## [1] "version" "version_name" "start_date"
## [4] "end_date" "X5_star_characters" "rerun"
## [7] "mixed" "revenue" "banner_days"
## [10] "avg_revenue"
##
## 10,215,165 11,816,107 12,481,634 12,586,764 12,619,390 13,145,115 13,404,072
## 1 1 1 1 1 1 1
## 13,443,619 14,333,266 15,110,264 15,669,918 15,681,840 15,731,680 16,264,892
## 1 1 1 1 1 1 1
## 16,451,006 16,614,209 16,994,406 17,026,066 19,052,023 19,068,372 22,750,080
## 1 1 1 1 1 1 1
## 22,767,455 24,808,479 25,226,952 26,780,298 30,632,752 32,101,943 32,177,144
## 1 1 1 1 1 1 1
## 33,020,905 33,560,259 35,939,066 6,965,445 7,006,180 7,020,975 7,785,438
## 1 1 1 1 1 1 1
## 8,615,144 9,505,798 9,807,112
## 1 1 1
La funcion tabyl se encuentra en la paqueteria janitor.
## revenue n percent
## 10,215,165 1 0.02631579
## 11,816,107 1 0.02631579
## 12,481,634 1 0.02631579
## 12,586,764 1 0.02631579
## 12,619,390 1 0.02631579
## 13,145,115 1 0.02631579
## 13,404,072 1 0.02631579
## 13,443,619 1 0.02631579
## 14,333,266 1 0.02631579
## 15,110,264 1 0.02631579
## 15,669,918 1 0.02631579
## 15,681,840 1 0.02631579
## 15,731,680 1 0.02631579
## 16,264,892 1 0.02631579
## 16,451,006 1 0.02631579
## 16,614,209 1 0.02631579
## 16,994,406 1 0.02631579
## 17,026,066 1 0.02631579
## 19,052,023 1 0.02631579
## 19,068,372 1 0.02631579
## 22,750,080 1 0.02631579
## 22,767,455 1 0.02631579
## 24,808,479 1 0.02631579
## 25,226,952 1 0.02631579
## 26,780,298 1 0.02631579
## 30,632,752 1 0.02631579
## 32,101,943 1 0.02631579
## 32,177,144 1 0.02631579
## 33,020,905 1 0.02631579
## 33,560,259 1 0.02631579
## 35,939,066 1 0.02631579
## 6,965,445 1 0.02631579
## 7,006,180 1 0.02631579
## 7,020,975 1 0.02631579
## 7,785,438 1 0.02631579
## 8,615,144 1 0.02631579
## 9,505,798 1 0.02631579
## 9,807,112 1 0.02631579
Mejorando
revenue | n | percent |
|---|---|---|
10,215,165 | 1 | 2.6% |
11,816,107 | 1 | 2.6% |
12,481,634 | 1 | 2.6% |
12,586,764 | 1 | 2.6% |
12,619,390 | 1 | 2.6% |
13,145,115 | 1 | 2.6% |
13,404,072 | 1 | 2.6% |
13,443,619 | 1 | 2.6% |
14,333,266 | 1 | 2.6% |
15,110,264 | 1 | 2.6% |
15,669,918 | 1 | 2.6% |
15,681,840 | 1 | 2.6% |
15,731,680 | 1 | 2.6% |
16,264,892 | 1 | 2.6% |
16,451,006 | 1 | 2.6% |
16,614,209 | 1 | 2.6% |
16,994,406 | 1 | 2.6% |
17,026,066 | 1 | 2.6% |
19,052,023 | 1 | 2.6% |
19,068,372 | 1 | 2.6% |
22,750,080 | 1 | 2.6% |
22,767,455 | 1 | 2.6% |
24,808,479 | 1 | 2.6% |
25,226,952 | 1 | 2.6% |
