Exploring data through visualizations is a crucial aspect of data analysis. In this article, we’ll delve into Rstudio and utilize its powerful libraries, such as ggplot2 and dplyr, to create insightful data visualizations. We’ll focus on the Gapminder dataset, providing step-by-step explanations and code snippets to enhance your understanding.
Before We start, Make sure you Have:
Let’s start by visualizing the relationship between miles per gallon (mpg), horsepower (hp), and the number of gears in the mtcars dataset.
Before we dive into visualizations, let’s load the Gapminder dataset and gain some insights into its structure.
## # A tibble: 6 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 779.
## 2 Afghanistan Asia 1957 30.3 9240934 821.
## 3 Afghanistan Asia 1962 32.0 10267083 853.
## 4 Afghanistan Asia 1967 34.0 11537966 836.
## 5 Afghanistan Asia 1972 36.1 13079460 740.
## 6 Afghanistan Asia 1977 38.4 14880372 786.
## country continent year lifeExp
## Afghanistan: 12 Africa :624 Min. :1952 Min. :23.60
## Albania : 12 Americas:300 1st Qu.:1966 1st Qu.:48.20
## Algeria : 12 Asia :396 Median :1980 Median :60.71
## Angola : 12 Europe :360 Mean :1980 Mean :59.47
## Argentina : 12 Oceania : 24 3rd Qu.:1993 3rd Qu.:70.85
## Australia : 12 Max. :2007 Max. :82.60
## (Other) :1632
## pop gdpPercap
## Min. :6.001e+04 Min. : 241.2
## 1st Qu.:2.794e+06 1st Qu.: 1202.1
## Median :7.024e+06 Median : 3531.8
## Mean :2.960e+07 Mean : 7215.3
## 3rd Qu.:1.959e+07 3rd Qu.: 9325.5
## Max. :1.319e+09 Max. :113523.1
##
## tibble [1,704 × 6] (S3: tbl_df/tbl/data.frame)
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
## $ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
## $ gdpPercap: num [1:1704] 779 821 853 836 740 ...
Let’s narrow down our focus to the top 100 countries with the highest life expectancy and create a bar plot.
Enhancing the previous plot by adding vibrant colors using the viridis colorpalette.
Analyzing life expectancy across continents in the year 2007 using a grouped bar plot.
People Also Read:
Logistic Regression in R with Categorical Variables [Update 2023]
How to Use ggplot Shapes in R to Create Stunning Scatter Plots
Say Goodbye to Coding Complex Graphs: Explore the User-Friendly ggplot2-Shiny Combo
Exploratory Data Analysis for International Journals -PhD Insight
How to Use ggplot Shapes in R to Create Stunning Scatter Plots
Let’s create a histogram to visualize the distribution of life expectancy in 2007 across continents.
In this journey through Rstudio and its data analysis capabilities, we’ve explored visualizations ranging from simple heatmaps to intricate bar plots. Data storytelling comes alive when we harness the power of code to uncover patterns and insights.