library(foreign)
library(dplyr)
##
## 다음의 패키지를 부착합니다: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(readxl)
raw_welfare <- read.spss(file = "C:/Users/chosun/Downloads/Koweps_hpc10_2015_beta1.sav",
to.data.frame = T)
## Warning in read.spss(file =
## "C:/Users/chosun/Downloads/Koweps_hpc10_2015_beta1.sav", :
## C:/Users/chosun/Downloads/Koweps_hpc10_2015_beta1.sav: Compression bias (0) is
## not the usual value of 100
welfare <- raw_welfare
welfare<- rename(welfare,
sex = h10_g3,
birth = h10_g4,
marriage = h10_g10,
religion = h10_g11,
income = p1002_8aq1,
code_job = h10_eco9,
code_region = h10_reg7)
welfare$sex <- ifelse(welfare$sex == 9, NA, welfare$sex)
welfare$sex <- ifelse(welfare$sex == 1, "male", "female")
welfare$income <- ifelse(welfare$income %in% c(0, 9999), NA, welfare$income)
sex_income <- welfare %>%
filter(!is.na(income)) %>%
group_by(sex) %>%
summarise(mean_income = mean(income))
welfare$birth<- ifelse(welfare$birth==9999, NA, welfare$birth)
welfare$age<-2015-welfare$birth+1
age_income<- welfare%>%
filter(!is.na(income))%>%
group_by(age)%>%
summarise(mean_income= mean(income))
welfare<- welfare%>%
mutate(ageg=ifelse(age<30, "young",
ifelse(age<=59, "middle","old")))
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.