in work
Tokenism
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition * formaltrain_job + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "token", ]
##
## REML criterion at convergence: 1121.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.17821 -0.56735 -0.06066 0.56619 2.62914
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 1.138 1.067
## Residual 1.289 1.135
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.251846 0.928145 164.146448 2.426 0.0163
## conditiontrad -0.430161 0.613169 150.000002 -0.702 0.4841
## formaltrain_job 0.064570 0.113825 202.757791 0.567 0.5712
## ordertraditional_sexism -0.237030 0.230735 131.999996 -1.027 0.3062
## sexism_voiceselect1 0.533999 0.287391 131.999997 1.858 0.0654
## sexism_voiceselect2 0.287310 0.298705 131.999997 0.962 0.3379
## sexism_voiceselect3 0.184151 0.281080 131.999996 0.655 0.5135
## sexism_voiceselect4 0.625815 0.303647 131.999997 2.061 0.0413
## trad_voiceselect1 0.299199 0.319671 131.999997 0.936 0.3510
## trad_voiceselect2 -0.264441 0.277176 131.999997 -0.954 0.3418
## trad_voiceselect3 -0.173098 0.277564 131.999997 -0.624 0.5339
## trad_voiceselect4 -0.194487 0.298791 131.999997 -0.651 0.5162
## formaltrain_sexism 0.073126 0.077521 131.999997 0.943 0.3472
## voicesol -0.136872 0.127600 131.999996 -1.073 0.2854
## voice_work 0.003023 0.136592 131.999996 0.022 0.9824
## voice_sexm 0.071330 0.116323 131.999996 0.613 0.5408
## sentiment_1 -0.104686 0.085365 131.999996 -1.226 0.2223
## sup_gendFemale -0.323196 0.245890 131.999997 -1.314 0.1910
## ethn_binWhite -0.282535 0.260036 131.999997 -1.087 0.2792
## age 0.019531 0.011198 131.999995 1.744 0.0835
## tenure 0.004482 0.018142 131.999996 0.247 0.8052
## conditiontrad:formaltrain_job -0.075751 0.106771 150.000002 -0.709 0.4791
##
## (Intercept) *
## conditiontrad
## formaltrain_job
## ordertraditional_sexism
## sexism_voiceselect1 .
## sexism_voiceselect2
## sexism_voiceselect3
## sexism_voiceselect4 *
## trad_voiceselect1
## trad_voiceselect2
## trad_voiceselect3
## trad_voiceselect4
## formaltrain_sexism
## voicesol
## voice_work
## voice_sexm
## sentiment_1
## sup_gendFemale
## ethn_binWhite
## age .
## tenure
## conditiontrad:formaltrain_job
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Belonging - Significant
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition * formaltrain_job + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "belong", ]
##
## REML criterion at convergence: 1006.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6655 -0.4827 -0.1606 0.3210 3.8063
