Medida de Grasa Corporal para 436 personas

Sexo y Edad de los Encuestados

Sex

n

percent

F

184

42.2%

M

252

57.8%

Total

436

100.0%

Age

n

percent

1

1

0.2%

18

15

3.4%

19

34

7.8%

20

54

12.4%

21

38

8.7%

22

23

5.3%

23

15

3.4%

24

13

3.0%

25

5

1.1%

26

6

1.4%

27

7

1.6%

28

7

1.6%

29

2

0.5%

30

2

0.5%

31

4

0.9%

32

4

0.9%

33

3

0.7%

34

4

0.9%

35

10

2.3%

36

2

0.5%

37

3

0.7%

38

2

0.5%

39

5

1.1%

40

17

3.9%

41

10

2.3%

42

12

2.8%

43

13

3.0%

44

9

2.1%

45

2

0.5%

46

6

1.4%

47

11

2.5%

48

5

1.1%

49

9

2.1%

50

7

1.6%

51

5

1.1%

52

4

0.9%

53

2

0.5%

54

8

1.8%

55

10

2.3%

56

4

0.9%

57

4

0.9%

58

3

0.7%

60

1

0.2%

61

4

0.9%

62

5

1.1%

63

1

0.2%

64

4

0.9%

65

3

0.7%

66

2

0.5%

67

4

0.9%

68

1

0.2%

69

2

0.5%

70

2

0.5%

72

5

1.1%

74

1

0.2%

81

1

0.2%

Total

436

100.0%

Características físicas de los encuestados

PESO

Peso

n

percent

42

1

0.2%

44

3

0.7%

48

4

0.9%

49

12

2.8%

50

6

1.4%

51

4

0.9%

52

5

1.1%

53

5

1.1%

54

9

2.1%

55

8

1.8%

56

8

1.8%

57

9

2.1%

58

14

3.2%

59

12

2.8%

60

13

3.0%

61

6

1.4%

62

13

3.0%

63

7

1.6%

64

12

2.8%

65

12

2.8%

66

8

1.8%

67

8

1.8%

68

12

2.8%

69

12

2.8%

70

12

2.8%

71

8

1.8%

72

10

2.3%

73

12

2.8%

74

11

2.5%

75

9

2.1%

76

17

3.9%

77

11

2.5%

78

7

1.6%

79

5

1.1%

80

11

2.5%

81

8

1.8%

82

7

1.6%

83

7

1.6%

84

8

1.8%

85

6

1.4%

86

4

0.9%

87

7

1.6%

88

5

1.1%

89

6

1.4%

90

6

1.4%

91

6

1.4%

92

5

1.1%

93

4

0.9%

94

3

0.7%

95

5

1.1%

96

3

0.7%

98

6

1.4%

99

5

1.1%

101

2

0.5%

102

4

0.9%

103

2

0.5%

104

2

0.5%

106

3

0.7%

109

1

0.2%

110

1

0.2%

111

1

0.2%

112

1

0.2%

119

1

0.2%

165

1

0.2%

Total

436

100.0%


ALTURA

Altura

n

percent

0.75

1

0.2%

1.54

2

0.5%

1.56

4

0.9%

1.57

5

1.1%

1.59

3

0.7%

1.6

14

3.2%

1.61

12

2.8%

1.62

2

0.5%

1.63

19

4.4%

1.64

11

2.5%

1.65

17

3.9%

1.66

13

3.0%

1.67

13

3.0%

1.68

14

3.2%

1.69

13

3.0%

1.7

19

4.4%

1.71

27

6.2%

1.72

8

1.8%

1.73

29

6.7%

1.74

12

2.8%

1.75

17

3.9%

1.76

12

2.8%

1.77

23

5.3%

1.78

21

4.8%

1.79

9

2.1%

1.8

15

3.4%

1.81

7

1.6%

1.82

20

4.6%

1.83

7

1.6%

1.84

17

3.9%

1.85

10

2.3%

1.86

5

1.1%

1.87

11

2.5%

1.88

4

0.9%

1.89

11

2.5%

1.9

2

0.5%

1.91

2

0.5%

1.92

1

0.2%

1.93

2

0.5%

1.97

2

0.5%

Total

436

100.0%

CIRCUNFERENCIA DEL CUELLO EN CM

cuello

n

percent

26

1

0.2%

27

1

0.2%

28

3

0.7%

29

6

1.4%

30

43

9.9%

31

33

7.6%

32

59

13.5%

33

22

5.0%

34

30

6.9%

35

20

4.6%

36

40

9.2%

37

28

6.4%

38

60

13.8%

39

27

6.2%

40

22

5.0%

41

24

5.5%

42

13

3.0%

43

2

0.5%

44

1

0.2%

51

1

0.2%

Total

436

100.0%

CIRCUNFERENCIA DEL PECHO EN CM

pecho

n

percent

43

1

0.2%

50

1

0.2%

74

1

0.2%

75

1

0.2%

76

6

1.4%

78

5

1.1%

79

7

1.6%

80

7

1.6%

81

9

2.1%

82

18

4.1%

83

13

3.0%

84

24

5.5%

85

12

2.8%

86

19

4.4%

87

9

2.1%

88

15

3.4%

89

14

3.2%

90

18

4.1%

91

13

3.0%

92

15

3.4%

93

15

3.4%

94

17

3.9%

95

7

1.6%

96

9

2.1%

97

15

3.4%

98

14

3.2%

99

18

4.1%

100

15

3.4%

101

9

2.1%

102

11

2.5%

103

11

2.5%

104

14

3.2%

105

10

2.3%

106

8

1.8%

107

8

1.8%

108

11

2.5%

109

1

0.2%

110

3

0.7%

111

4

0.9%

112

4

0.9%

113

2

0.5%

114

2

0.5%

115

5

1.1%

116

2

0.5%

117

1

0.2%

118

4

0.9%

119

1

0.2%

120

4

0.9%

122

1

0.2%

128

1

0.2%

136

1

0.2%

Total

436

100.0%

CIRCUNFERENCIA DEL ABDOMEN EN CM

