The attached who.csv dataset contains real-world data from 2008. The
variables included follow:
- Country: name of the country
- LifeExp: average life expectancy for the country in
years
- InfantSurvival: proportion of those surviving to one year
or more
- Under5Survival: proportion of those surviving to five
years or more
- TBFree: proportion of the population without TB
- PropMD: proportion of the population who are MDs
- PropRN: proportion of the population who are RNs
- PersExp: mean personal expenditures on healthcare in US
dollars at average exchange rate
- GovtExp: mean government expenditures per capita on
healthcare, US dollars at average exchange rate
- TotExp: sum of personal and government expenditures
Load required libraries
library(tidyverse)
library(kableExtra)
Read the Data into memory
url_who <- "https://raw.githubusercontent.com/chinedu2301/data605-computer-maths/main/homeworks/hw12/who.csv"
who_raw <- read_csv(url_who)
Display the data
who_raw_display = kable(who_raw) %>%
kable_paper("hover", full_width = F) %>%
scroll_box(width = "850px", height = "350px")
who_raw_display
| Country | LifeExp | InfantSurvival | Under5Survival | TBFree | PropMD | PropRN | PersExp | GovtExp | TotExp |
|---|---|---|---|---|---|---|---|---|---|
| Afghanistan | 42 | 0.835 | 0.743 | 0.99769 | 0.0002288 | 0.0005723 | 20 | 92 | 112 |
| Albania | 71 | 0.985 | 0.983 | 0.99974 | 0.0011431 | 0.0046144 | 169 | 3128 | 3297 |
| Algeria | 71 | 0.967 | 0.962 | 0.99944 | 0.0010605 | 0.0020914 | 108 | 5184 | 5292 |
| Andorra | 82 | 0.997 | 0.996 | 0.99983 | 0.0032973 | 0.0035000 | 2589 | 169725 | 172314 |
| Angola | 41 | 0.846 | 0.740 | 0.99656 | 0.0000704 | 0.0011462 | 36 | 1620 | 1656 |
| Antigua and Barbuda | 73 | 0.990 | 0.989 | 0.99991 | 0.0001429 | 0.0027738 | 503 | 12543 | 13046 |
| Argentina | 75 | 0.986 | 0.983 | 0.99952 | 0.0027802 | 0.0007410 | 484 | 19170 | 19654 |
| Armenia | 69 | 0.979 | 0.976 | 0.99920 | 0.0036987 | 0.0049189 | 88 | 1856 | 1944 |
| Australia | 82 | 0.995 | 0.994 | 0.99993 | 0.0023320 | 0.0091494 | 3181 | 187616 | 190797 |
| Austria | 80 | 0.996 | 0.996 | 0.99990 | 0.0036109 | 0.0064587 | 3788 | 189354 | 193142 |
| Azerbaijan | 64 | 0.927 | 0.911 | 0.99913 | 0.0036600 | 0.0084779 | 62 | 780 | 842 |
| Bahamas | 74 | 0.987 | 0.986 | 0.99960 | 0.0009541 | 0.0040459 | 1224 | 55783 | 57007 |
| Bahrain | 75 | 0.991 | 0.990 | 0.99955 | 0.0026793 | 0.0059675 | 710 | 45784 | 46494 |
| Bangladesh | 63 | 0.948 | 0.931 | 0.99609 | 0.0002749 | 0.0002530 | 12 | 75 | 87 |