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 0.4499 0.6707
## Residual 1.0443 1.0219
## Number of obs: 303, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.477e+00 7.036e-01 1.786e+02 3.521 0.000546
## conditiontrad 1.606e+00 5.526e-01 1.493e+02 2.906 0.004222
## formaltrain_job 8.140e-02 8.848e-02 2.295e+02 0.920 0.358554
## ordertraditional_sexism -3.053e-01 1.706e-01 1.317e+02 -1.790 0.075788
## sexism_voiceselect1 3.925e-01 2.126e-01 1.320e+02 1.846 0.067082
## sexism_voiceselect2 1.753e-01 2.209e-01 1.318e+02 0.794 0.428776
## sexism_voiceselect3 2.112e-01 2.076e-01 1.315e+02 1.017 0.310826
## sexism_voiceselect4 2.262e-01 2.244e-01 1.317e+02 1.008 0.315226
## trad_voiceselect1 -4.274e-02 2.362e-01 1.316e+02 -0.181 0.856696
## trad_voiceselect2 -3.283e-01 2.047e-01 1.314e+02 -1.604 0.111176
## trad_voiceselect3 4.874e-02 2.051e-01 1.315e+02 0.238 0.812483
## trad_voiceselect4 -1.661e-01 2.207e-01 1.315e+02 -0.752 0.453166
## formaltrain_sexism 1.001e-01 5.735e-02 1.320e+02 1.746 0.083154
## voicesol -2.268e-01 9.425e-02 1.315e+02 -2.407 0.017483
## voice_work -1.094e-01 1.009e-01 1.314e+02 -1.084 0.280236
## voice_sexm 7.707e-02 8.591e-02 1.314e+02 0.897 0.371321
## sentiment_1 -3.026e-01 6.306e-02 1.315e+02 -4.799 4.27e-06
## sup_gendFemale -2.455e-01 1.818e-01 1.319e+02 -1.350 0.179313
## ethn_binWhite 2.103e-02 1.922e-01 1.317e+02 0.109 0.913038
## age 1.074e-02 8.277e-03 1.317e+02 1.297 0.196822
## tenure -6.509e-04 1.341e-02 1.318e+02 -0.049 0.961373
## conditiontrad:formaltrain_job -3.527e-01 9.616e-02 1.492e+02 -3.668 0.000340
##
## (Intercept) ***
## conditiontrad **
## formaltrain_job
## ordertraditional_sexism .
## sexism_voiceselect1 .
## sexism_voiceselect2
## sexism_voiceselect3
## sexism_voiceselect4
## trad_voiceselect1
## trad_voiceselect2
## trad_voiceselect3
## trad_voiceselect4
## formaltrain_sexism .
## voicesol *
## voice_work
## voice_sexm
## sentiment_1 ***
## sup_gendFemale
## ethn_binWhite
## age
## tenure
## conditiontrad:formaltrain_job ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Implicit Voice Theory - Presumed Target Identification - Significant
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition * formaltrain_job + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "ivtpt", ]
##
## REML criterion at convergence: 1112.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.3647 -0.4461 -0.0840 0.4225 3.2677
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 1.380 1.175
## Residual 1.125 1.061
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 3.241527 0.958329 157.830854 3.382 0.000906
