Sex | n | percent |
|---|---|---|
F | 184 | 42.2% |
M | 252 | 57.8% |
Total | 436 | 100.0% |
Age | n | percent |
|---|---|---|
1 | 1 | 0.2% |
18 | 15 | 3.4% |
19 | 34 | 7.8% |
20 | 54 | 12.4% |
21 | 38 | 8.7% |
22 | 23 | 5.3% |
23 | 15 | 3.4% |
24 | 13 | 3.0% |
25 | 5 | 1.1% |
26 | 6 | 1.4% |
27 | 7 | 1.6% |
28 | 7 | 1.6% |
29 | 2 | 0.5% |
30 | 2 | 0.5% |
31 | 4 | 0.9% |
32 | 4 | 0.9% |
33 | 3 | 0.7% |
34 | 4 | 0.9% |
35 | 10 | 2.3% |
36 | 2 | 0.5% |
37 | 3 | 0.7% |
38 | 2 | 0.5% |
39 | 5 | 1.1% |
40 | 17 | 3.9% |
41 | 10 | 2.3% |
42 | 12 | 2.8% |
43 | 13 | 3.0% |
44 | 9 | 2.1% |
45 | 2 | 0.5% |
46 | 6 | 1.4% |
47 | 11 | 2.5% |
48 | 5 | 1.1% |
49 | 9 | 2.1% |
50 | 7 | 1.6% |
51 | 5 | 1.1% |
52 | 4 | 0.9% |
53 | 2 | 0.5% |
54 | 8 | 1.8% |
55 | 10 | 2.3% |
56 | 4 | 0.9% |
57 | 4 | 0.9% |
58 | 3 | 0.7% |
60 | 1 | 0.2% |
61 | 4 | 0.9% |
62 | 5 | 1.1% |
63 | 1 | 0.2% |
64 | 4 | 0.9% |
65 | 3 | 0.7% |
66 | 2 | 0.5% |
67 | 4 | 0.9% |
68 | 1 | 0.2% |
69 | 2 | 0.5% |
70 | 2 | 0.5% |
72 | 5 | 1.1% |
74 | 1 | 0.2% |
81 | 1 | 0.2% |
Total | 436 | 100.0% |
Peso | n | percent |
|---|---|---|
42 | 1 | 0.2% |
44 | 3 | 0.7% |
48 | 4 | 0.9% |
49 | 12 | 2.8% |
50 | 6 | 1.4% |
51 | 4 | 0.9% |
52 | 5 | 1.1% |
53 | 5 | 1.1% |
54 | 9 | 2.1% |
55 | 8 | 1.8% |
56 | 8 | 1.8% |
57 | 9 | 2.1% |
58 | 14 | 3.2% |
59 | 12 | 2.8% |
60 | 13 | 3.0% |
61 | 6 | 1.4% |
62 | 13 | 3.0% |
63 | 7 | 1.6% |
64 | 12 | 2.8% |
65 | 12 | 2.8% |
66 | 8 | 1.8% |
67 | 8 | 1.8% |
68 | 12 | 2.8% |
69 | 12 | 2.8% |
70 | 12 | 2.8% |
71 | 8 | 1.8% |
72 | 10 | 2.3% |
73 | 12 | 2.8% |
74 | 11 | 2.5% |
75 | 9 | 2.1% |
76 | 17 | 3.9% |
77 | 11 | 2.5% |
78 | 7 | 1.6% |
79 | 5 | 1.1% |
80 | 11 | 2.5% |
81 | 8 | 1.8% |
82 | 7 | 1.6% |
83 | 7 | 1.6% |
84 | 8 | 1.8% |
85 | 6 | 1.4% |
86 | 4 | 0.9% |
87 | 7 | 1.6% |
88 | 5 | 1.1% |
89 | 6 | 1.4% |
90 | 6 | 1.4% |
91 | 6 | 1.4% |
92 | 5 | 1.1% |
93 | 4 | 0.9% |
94 | 3 | 0.7% |
95 | 5 | 1.1% |
96 | 3 | 0.7% |
98 | 6 | 1.4% |
99 | 5 | 1.1% |
101 | 2 | 0.5% |
102 | 4 | 0.9% |
103 | 2 | 0.5% |
104 | 2 | 0.5% |
106 | 3 | 0.7% |
109 | 1 | 0.2% |
110 | 1 | 0.2% |
111 | 1 | 0.2% |
112 | 1 | 0.2% |
119 | 1 | 0.2% |
165 | 1 | 0.2% |
Total | 436 | 100.0% |
Altura | n | percent |
|---|---|---|
0.75 | 1 | 0.2% |
1.54 | 2 | 0.5% |
1.56 | 4 | 0.9% |
1.57 | 5 | 1.1% |
1.59 | 3 | 0.7% |
1.6 | 14 | 3.2% |
1.61 | 12 | 2.8% |
1.62 | 2 | 0.5% |
1.63 | 19 | 4.4% |
1.64 | 11 | 2.5% |
1.65 | 17 | 3.9% |
1.66 | 13 | 3.0% |
1.67 | 13 | 3.0% |
1.68 | 14 | 3.2% |
1.69 | 13 | 3.0% |
1.7 | 19 | 4.4% |
1.71 | 27 | 6.2% |
1.72 | 8 | 1.8% |
1.73 | 29 | 6.7% |
1.74 | 12 | 2.8% |
1.75 | 17 | 3.9% |
1.76 | 12 | 2.8% |
1.77 | 23 | 5.3% |
1.78 | 21 | 4.8% |
1.79 | 9 | 2.1% |
1.8 | 15 | 3.4% |
1.81 | 7 | 1.6% |