| Barbados | 75 | 0.989 | 0.988 | 0.99989 | 0.0010990 | 0.0033720 | 725 | 24433 | 25158 |
| Belarus | 69 | 0.994 | 0.992 | 0.99929 | 0.0047587 | 0.0124571 | 204 | 11315 | 11519 |
| Belgium | 79 | 0.996 | 0.995 | 0.99989 | 0.0042305 | 0.0140792 | 3451 | 239105 | 242556 |
| Belize | 69 | 0.986 | 0.984 | 0.99944 | 0.0008901 | 0.0010745 | 198 | 5376 | 5574 |
| Benin | 55 | 0.912 | 0.852 | 0.99865 | 0.0000355 | 0.0006608 | 28 | 600 | 628 |
| Bhutan | 64 | 0.937 | 0.930 | 0.99904 | 0.0000801 | 0.0011248 | 52 | 407 | 459 |
| Bolivia | 66 | 0.950 | 0.939 | 0.99734 | 0.0011042 | 0.0019340 | 71 | 2860 | 2931 |
| Bosnia and Herzegovina | 75 | 0.987 | 0.985 | 0.99943 | 0.0014111 | 0.0046694 | 243 | 6578 | 6821 |
| Botswana | 52 | 0.910 | 0.876 | 0.99546 | 0.0003848 | 0.0025581 | 431 | 19604 | 20035 |
| Brazil | 72 | 0.981 | 0.980 | 0.99945 | 0.0010466 | 0.0034814 | 371 | 13940 | 14311 |
| Brunei Darussalam | 77 | 0.992 | 0.991 | 0.99901 | 0.0010471 | 0.0055497 | 519 | 30562 | 31081 |
| Bulgaria | 73 | 0.990 | 0.988 | 0.99959 | 0.0002535 | 0.0045532 | 272 | 11550 | 11822 |
| Burkina Faso | 47 | 0.878 | 0.796 | 0.99524 | 0.0000493 | 0.0004566 | 27 | 304 | 331 |
| Burundi | 49 | 0.891 | 0.819 | 0.99286 | 0.0000245 | 0.0001649 | 3 | 10 | 13 |
| Cambodia | 62 | 0.935 | 0.918 | 0.99335 | 0.0001442 | 0.0007836 | 29 | 140 | 169 |
| Cameroon | 51 | 0.913 | 0.851 | 0.99763 | 0.0001719 | 0.0014328 | 49 | 784 | 833 |
| Canada | 81 | 0.995 | 0.994 | 0.99996 | 0.0019126 | 0.0100446 | 3430 | 192800 | 196230 |
| Cape Verde | 70 | 0.975 | 0.966 | 0.99676 | 0.0004451 | 0.0007900 | 114 | 5394 | 5508 |
| Central African Republic | 48 | 0.886 | 0.826 | 0.99472 | 0.0000776 | 0.0003782 | 13 | 190 | 203 |
| Chad | 46 | 0.876 | 0.791 | 0.99430 | 0.0000330 | 0.0002387 | 22 | 234 | 256 |
| Chile | 78 | 0.992 | 0.991 | 0.99984 | 0.0010477 | 0.0006073 | 397 | 17952 | 18349 |
| China | 73 | 0.980 | 0.976 | 0.99799 | 0.0014021 | 0.0009795 | 81 | 1302 | 1383 |
| Colombia | 74 | 0.983 | 0.979 | 0.99941 | 0.0012898 | 0.0005255 | 201 | 12410 | 12611 |
| Comoros | 65 | 0.949 | 0.932 | 0.99914 | 0.0001406 | 0.0007188 | 14 | 304 | 318 |
| Congo | 54 | 0.921 | 0.874 | 0.99434 | 0.0002049 | 0.0009954 | 31 | 915 | 946 |
| Cook Islands | 73 | 0.984 | 0.981 | 0.99976 | 0.0014286 | 0.0057143 | 466 | 27264 | 27730 |
| Costa Rica | 78 | 0.989 | 0.988 | 0.99983 | 0.0011830 | 0.0008304 | 327 | 15376 | 15703 |
| C<f4>te d’Ivoire | 53 | 0.910 | 0.873 | 0.99253 | 0.0001100 | 0.0005382 | 34 | 315 | 349 |
| Croatia | 76 | 0.995 | 0.994 | 0.99936 | 0.0024693 | 0.0054592 | 651 | 30210 | 30861 |