## conditiontrad 0.774163 0.572860 150.000001 1.351 0.178602
## formaltrain_job 0.173490 0.116194 189.841772 1.493 0.137069
## ordertraditional_sexism -0.030896 0.240868 131.999999 -0.128 0.898131
## sexism_voiceselect1 -0.038359 0.300014 131.999999 -0.128 0.898456
## sexism_voiceselect2 0.206131 0.311824 131.999999 0.661 0.509733
## sexism_voiceselect3 0.375909 0.293425 131.999999 1.281 0.202401
## sexism_voiceselect4 0.373152 0.316983 131.999999 1.177 0.241235
## trad_voiceselect1 0.170786 0.333711 131.999999 0.512 0.609662
## trad_voiceselect2 -0.135830 0.289349 131.999999 -0.469 0.639536
## trad_voiceselect3 0.017348 0.289754 131.999999 0.060 0.952350
## trad_voiceselect4 -0.132777 0.311913 131.999999 -0.426 0.671030
## formaltrain_sexism -0.077278 0.080925 131.999999 -0.955 0.341359
## voicesol -0.238986 0.133204 131.999999 -1.794 0.075080
## voice_work 0.013533 0.142591 131.999999 0.095 0.924531
## voice_sexm -0.008751 0.121431 131.999998 -0.072 0.942660
## sentiment_1 -0.366493 0.089115 131.999999 -4.113 6.84e-05
## sup_gendFemale 0.184225 0.256689 131.999999 0.718 0.474213
## ethn_binWhite -0.712129 0.271457 131.999999 -2.623 0.009732
## age 0.028383 0.011690 131.999999 2.428 0.016530
## tenure -0.019562 0.018938 131.999999 -1.033 0.303530
## conditiontrad:formaltrain_job -0.200085 0.099752 150.000001 -2.006 0.046673
##
## (Intercept) ***
## conditiontrad
## formaltrain_job
## ordertraditional_sexism
## sexism_voiceselect1
## sexism_voiceselect2
## sexism_voiceselect3
## sexism_voiceselect4
## trad_voiceselect1
## trad_voiceselect2
## trad_voiceselect3
## trad_voiceselect4
## formaltrain_sexism
## voicesol .
## voice_work
## voice_sexm
## sentiment_1 ***
## sup_gendFemale
## ethn_binWhite **
## age *
## tenure
## conditiontrad:formaltrain_job *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
### Implicit Voice Theory - Negative Career Outcomes - Significant
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition * formaltrain_job + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "ivtneg", ]
##
## REML criterion at convergence: 1095.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.59885 -0.50578 -0.01413 0.42003 2.86786
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 1.325 1.151
## Residual 1.047 1.023
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.649812 0.934073 157.257028 2.837 0.005157
## conditiontrad 1.111575 0.552612 150.000001 2.011 0.046064
## formaltrain_job 0.224008 0.113132 188.634248 1.980 0.049150
## ordertraditional_sexism -0.074474 0.235008 131.999999 -0.317 0.751819
## sexism_voiceselect1 0.045940 0.292714 131.999999 0.157 0.875528
## sexism_voiceselect2 0.273284 0.304236 131.999999 0.898 0.370681
## sexism_voiceselect3 0.228258 0.286285 131.999999 0.797 0.426702
## sexism_voiceselect4 0.637585 0.309270 131.999999 2.062 0.041210
## trad_voiceselect1 0.006062 0.325591 131.999999 0.019 0.985174
## trad_voiceselect2 0.047168 0.282309 131.999999 0.167 0.867564
## trad_voiceselect3 0.202100 0.282704 131.999999 0.715 0.475944
## trad_voiceselect4 -0.728211 0.304324 131.999999 -2.393 0.018125
## formaltrain_sexism -0.013874 0.078956 131.999999 -0.176 0.860784
## voicesol -0.283151 0.129963 132.000000 -2.179 0.031129
## voice_work 0.041228 0.139122 131.999998 0.296 0.767430
## voice_sexm 0.009753 0.118477 131.999999 0.082 0.934518
## sentiment_1 -0.334368 0.086946 131.999999 -3.846 0.000186
## sup_gendFemale 0.011040 0.250444 131.999999 0.044 0.964904
## ethn_binWhite -0.775483 0.264852 131.999999 -2.928 0.004019
## age 0.038534 0.011405 132.000000 3.379 0.000958
## tenure -0.037261 0.018478 131.999999 -2.017 0.045770
## conditiontrad:formaltrain_job -0.215076 0.096226 150.000001 -2.235 0.026888
##
## (Intercept) **
## conditiontrad *
## formaltrain_job *
## ordertraditional_sexism
## sexism_voiceselect1
## sexism_voiceselect2
## sexism_voiceselect3
## sexism_voiceselect4 *
## trad_voiceselect1
## trad_voiceselect2
## trad_voiceselect3
## trad_voiceselect4 *
## formaltrain_sexism
## voicesol *
## voice_work
## voice_sexm
## sentiment_1 ***
## sup_gendFemale
## ethn_binWhite **
## age ***
## tenure *
## conditiontrad:formaltrain_job *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
### Org Commitment
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Value ~ condition * formaltrain_job + order + sexism_voiceselect1 +
## sexism_voiceselect2 + sexism_voiceselect3 + sexism_voiceselect4 +
## trad_voiceselect1 + trad_voiceselect2 + trad_voiceselect3 +
## trad_voiceselect4 + formaltrain_job + formaltrain_sexism +
## voicesol + voice_work + voice_sexm + sentiment_1 + sup_gend +
## ethn_bin + age + tenure + (1 | participantid)
## Data: study3_clean_long[study3_clean_long$scale == "orgcomm", ]
##
## REML criterion at convergence: 905.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.6687 -0.4111 0.0312 0.4603 4.0554
##
## Random effects:
## Groups Name Variance Std.Dev.
## participantid (Intercept) 0.6623 0.8138
## Residual 0.5406 0.7353
## Number of obs: 304, groups: participantid, 152
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.227646 0.664131 157.850777 3.354 0.000997
## conditiontrad 0.055446 0.397138 150.000000 0.140 0.889153
## formaltrain_job -0.053496 0.080526 189.883603 -0.664 0.507284
## ordertraditional_sexism 0.266887 0.166918 131.999999 1.599 0.112232
## sexism_voiceselect1 -0.082315 0.207905 131.999999 -0.396 0.692799
## sexism_voiceselect2 -0.025678 0.216089 131.999999 -0.119 0.905592
## sexism_voiceselect3 -0.014643 0.203339 131.999999 -0.072 0.942699
## sexism_voiceselect4 -0.020136 0.219665 131.999999 -0.092 0.927103
## trad_voiceselect1 0.166252 0.231257 131.999999 0.719 0.473470
## trad_voiceselect2 0.100682 0.200515 131.999999 0.502 0.616423
## trad_voiceselect3 -0.204613 0.200795 131.999999 -1.019 0.310062
## trad_voiceselect4 0.093216 0.216151 131.999999 0.431 0.666987
## formaltrain_sexism 0.075550 0.056080 131.999999 1.347 0.180228
## voicesol 0.252373 0.092308 131.999997 2.734 0.007116
## voice_work 0.049926 0.098814 131.999999 0.505 0.614220
## voice_sexm 0.057500 0.084150 131.999999 0.683 0.495612
## sentiment_1 0.358014 0.061755 131.999999 5.797 4.72e-08
## sup_gendFemale -0.397135 0.177882 131.999999 -2.233 0.027262
## ethn_binWhite 0.410666 0.188115 131.999999 2.183 0.030800
## age -0.007027 0.008101 131.999998 -0.867 0.387304
## tenure 0.017441 0.013124 131.999999 1.329 0.186165
## conditiontrad:formaltrain_job 0.037892 0.069154 150.000000 0.548 0.584543
##
## (Intercept) ***
## conditiontrad
## formaltrain_job
## ordertraditional_sexism
## sexism_voiceselect1
## sexism_voiceselect2
## sexism_voiceselect3
## sexism_voiceselect4
## trad_voiceselect1
## trad_voiceselect2
## trad_voiceselect3
## trad_voiceselect4
## formaltrain_sexism
## voicesol **
## voice_work
## voice_sexm
## sentiment_1 ***
## sup_gendFemale *
## ethn_binWhite *
## age
## tenure
## conditiontrad:formaltrain_job
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1