26,780,298 | 1 | 2.6% |
30,632,752 | 1 | 2.6% |
32,101,943 | 1 | 2.6% |
32,177,144 | 1 | 2.6% |
33,020,905 | 1 | 2.6% |
33,560,259 | 1 | 2.6% |
35,939,066 | 1 | 2.6% |
6,965,445 | 1 | 2.6% |
7,006,180 | 1 | 2.6% |
7,020,975 | 1 | 2.6% |
7,785,438 | 1 | 2.6% |
8,615,144 | 1 | 2.6% |
9,505,798 | 1 | 2.6% |
9,807,112 | 1 | 2.6% |
revenue | n | percent |
|---|---|---|
10,215,165 | 1 | 2.6% |
11,816,107 | 1 | 2.6% |
12,481,634 | 1 | 2.6% |
12,586,764 | 1 | 2.6% |
12,619,390 | 1 | 2.6% |
13,145,115 | 1 | 2.6% |
13,404,072 | 1 | 2.6% |
13,443,619 | 1 | 2.6% |
14,333,266 | 1 | 2.6% |
15,110,264 | 1 | 2.6% |
15,669,918 | 1 | 2.6% |
15,681,840 | 1 | 2.6% |
15,731,680 | 1 | 2.6% |
16,264,892 | 1 | 2.6% |
16,451,006 | 1 | 2.6% |
16,614,209 | 1 | 2.6% |
16,994,406 | 1 | 2.6% |
17,026,066 | 1 | 2.6% |
19,052,023 | 1 | 2.6% |
19,068,372 | 1 | 2.6% |
22,750,080 | 1 | 2.6% |
22,767,455 | 1 | 2.6% |
24,808,479 | 1 | 2.6% |
25,226,952 | 1 | 2.6% |
26,780,298 | 1 | 2.6% |
30,632,752 | 1 | 2.6% |
32,101,943 | 1 | 2.6% |
32,177,144 | 1 | 2.6% |
33,020,905 | 1 | 2.6% |
33,560,259 | 1 | 2.6% |
35,939,066 | 1 | 2.6% |
6,965,445 | 1 | 2.6% |
7,006,180 | 1 | 2.6% |
7,020,975 | 1 | 2.6% |
7,785,438 | 1 | 2.6% |
8,615,144 | 1 | 2.6% |
9,505,798 | 1 | 2.6% |
9,807,112 | 1 | 2.6% |
banner_days | n | percent |
|---|---|---|
13 | 1 | 2.6% |
14 | 1 | 2.6% |
15 | 2 | 5.3% |
18 | 2 | 5.3% |
19 | 2 | 5.3% |
20 | 2 | 5.3% |
21 | 16 | 42.1% |
22 | 10 | 26.3% |
25 | 1 | 2.6% |
43 | 1 | 2.6% |
Total | 38 | 100.0% |
df %>% tabyl(rerun) %>%
ggplot(aes(x=rerun,y=n,fill=rerun)) +
geom_col()
df %>% tabyl(rerun) %>%
ggplot(aes(x=rerun,y=n,fill=rerun)) +
geom_col() +
labs(x="Rerun", y="Frecuencia",title="Cantidad de personajes con rerun")
df %>% tabyl(rerun) %>%
ggplot(aes(x=rerun,y=n,fill=rerun)) +
geom_col() +
labs(x="Rerun", y="Frecuencia",title="Cantidad de personajes con rerun") +
geom_text(aes(label=n),vjust=1.5,col="white",fontface="bold")
df %>% tabyl(rerun) %>%
ggplot(aes(x=rerun,y=n,fill=rerun)) +
geom_col() +
labs(x="Rerun", y="Frecuencia",title="Cantidad de personajes con rerun") +
geom_text(aes(label= sprintf("%.2f%%",100*percent) ),vjust=1.5,col="white",fontface="bold")
n=100000
numeros= rnorm(n=n,mean=20,sd=1)
df1=data.frame(numeros)
df1 %>%
ggplot(aes(x=numeros)) + geom_histogram(color=600,fill="lightblue") +
labs(x="Numeros",y="Frecuencia",title = "Campana de gauss experimental")