| Cuba | 78 | 0.995 | 0.993 | 0.99990 | 0.0059081 | 0.0074448 | 310 | 21075 | 21385 |
| Cyprus | 80 | 0.997 | 0.996 | 0.99994 | 0.0332281 | 0.0039728 | 1350 | 39399 | 40749 |
| Czech Republic | 77 | 0.997 | 0.996 | 0.99990 | 0.0035916 | 0.0089430 | 868 | 56137 | 57005 |
| Democratic Republic of the Congo | 47 | 0.871 | 0.795 | 0.99355 | 0.0000961 | 0.0004747 | 5 | 66 | 71 |
| Denmark | 79 | 0.997 | 0.996 | 0.99993 | 0.0035519 | 0.0099582 | 4350 | 314588 | 318938 |
| Djibouti | 56 | 0.914 | 0.870 | 0.98700 | 0.0001709 | 0.0003614 | 61 | 4002 | 4063 |
| Dominica | 74 | 0.987 | 0.985 | 0.99984 | 0.0005588 | 0.0046618 | 288 | 13206 | 13494 |
| Dominican Republic | 70 | 0.975 | 0.971 | 0.99882 | 0.0016297 | 0.0015967 | 197 | 4148 | 4345 |
| Ecuador | 73 | 0.979 | 0.976 | 0.99805 | 0.0013888 | 0.0015593 | 147 | 3717 | 3864 |
| Egypt | 68 | 0.971 | 0.965 | 0.99969 | 0.0024256 | 0.0033679 | 78 | 1290 | 1368 |
| El Salvador | 71 | 0.978 | 0.975 | 0.99936 | 0.0011739 | 0.0007547 | 177 | 5700 | 5877 |
| Equatorial Guinea | 46 | 0.876 | 0.794 | 0.99596 | 0.0003085 | 0.0005464 | 211 | 6474 | 6685 |
| Eritrea | 63 | 0.952 | 0.926 | 0.99782 | 0.0000458 | 0.0005339 | 8 | 80 | 88 |
| Estonia | 73 | 0.995 | 0.994 | 0.99960 | 0.0032940 | 0.0069007 | 516 | 27393 | 27909 |
| Ethiopia | 56 | 0.923 | 0.877 | 0.99359 | 0.0000239 | 0.0001919 | 6 | 64 | 70 |
| Fiji | 69 | 0.984 | 0.982 | 0.99970 | 0.0004562 | 0.0019928 | 148 | 5355 | 5503 |
| Finland | 79 | 0.997 | 0.997 | 0.99996 | 0.0032992 | 0.0089204 | 2824 | 133956 | 136780 |
| France | 81 | 0.996 | 0.995 | 0.99989 | 0.0033797 | 0.0079244 | 3819 | 234850 | 238669 |
| Gabon | 58 | 0.940 | 0.909 | 0.99572 | 0.0003013 | 0.0051701 | 276 | 17220 | 17496 |
| Gambia | 59 | 0.916 | 0.886 | 0.99577 | 0.0000938 | 0.0011311 | 15 | 550 | 565 |
| Georgia | 70 | 0.972 | 0.968 | 0.99916 | 0.0046463 | 0.0040314 | 123 | 1248 | 1371 |
| Germany | 80 | 0.996 | 0.995 | 0.99995 | 0.0034417 | 0.0080106 | 3628 | 209250 | 212878 |
| Ghana | 57 | 0.924 | 0.880 | 0.99621 | 0.0001408 | 0.0008565 | 30 | 490 | 520 |
| Greece | 80 | 0.996 | 0.996 | 0.99984 | 0.0049947 | 0.0035962 | 2580 | 65195 | 67775 |
| Grenada | 68 | 0.983 | 0.980 | 0.99992 | 0.0007547 | 0.0030755 | 342 | 6944 | 7286 |
| Guatemala | 68 | 0.969 | 0.959 | 0.99897 | 0.0007648 | 0.0034528 | 132 | 2400 | 2532 |
| Guinea | 53 | 0.902 | 0.839 | 0.99534 | 0.0001075 | 0.0004801 | 21 | 66 | 87 |
| Guinea-Bissau | 48 | 0.881 | 0.800 | 0.99687 | 0.0001142 | 0.0006513 | 10 | 90 | 100 |
