##Imported Data
##MEAN
mean(EVALUATIONS$PROF.AGE)
## [1] 47.83871
##Objective1: Use a 0.05 significance level to test the claim that Prof. Age has a mean less than 50. and the 95% confidence interval for the Prof. Age?
##A=0.05
##H0:AVRG PROF AGE is not more than 50.
##HA:AVRG PROF AGE is more than 50.
t.test(EVALUATIONS$PROF.AGE,EVALUATIONS$PROF, var.equal = TRUE)
##
## Two Sample t-test
##
## data: EVALUATIONS$PROF.AGE and EVALUATIONS$PROF
## t = 0.25825, df = 184, p-value = 0.7965
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.211662 6.781555
## sample estimates:
## mean of x mean of y
## 47.83871 47.05376
##Summary: We fail to reject the null hypothesis, since the p-value = 0.7965 and the mean PROF.AGE = 47.83 y/o. The 95% confidence interval = -5.211662 to 6.781555.
##Objective2: Repeat the test for A=0.01.
##A=0.01
##H0:AVRG PROF AGE is not more than 50.
##HA:AVRG PROF AGE is more than 50.
t.test(EVALUATIONS$PROF.AGE,EVALUATIONS$PROF, conf.level = 0.99 )
##
## Welch Two Sample t-test
##
## data: EVALUATIONS$PROF.AGE and EVALUATIONS$PROF
## t = 0.25825, df = 117.77, p-value = 0.7967
## alternative hypothesis: true difference in means is not equal to 0
## 99 percent confidence interval:
## -7.172948 8.742840
## sample estimates:
## mean of x mean of y
## 47.83871 47.05376
##Summary: We fail to reject the null hypothesis, since the p-value = 0.7967.