R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:


## Including Plots

You can also embed plots, for example:

data<-iris
summary(data)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 
str(data)
## 'data.frame':    150 obs. of  5 variables:
##  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
head(data)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
library(ggplot2)
data <- data.frame(
  category = c("monty", "lila", "anne", "sony"),
  value = c(6, 8, 3, 10)
)

# Create a bar plot
ggplot(data, aes(x = category, y = value)) +
  geom_bar(stat = "identity", fill = "pink") +
  ggtitle("Bar Plot Example")

data <- data.frame(
  category = c("monty", "lila", "anne", "sony"),
  value = c(6, 8, 3, 10)
)

# Create a pie chart
ggplot(data, aes(x = "", y = value, fill = category)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y") +
  ggtitle("Pie Chart Example")

data <- data.frame(value = rnorm(100))

# Create a histogram
ggplot(data, aes(x = value)) +
  geom_histogram(binwidth = 0.5, fill = "lightgreen", color = "black") +
  ggtitle("Histogram Example")

data <- data.frame(
  x = rnorm(50),
  y = rnorm(50)
)

# Create a scatter plot
ggplot(data, aes(x = x, y = y)) +
  geom_point(color = "blue") +
  ggtitle("Scatter Plot Example")

data <- data.frame(
  category = rep(c("A", "B", "C", "D"), each = 25),
  value = rnorm(100)
)

# Create a box plot
ggplot(data, aes(x = category, y = value)) +
  geom_boxplot(fill = "orange") +
  ggtitle("Box Plot Example")