| Guyana | 64 | 0.954 | 0.938 | 0.99785 | 0.0004953 | 0.0023518 | 60 | 1400 | 1460 |
| Haiti | 61 | 0.940 | 0.920 | 0.99598 | 0.0002063 | 0.0000883 | 28 | 546 | 574 |
| Honduras | 70 | 0.977 | 0.973 | 0.99905 | 0.0005275 | 0.0012237 | 91 | 2162 | 2253 |
| Hungary | 73 | 0.994 | 0.993 | 0.99979 | 0.0030399 | 0.0091639 | 855 | 40602 | 41457 |
| Iceland | 81 | 0.998 | 0.997 | 0.99997 | 0.0037584 | 0.0099329 | 5154 | 395622 | 400776 |
| India | 63 | 0.943 | 0.924 | 0.99701 | 0.0005607 | 0.0011913 | 36 | 203 | 239 |
| Indonesia | 68 | 0.974 | 0.966 | 0.99747 | 0.0001289 | 0.0007863 | 26 | 588 | 614 |
| Iran (Islamic Republic of) | 71 | 0.970 | 0.965 | 0.99972 | 0.0008805 | 0.0015811 | 212 | 7973 | 8185 |
| Iraq | 56 | 0.963 | 0.953 | 0.99922 | 0.0006669 | 0.0013331 | 59 | 2948 | 3007 |
| Ireland | 80 | 0.996 | 0.996 | 0.99989 | 0.0029363 | 0.0194032 | 3993 | 193553 | 197546 |
| Israel | 81 | 0.996 | 0.995 | 0.99994 | 0.0036913 | 0.0062568 | 1533 | 93748 | 95281 |
| Italy | 81 | 0.997 | 0.996 | 0.99994 | 0.0036578 | 0.0071373 | 2692 | 140148 | 142840 |
| Jamaica | 72 | 0.974 | 0.968 | 0.99992 | 0.0008348 | 0.0016206 | 170 | 4399 | 4569 |
| Japan | 83 | 0.997 | 0.996 | 0.99971 | 0.0021130 | 0.0094615 | 2936 | 159192 | 162128 |
| Jordan | 71 | 0.979 | 0.975 | 0.99994 | 0.0023494 | 0.0032185 | 241 | 9047 | 9288 |
| Kazakhstan | 64 | 0.974 | 0.971 | 0.99858 | 0.0037556 | 0.0073853 | 148 | 5510 | 5658 |
| Kenya | 53 | 0.921 | 0.879 | 0.99666 | 0.0001233 | 0.0010153 | 24 | 231 | 255 |
| Kiribati | 65 | 0.953 | 0.936 | 0.99598 | 0.0002128 | 0.0027660 | 118 | 4578 | 4696 |
| Kuwait | 78 | 0.991 | 0.989 | 0.99975 | 0.0017416 | 0.0035768 | 687 | 51940 | 52627 |
| Kyrgyzstan | 66 | 0.964 | 0.959 | 0.99863 | 0.0024168 | 0.0058612 | 28 | 396 | 424 |
| Lao People’s Democratic Republic | 60 | 0.941 | 0.925 | 0.99708 | 0.0003473 | 0.0009724 | 18 | 84 | 102 |
| Latvia | 71 | 0.992 | 0.991 | 0.99940 | 0.0031455 | 0.0056094 | 443 | 18224 | 18667 |
| Lebanon | 70 | 0.973 | 0.969 | 0.99988 | 0.0020814 | 0.0011640 | 460 | 17400 | 17860 |
| Lesotho | 42 | 0.898 | 0.868 | 0.99487 | 0.0000446 | 0.0005629 | 41 | 437 | 478 |
| Liberia | 44 | 0.843 | 0.765 | 0.99422 | 0.0000288 | 0.0002892 | 10 | 413 | 423 |
| Libyan Arab Jamahiriya | 72 | 0.983 | 0.982 | 0.99982 | 0.0011707 | 0.0044974 | 223 | 13175 | 13398 |
| Lithuania | 71 | 0.993 | 0.991 | 0.99939 | 0.0039642 | 0.0076702 | 448 | 19932 | 20380 |
| Luxembourg | 80 | 0.997 | 0.996 | 0.99990 | 0.0027223 | 0.0095835 | 6330 | 476420 | 482750 |
| Madagascar | 59 | 0.928 | 0.885 | 0.99585 | 0.0002715 | 0.0002955 | 9 | 162 | 171 |
