Remarks

An example

f2rbd <- read.csv("two_factorial_rcbd.csv")

mod1 <- aov(TS ~ Day + A + B + A:B,
          data = f2rbd)

knitr::kable(anova(mod1))
Df Sum Sq Mean Sq F value Pr(>F)
Day 2 18.576444 9.2882222 11.848182 0.0001870
A 4 6.325778 1.5814444 2.017312 0.1192491
B 2 10.145778 5.0728889 6.471046 0.0048959
A:B 8 33.100889 4.1376111 5.277993 0.0004341
Residuals 28 21.950222 0.7839365 NA NA

Interaction Plot

emmeans::emmip(mod1, A ~ B, 
               xlab = "Polymers",
               ylab = "Mean Tensile Strength",
               tlab = "Additives")

Table of means

f2rbd %>% 
  group_by(B, A) %>% 
  summarize(meanTS = round(mean(TS),2)) %>% 
  knitr::kable()
B A meanTS
Mylar c1 8.60
Mylar c2 8.57
Mylar c3 8.87
Mylar c4 10.80
Mylar c5 9.97
Nylon c1 7.60
Nylon c2 7.73
Nylon c3 9.73
Nylon c4 7.87
Nylon c5 8.73
Peth c1 8.60
Peth c2 11.47
Peth c3 9.20
Peth c4 8.77
Peth c5 8.57

Post hoc analysis of significant interaction

We can use the emmeans() function in the emmeans package to perform post hoc analysis when interaction effect is signficant. A sample code chunck is given below.

emmeans(mod1, list(pairwise ~ A | B), 
        adjust = "tukey", 
        lmer.df = "satterthwaite")
## $`emmeans of A | B`
## B = Mylar:
##  A  emmean    SE df lower.CL upper.CL
##  c1   8.60 0.511 28     7.55     9.65
##  c2   8.57 0.511 28     7.52     9.61
##  c3   8.87 0.511 28     7.82     9.91
##  c4  10.80 0.511 28     9.75    11.85
##  c5   9.97 0.511 28     8.92    11.01
## 
## B = Nylon:
##  A  emmean    SE df lower.CL upper.CL
##  c1   7.60 0.511 28     6.55     8.65
##  c2   7.73 0.511 28     6.69     8.78
##  c3   9.73 0.511 28     8.69    10.78
##  c4   7.87 0.511 28     6.82     8.91
##  c5   8.73 0.511 28     7.69     9.78
## 
## B = Peth:
##  A  emmean    SE df lower.CL upper.CL
##  c1   8.60 0.511 28     7.55     9.65
##  c2  11.47 0.511 28    10.42    12.51
##  c3   9.20 0.511 28     8.15    10.25
##  c4   8.77 0.511 28     7.72     9.81
##  c5   8.57 0.511 28     7.52     9.61
## 
## Results are averaged over the levels of: Day 
## Confidence level used: 0.95 
## 
## $`pairwise differences of A | B`
## B = Mylar:
##  2       estimate    SE df t.ratio p.value
##  c1 - c2   0.0333 0.723 28   0.046  1.0000
##  c1 - c3  -0.2667 0.723 28  -0.369  0.9958
##  c1 - c4  -2.2000 0.723 28  -3.043  0.0373
##  c1 - c5  -1.3667 0.723 28  -1.890  0.3455
##  c2 - c3  -0.3000 0.723 28  -0.415  0.9934
##  c2 - c4  -2.2333 0.723 28  -3.089  0.0336
##  c2 - c5  -1.4000 0.723 28  -1.937  0.3223
##  c3 - c4  -1.9333 0.723 28  -2.674  0.0837
##  c3 - c5  -1.1000 0.723 28  -1.522  0.5577
##  c4 - c5   0.8333 0.723 28   1.153  0.7773
## 
## B = Nylon:
##  2       estimate    SE df t.ratio p.value
##  c1 - c2  -0.1333 0.723 28  -0.184  0.9997
##  c1 - c3  -2.1333 0.723 28  -2.951  0.0460
##  c1 - c4  -0.2667 0.723 28  -0.369  0.9958
##  c1 - c5  -1.1333 0.723 28  -1.568  0.5293
##  c2 - c3  -2.0000 0.723 28  -2.767  0.0689
##  c2 - c4  -0.1333 0.723 28  -0.184  0.9997
##  c2 - c5  -1.0000 0.723 28  -1.383  0.6430
##  c3 - c4   1.8667 0.723 28   2.582  0.1013
##  c3 - c5   1.0000 0.723 28   1.383  0.6430
##  c4 - c5  -0.8667 0.723 28  -1.199  0.7520
## 
## B = Peth:
##  2       estimate    SE df t.ratio p.value
##  c1 - c2  -2.8667 0.723 28  -3.965  0.0039
##  c1 - c3  -0.6000 0.723 28  -0.830  0.9190
##  c1 - c4  -0.1667 0.723 28  -0.231  0.9993
##  c1 - c5   0.0333 0.723 28   0.046  1.0000
##  c2 - c3   2.2667 0.723 28   3.135  0.0302
##  c2 - c4   2.7000 0.723 28   3.735  0.0070
##  c2 - c5   2.9000 0.723 28   4.011  0.0035
##  c3 - c4   0.4333 0.723 28   0.599  0.9740
##  c3 - c5   0.6333 0.723 28   0.876  0.9033
##  c4 - c5   0.2000 0.723 28   0.277  0.9986
## 
## Results are averaged over the levels of: Day 
## P value adjustment: tukey method for comparing a family of 5 estimates