1.82 | 20 | 4.6% |
1.83 | 7 | 1.6% |
1.84 | 17 | 3.9% |
1.85 | 10 | 2.3% |
1.86 | 5 | 1.1% |
1.87 | 11 | 2.5% |
1.88 | 4 | 0.9% |
1.89 | 11 | 2.5% |
1.9 | 2 | 0.5% |
1.91 | 2 | 0.5% |
1.92 | 1 | 0.2% |
1.93 | 2 | 0.5% |
1.97 | 2 | 0.5% |
Total | 436 | 100.0% |
cuello | n | percent |
|---|---|---|
26 | 1 | 0.2% |
27 | 1 | 0.2% |
28 | 3 | 0.7% |
29 | 6 | 1.4% |
30 | 43 | 9.9% |
31 | 33 | 7.6% |
32 | 59 | 13.5% |
33 | 22 | 5.0% |
34 | 30 | 6.9% |
35 | 20 | 4.6% |
36 | 40 | 9.2% |
37 | 28 | 6.4% |
38 | 60 | 13.8% |
39 | 27 | 6.2% |
40 | 22 | 5.0% |
41 | 24 | 5.5% |
42 | 13 | 3.0% |
43 | 2 | 0.5% |
44 | 1 | 0.2% |
51 | 1 | 0.2% |
Total | 436 | 100.0% |
pecho | n | percent |
|---|---|---|
43 | 1 | 0.2% |
50 | 1 | 0.2% |
74 | 1 | 0.2% |
75 | 1 | 0.2% |
76 | 6 | 1.4% |
78 | 5 | 1.1% |
79 | 7 | 1.6% |
80 | 7 | 1.6% |
81 | 9 | 2.1% |
82 | 18 | 4.1% |
83 | 13 | 3.0% |
84 | 24 | 5.5% |
85 | 12 | 2.8% |
86 | 19 | 4.4% |
87 | 9 | 2.1% |
88 | 15 | 3.4% |
89 | 14 | 3.2% |
90 | 18 | 4.1% |
91 | 13 | 3.0% |
92 | 15 | 3.4% |
93 | 15 | 3.4% |
94 | 17 | 3.9% |
95 | 7 | 1.6% |
96 | 9 | 2.1% |
97 | 15 | 3.4% |
98 | 14 | 3.2% |
99 | 18 | 4.1% |
100 | 15 | 3.4% |
101 | 9 | 2.1% |
102 | 11 | 2.5% |
103 | 11 | 2.5% |
104 | 14 | 3.2% |
105 | 10 | 2.3% |
106 | 8 | 1.8% |
107 | 8 | 1.8% |
108 | 11 | 2.5% |
109 | 1 | 0.2% |
110 | 3 | 0.7% |
111 | 4 | 0.9% |
112 | 4 | 0.9% |
113 | 2 | 0.5% |
114 | 2 | 0.5% |
115 | 5 | 1.1% |
116 | 2 | 0.5% |
117 | 1 | 0.2% |
118 | 4 | 0.9% |
119 | 1 | 0.2% |
120 | 4 | 0.9% |
122 | 1 | 0.2% |
128 | 1 | 0.2% |
136 | 1 | 0.2% |
Total | 436 | 100.0% |
abdomen | n | percent |
|---|---|---|
58 | 2 | 0.5% |
60 | 2 | 0.5% |
61 | 3 | 0.7% |
62 | 9 | 2.1% |
63 | 10 | 2.3% |
64 | 16 | 3.7% |
65 | 13 | 3.0% |
66 | 17 | 3.9% |
67 | 8 | 1.8% |
68 | 16 | 3.7% |
69 | 8 | 1.8% |
70 | 18 | 4.1% |
71 | 10 | 2.3% |
72 | 9 | 2.1% |
73 | 7 | 1.6% |
74 | 7 | 1.6% |
75 | 7 | 1.6% |
76 | 10 | 2.3% |
77 | 9 | 2.1% |
78 | 9 | 2.1% |
79 | 5 | 1.1% |
80 | 9 | 2.1% |
81 | 4 | 0.9% |
82 | 7 | 1.6% |
83 | 11 | 2.5% |
84 | 16 | 3.7% |
85 | 4 | 0.9% |
86 | 9 | 2.1% |
87 | 9 | 2.1% |
88 | 10 | 2.3% |
89 | 12 | 2.8% |
90 | 16 | 3.7% |
91 | 8 | 1.8% |
92 | 11 | 2.5% |
93 | 7 | 1.6% |
94 | 6 | 1.4% |
95 | 9 | 2.1% |
96 | 10 | 2.3% |
97 | 3 | 0.7% |
98 | 8 | 1.8% |
99 | 9 | 2.1% |
100 | 14 | 3.2% |
101 | 5 | 1.1% |
102 | 3 | 0.7% |
103 | 3 | 0.7% |
104 | 5 | 1.1% |
105 | 6 | 1.4% |
106 | 4 | 0.9% |
107 | 2 | 0.5% |
108 | 3 | 0.7% |
109 | 3 | 0.7% |
110 | 2 | 0.5% |
111 | 1 | 0.2% |
112 | 1 | 0.2% |
113 | 2 | 0.5% |
114 | 3 | 0.7% |
116 | 2 | 0.5% |
118 | 1 | 0.2% |
122 | 1 | 0.2% |
126 | 1 | 0.2% |
148 | 1 | 0.2% |
Total | 436 | 100.0% |
# NOTAS DE
VIDEO