abdomen

n

percent

58

2

0.5%

60

2

0.5%

61

3

0.7%

62

9

2.1%

63

10

2.3%

64

16

3.7%

65

13

3.0%

66

17

3.9%

67

8

1.8%

68

16

3.7%

69

8

1.8%

70

18

4.1%

71

10

2.3%

72

9

2.1%

73

7

1.6%

74

7

1.6%

75

7

1.6%

76

10

2.3%

77

9

2.1%

78

9

2.1%

79

5

1.1%

80

9

2.1%

81

4

0.9%

82

7

1.6%

83

11

2.5%

84

16

3.7%

85

4

0.9%

86

9

2.1%

87

9

2.1%

88

10

2.3%

89

12

2.8%

90

16

3.7%

91

8

1.8%

92

11

2.5%

93

7

1.6%

94

6

1.4%

95

9

2.1%

96

10

2.3%

97

3

0.7%

98

8

1.8%

99

9

2.1%

100

14

3.2%

101

5

1.1%

102

3

0.7%

103

3

0.7%

104

5

1.1%

105

6

1.4%

106

4

0.9%

107

2

0.5%

108

3

0.7%

109

3

0.7%

110

2

0.5%

111

1

0.2%

112

1

0.2%

113

2

0.5%

114

3

0.7%

116

2

0.5%

118

1

0.2%

122

1

0.2%

126

1

0.2%

148

1

0.2%

Total

436

100.0%









































# NOTAS DE VIDEO

La función tabyl se encuentra en la paquetería janitor

df %>% tabyl(Sex)
##  Sex   n   percent
##    F 184 0.4220183
##    M 252 0.5779817

Mejorando

df %>% tabyl(Sex) %>%
  adorn_pct_formatting() %>%
  flextable() %>%
  fontsize(size=16) %>%
  autofit()

Sex

n

percent

F

184

42.2%

M

252

57.8%

df %>% tabyl(Sex) %>%
  adorn_pct_formatting() %>% #porcentaje
  flextable() %>%
  fontsize(size=16) %>%
  autofit() %>%
  theme_box()

Sex

n

percent

F

184

42.2%

M

252

57.8%

Tablas de Frecuencias (Fromato “final”)

df %>% tabyl(Sex) %>%
  adorn_totals("row")%>%
  adorn_pct_formatting() %>% #porcentaje
  flextable() %>%
  fontsize(size=16) %>%
  autofit() %>%
  theme_box()

Sex

n

percent

F

184

42.2%

M

252

57.8%

Total

436

100.0%

df %>% tabyl(Sex) %>%
  ggplot(aes(x=Sex,y=n,fill=Sex)) +
  geom_col()

df %>% tabyl(Sex) %>%
  ggplot(aes(x=Sex,y=n,fill=Sex)) +
  geom_col() +
  labs(x="Sexo",y="Frecuencia",title="Encuestados Grasa Corporal") +
  guides(fill=FALSE)

df %>% tabyl(Sex) %>%
  ggplot(aes(x=Sex,y=n,fill=Sex)) +
  geom_col() +
  labs(x="Sexo",y="Frecuencia",title="Encuestados Grasa Corporal") +
  geom_text(aes(label=n),vjust=1.5,col="white",fontface="bold")

Grafica de Barras con Frecuencias (Fromato “final”)

df %>% tabyl(Sex) %>%
  ggplot(aes(x=Sex,y=n,fill=Sex)) +
  geom_col() +
  labs(x="Sexo",y="Frecuencia",title="Encuestados Grasa Corporal") +
  geom_text(aes(label=sprintf("%.2f%%",100*percent)),vjust=1.5,col="white",fontface="bold")

Ejemplo de un Histograma

n=100
numeros=rnorm(n=n,mean=20,sd=1)
numeros
##   [1] 21.87062 18.40974 20.61069 19.10839 19.46377 19.52325 18.87887 20.86757
##   [9] 17.43876 19.37294 18.49215 20.35423 20.60978 18.70847 18.70990 22.10176
##  [17] 22.34833 18.50470 19.21824 20.96021 19.71521 19.90850 19.66948 19.02419
##  [25] 18.89305 20.50806 20.37574 21.88304 21.54125 19.52818 20.26335 19.55952
##  [33] 19.59887 20.24997 20.93415 21.08240 20.61188 20.73739 20.38025 17.68439
##  [41] 19.80904 19.56840 20.49275 18.74146 20.26727 18.86651 22.24585 22.28867
##  [49] 18.64660 20.12515 20.96974 20.81428 21.38699 19.86358 20.09173 20.40503
##  [57] 21.18788 19.72227 20.00003 19.92626 21.55132 19.23405 19.81874 19.57776
##  [65] 18.47724 20.03942 20.41645 21.79500 17.45714 19.33574 20.64222 21.13170
##  [73] 18.61268 19.97854 20.23234 18.43701 19.90132 19.82356 18.96481 20.22405
##  [81] 20.31828 20.16685 20.47617 19.30996 21.76690 21.17873 20.36178 17.99275
##  [89] 20.38878 21.00214 20.49501 20.83869 20.52324 19.78266 22.35055 19.23573
##  [97] 19.93648 20.16971 19.91702 18.49338
df1=data.frame(numeros)
df1 %>%
  ggplot(aes(x=numeros)) +
  geom_histogram(color="hotpink",fill="pink") +
  labs(x="Numeros",y="Frecuencia",title="Campana de Gauss Experimental")