##Imported Data

##MEAN

mean(EVALUATIONS$PROF.AGE)
## [1] 47.83871

##Objective1: Use a 0.05 significance level to test the claim that Prof. Age has a mean less than 50. and the 95% confidence interval for the Prof. Age?

##A=0.05

##H0:AVRG PROF AGE is not more than 50.
##HA:AVRG PROF AGE is more than 50.

t.test(EVALUATIONS$PROF.AGE,EVALUATIONS$PROF, var.equal = TRUE)
## 
##  Two Sample t-test
## 
## data:  EVALUATIONS$PROF.AGE and EVALUATIONS$PROF
## t = 0.25825, df = 184, p-value = 0.7965
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.211662  6.781555
## sample estimates:
## mean of x mean of y 
##  47.83871  47.05376

##Summary: We fail to reject the null hypothesis, since the p-value = 0.7965 and the mean PROF.AGE = 47.83 y/o. The 95% confidence interval = -5.211662 to 6.781555.

##Objective2: Repeat the test for A=0.01.

##A=0.01

##H0:AVRG PROF AGE is not more than 50.
##HA:AVRG PROF AGE is more than 50.

t.test(EVALUATIONS$PROF.AGE,EVALUATIONS$PROF, conf.level = 0.99 )
## 
##  Welch Two Sample t-test
## 
## data:  EVALUATIONS$PROF.AGE and EVALUATIONS$PROF
## t = 0.25825, df = 117.77, p-value = 0.7967
## alternative hypothesis: true difference in means is not equal to 0
## 99 percent confidence interval:
##  -7.172948  8.742840
## sample estimates:
## mean of x mean of y 
##  47.83871  47.05376

##Summary: We fail to reject the null hypothesis, since the p-value = 0.7967.