library(janitor)
library(tidyverse)
library(flextable)
library(moments)
setwd("E:/Proyecto")
df=read.csv("diabetes.csv")
df$Outcome[df$Outcome==0]="Negativo"
df$Outcome[df$Outcome==1]="Positivo"
table(df$Outcome)
##
## Negativo Positivo
## 500 268
dim(df)
## [1] 768 9
df %>% tabyl(Outcome)
## Outcome n percent
## Negativo 500 0.6510417
## Positivo 268 0.3489583
Version mejorada
df %>% tabyl(Outcome) %>%
flextable() %>%
fontsize(size=14) %>%
autofit
Outcome | n | percent |
|---|---|---|
Negativo | 500 | 0.6510417 |
Positivo | 268 | 0.3489583 |
df %>% tabyl(Outcome) %>%
adorn_pct_formatting() %>%
flextable() %>%
fontsize(size = 14) %>%
autofit() %>%
theme_box()
Outcome | n | percent |
|---|---|---|
Negativo | 500 | 65.1% |
Positivo | 268 | 34.9% |
df %>% tabyl(Outcome) %>%
adorn_totals("row") %>%
adorn_pct_formatting() %>%
flextable() %>%
fontsize(size = 14) %>%
autofit() %>%
theme_box()
Outcome | n | percent |
|---|---|---|
Negativo | 500 | 65.1% |
Positivo | 268 | 34.9% |
Total | 768 | 100.0% |
df %>% tabyl(Outcome) %>%
ggplot(aes(x=Outcome,y=n, fill=Outcome)) +
geom_col()
df %>% tabyl(Outcome) %>%
ggplot(aes(x=Outcome,y=n, fill=Outcome)) +
geom_col() +
labs(x="resultados",y="frecuencia", title = "Resultados positivos") +
guides(fill=FALSE)
df %>% tabyl(Outcome) %>%
ggplot(aes(x=Outcome,y=n, fill=Outcome)) +
geom_col() +
labs(x="resultados",y="frecuencia", title = "Resultados positivos") +
geom_text(aes(label=n),vjust=1.5, col="pink",fontface="bold")
n=100
numeros=rnorm(n=n,mean=0,sd=1)
df1=data.frame(numeros)
df1 %>%
ggplot(aes(x=numeros)) +
geom_histogram(color="pink",fill="pink3") +
labs(x="Numeros",y="Frecuencia",title="Campana de gauss experimental")
```