We can manually assign the letter designations, based on the above results.

But we can use the cld() function in the multcomp package to make letter assignments automatic. This is illustrated in the code chunk below.

emm <- emmeans(mod1, list(pairwise ~ A | B), 
        adjust = "tukey", 
        lmer.df = "satterthwaite")
cld(emm,
    alpha=0.05,
    Letters=letters,
    adjust="tukey",
    reversed = T)
## B = Mylar:
##  A  emmean    SE df lower.CL upper.CL .group
##  c4  10.80 0.511 28     9.39    12.21  a    
##  c5   9.97 0.511 28     8.56    11.37  ab   
##  c3   8.87 0.511 28     7.46    10.27  ab   
##  c1   8.60 0.511 28     7.19    10.01   b   
##  c2   8.57 0.511 28     7.16     9.97   b   
## 
## B = Nylon:
##  A  emmean    SE df lower.CL upper.CL .group
##  c3   9.73 0.511 28     8.33    11.14  a    
##  c5   8.73 0.511 28     7.33    10.14  ab   
##  c4   7.87 0.511 28     6.46     9.27  ab   
##  c2   7.73 0.511 28     6.33     9.14  ab   
##  c1   7.60 0.511 28     6.19     9.01   b   
## 
## B = Peth:
##  A  emmean    SE df lower.CL upper.CL .group
##  c2  11.47 0.511 28    10.06    12.87  a    
##  c3   9.20 0.511 28     7.79    10.61   b   
##  c4   8.77 0.511 28     7.36    10.17   b   
##  c1   8.60 0.511 28     7.19    10.01   b   
##  c5   8.57 0.511 28     7.16     9.97   b   
## 
## Results are averaged over the levels of: Day 
## Confidence level used: 0.95 
## Conf-level adjustment: sidak method for 5 estimates 
## P value adjustment: tukey method for comparing a family of 5 estimates 
## significance level used: alpha = 0.05 
## NOTE: If two or more means share the same grouping symbol,
##       then we cannot show them to be different.
##       But we also did not show them to be the same.

Using functions in ExpDes package

Alternatively, a very flexible and quite comprehensive package for analysis of experiments is the ExpDes package. For example, the code chunck below does just what we did earlier using emmeans() and cld().