La función tabyl se encuentra en la paquetería janitor
df %>% tabyl(Sex)
## Sex n percent
## F 184 0.4220183
## M 252 0.5779817
Mejorando
df %>% tabyl(Sex) %>%
adorn_pct_formatting() %>%
flextable() %>%
fontsize(size=16) %>%
autofit()
Sex | n | percent |
|---|---|---|
F | 184 | 42.2% |
M | 252 | 57.8% |
df %>% tabyl(Sex) %>%
adorn_pct_formatting() %>% #porcentaje
flextable() %>%
fontsize(size=16) %>%
autofit() %>%
theme_box()
Sex | n | percent |
|---|---|---|
F | 184 | 42.2% |
M | 252 | 57.8% |
Tablas de Frecuencias (Fromato “final”)
df %>% tabyl(Sex) %>%
adorn_totals("row")%>%
adorn_pct_formatting() %>% #porcentaje
flextable() %>%
fontsize(size=16) %>%
autofit() %>%
theme_box()
Sex | n | percent |
|---|---|---|
F | 184 | 42.2% |
M | 252 | 57.8% |
Total | 436 | 100.0% |
df %>% tabyl(Sex) %>%
ggplot(aes(x=Sex,y=n,fill=Sex)) +
geom_col()
df %>% tabyl(Sex) %>%
ggplot(aes(x=Sex,y=n,fill=Sex)) +
geom_col() +
labs(x="Sexo",y="Frecuencia",title="Encuestados Grasa Corporal") +
guides(fill=FALSE)
df %>% tabyl(Sex) %>%
ggplot(aes(x=Sex,y=n,fill=Sex)) +
geom_col() +
labs(x="Sexo",y="Frecuencia",title="Encuestados Grasa Corporal") +
geom_text(aes(label=n),vjust=1.5,col="white",fontface="bold")
Grafica de Barras con Frecuencias (Fromato “final”)
df %>% tabyl(Sex) %>%
ggplot(aes(x=Sex,y=n,fill=Sex)) +
geom_col() +
labs(x="Sexo",y="Frecuencia",title="Encuestados Grasa Corporal") +
geom_text(aes(label=sprintf("%.2f%%",100*percent)),vjust=1.5,col="white",fontface="bold")
Ejemplo de un Histograma
n=100
numeros=rnorm(n=n,mean=20,sd=1)
numeros
## [1] 21.87062 18.40974 20.61069 19.10839 19.46377 19.52325 18.87887 20.86757
## [9] 17.43876 19.37294 18.49215 20.35423 20.60978 18.70847 18.70990 22.10176
## [17] 22.34833 18.50470 19.21824 20.96021 19.71521 19.90850 19.66948 19.02419
## [25] 18.89305 20.50806 20.37574 21.88304 21.54125 19.52818 20.26335 19.55952
## [33] 19.59887 20.24997 20.93415 21.08240 20.61188 20.73739 20.38025 17.68439
## [41] 19.80904 19.56840 20.49275 18.74146 20.26727 18.86651 22.24585 22.28867
## [49] 18.64660 20.12515 20.96974 20.81428 21.38699 19.86358 20.09173 20.40503
## [57] 21.18788 19.72227 20.00003 19.92626 21.55132 19.23405 19.81874 19.57776
## [65] 18.47724 20.03942 20.41645 21.79500 17.45714 19.33574 20.64222 21.13170
## [73] 18.61268 19.97854 20.23234 18.43701 19.90132 19.82356 18.96481 20.22405
## [81] 20.31828 20.16685 20.47617 19.30996 21.76690 21.17873 20.36178 17.99275
## [89] 20.38878 21.00214 20.49501 20.83869 20.52324 19.78266 22.35055 19.23573
## [97] 19.93648 20.16971 19.91702 18.49338
df1=data.frame(numeros)
df1 %>%
ggplot(aes(x=numeros)) +
geom_histogram(color="hotpink",fill="pink") +
labs(x="Numeros",y="Frecuencia",title="Campana de Gauss Experimental")