with(f2rbd, fat2.rbd(factor1 = A,
                 factor2 = B,
                 block = Day,
                 resp = TS,
                 quali = c(TRUE, TRUE),
                 mcomp = "tukey",
                 fac.names = c("Additives","Polymers")))
## ------------------------------------------------------------------------
## Legend:
## FACTOR 1:  Additives 
## FACTOR 2:  Polymers 
## ------------------------------------------------------------------------
## 
## 
## Analysis of Variance Table
## ------------------------------------------------------------------------
##                    DF     SS MS      Fc    Pr>Fc
## Block               2 18.576  6 11.8482 0.000187
## Additives           4  6.326  3  2.0173 0.119249
## Polymers            2 10.146  5  6.4710 0.004896
## Additives*Polymers  8 33.101  4  5.2780 0.000434
## Residuals          28 21.950  2                 
## Total              44 90.099  1                 
## ------------------------------------------------------------------------
## CV = 9.83 %
## 
## ------------------------------------------------------------------------
## Shapiro-Wilk normality test
## p-value:  0.09840045 
## According to Shapiro-Wilk normality test at 5% of significance, residuals can be considered normal.
## ------------------------------------------------------------------------
## 
## 
## 
## Significant interaction: analyzing the interaction
## ------------------------------------------------------------------------
## 
## Analyzing  Additives  inside of each level of  Polymers 
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
##                          DF       SS      MS      Fc  Pr.Fc
## Block                     2 18.57644 9.28822 11.8482  2e-04
## Polymers                  2 10.14578 5.07289   6.471 0.0049
## Additives:Polymers Mylar  4 11.67600   2.919  3.7235 0.0149
## Additives:Polymers Nylon  4  9.70667 2.42667  3.0955 0.0314
## Additives:Polymers Peth   4 18.04400   4.511  5.7543 0.0016
## Residuals                28 21.95022 0.78394               
## Total                    44 90.09911                       
## ------------------------------------------------------------------------
## 
## 
## 
##  Additives  inside of the level  Mylar  of  Polymers 
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a     c4      10.8 
## ab    c5      9.966667 
## ab    c3      8.866667 
##  b    c1      8.6 
##  b    c2      8.566667 
## ------------------------------------------------------------------------
## 
## 
##  Additives  inside of the level  Nylon  of  Polymers 
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a     c3      9.733333 
## ab    c5      8.733333 
## ab    c4      7.866667 
## ab    c2      7.733333 
##  b    c1      7.6 
## ------------------------------------------------------------------------
## 
## 
##  Additives  inside of the level  Peth  of  Polymers 
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a     c2      11.46667 
##  b    c3      9.2 
##  b    c4      8.766667 
##  b    c1      8.6 
##  b    c5      8.566667 
## ------------------------------------------------------------------------
## 
## 
## 
## Analyzing  Polymers  inside of each level of  Additives 
## ------------------------------------------------------------------------
## ------------------------------------------------------------------------
## Analysis of Variance Table
## ------------------------------------------------------------------------
##                       DF       SS       MS      Fc  Pr.Fc
## Block                  2 18.57644  9.28822 11.8482  2e-04
## Additives              4  6.32578  1.58144  2.0173 0.1192
## Polymers:Additives c1  2  2.00000        1  1.2756  0.295
## Polymers:Additives c2  2 23.04222 11.52111 14.6965      0
## Polymers:Additives c3  2  1.14667  0.57333  0.7314 0.4902
## Polymers:Additives c4  2 13.54889  6.77444  8.6416 0.0012
## Polymers:Additives c5  2  3.50889  1.75444   2.238 0.1254
## Residuals             28 21.95022  0.78394               
## Total                 44 90.09911                        
## ------------------------------------------------------------------------
## 
## 
## 
##  Polymers  inside of the level  c1  of  Additives 
## 
## According to the F test, the means of this factor are statistical equal.
## ------------------------------------------------------------------------
##     Levels     Means
## 1    Mylar       8.6
## 2    Nylon       7.6
## 3     Peth       8.6
## ------------------------------------------------------------------------
## 
## 
##  Polymers  inside of the level  c2  of  Additives 
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a     Peth    11.46667 
##  b    Mylar   8.566667 
##  b    Nylon   7.733333 
## ------------------------------------------------------------------------
## 
## 
##  Polymers  inside of the level  c3  of  Additives 
## 
## According to the F test, the means of this factor are statistical equal.
## ------------------------------------------------------------------------
##     Levels     Means
## 1    Mylar  8.866667
## 2    Nylon  9.733333
## 3     Peth  9.200000
## ------------------------------------------------------------------------
## 
## 
##  Polymers  inside of the level  c4  of  Additives 
## ------------------------------------------------------------------------
## Tukey's test
## ------------------------------------------------------------------------
## Groups Treatments Means
## a     Mylar   10.8 
##  b    Peth    8.766667 
##  b    Nylon   7.866667 
## ------------------------------------------------------------------------
## 
## 
##  Polymers  inside of the level  c5  of  Additives 
## 
## According to the F test, the means of this factor are statistical equal.
## ------------------------------------------------------------------------
##     Levels     Means
## 1    Mylar  9.966667
## 2    Nylon  8.733333
## 3     Peth  8.566667
## ------------------------------------------------------------------------