| Malawi | 50 | 0.924 | 0.880 | 0.99678 | 0.0000196 | 0.0005353 | 19 | 252 | 271 |
| Malaysia | 72 | 0.990 | 0.988 | 0.99875 | 0.0006518 | 0.0016612 | 222 | 6732 | 6954 |
| Maldives | 72 | 0.974 | 0.970 | 0.99946 | 0.0010067 | 0.0029533 | 316 | 8100 | 8416 |
| Mali | 46 | 0.881 | 0.783 | 0.99422 | 0.0000880 | 0.0006967 | 28 | 434 | 462 |
| Malta | 79 | 0.995 | 0.994 | 0.99995 | 0.0038617 | 0.0059531 | 1235 | 91776 | 93011 |
| Marshall Islands | 63 | 0.950 | 0.944 | 0.99759 | 0.0004138 | 0.0026207 | 294 | 18876 | 19170 |
| Mauritania | 58 | 0.922 | 0.875 | 0.99394 | 0.0001028 | 0.0006219 | 17 | 451 | 468 |
| Mauritius | 73 | 0.988 | 0.985 | 0.99960 | 0.0010407 | 0.0036773 | 218 | 4704 | 4922 |
| Mexico | 74 | 0.971 | 0.965 | 0.99975 | 0.0018596 | 0.0008418 | 474 | 16340 | 16814 |
| Micronesia (Federated States of) | 69 | 0.967 | 0.959 | 0.99891 | 0.0005405 | 0.0022523 | 290 | 5830 | 6120 |
| Monaco | 82 | 0.997 | 0.996 | 0.99998 | 0.0056364 | 0.0140606 | 6128 | 458700 | 464828 |
| Mongolia | 66 | 0.965 | 0.958 | 0.99809 | 0.0025843 | 0.0033881 | 35 | 1539 | 1574 |
| Montenegro | 74 | 0.991 | 0.990 | 0.99951 | 0.0020516 | 0.0057171 | 299 | 13725 | 14024 |
| Morocco | 72 | 0.966 | 0.963 | 0.99921 | 0.0005183 | 0.0007885 | 89 | 1947 | 2036 |
| Mozambique | 50 | 0.904 | 0.862 | 0.99376 | 0.0000245 | 0.0002948 | 14 | 315 | 329 |
| Namibia | 61 | 0.955 | 0.939 | 0.99342 | 0.0002921 | 0.0030020 | 165 | 3888 | 4053 |
| Nauru | 61 | 0.975 | 0.970 | 0.99866 | 0.0010000 | 0.0063000 | 567 | 30200 | 30767 |
| Nepal | 62 | 0.954 | 0.941 | 0.99756 | 0.0001948 | 0.0004278 | 16 | 64 | 80 |
| Netherlands | 80 | 0.996 | 0.995 | 0.99994 | 0.0036949 | 0.0146024 | 3560 | 187191 | 190751 |
| New Zealand | 80 | 0.995 | 0.994 | 0.99991 | 0.0019783 | 0.0083425 | 2403 | 159960 | 162363 |
| Nicaragua | 71 | 0.971 | 0.964 | 0.99926 | 0.0003697 | 0.0010597 | 75 | 2183 | 2258 |
| Niger | 42 | 0.852 | 0.747 | 0.99686 | 0.0000215 | 0.0002051 | 9 | 85 | 94 |
| Nigeria | 48 | 0.901 | 0.809 | 0.99385 | 0.0002413 | 0.0014532 | 27 | 392 | 419 |
| Niue | 70 | 0.966 | 0.958 | 0.99915 | 0.0020000 | 0.0110000 | 1082 | 35211 | 36293 |
| Norway | 80 | 0.997 | 0.996 | 0.99996 | 0.0037531 | 0.0161332 | 5910 | 380380 | 386290 |
| Oman | 74 | 0.990 | 0.989 | 0.99986 | 0.0016850 | 0.0037376 | 312 | 18886 | 19198 |
| Pakistan | 63 | 0.922 | 0.903 | 0.99737 | 0.0007851 | 0.0004393 | 15 | 105 | 120 |
| Palau | 69 | 0.990 | 0.989 | 0.99949 | 0.0015000 | 0.0060500 | 690 | 43890 | 44580 |
| Panama | 76 | 0.982 | 0.977 | 0.99957 | 0.0013476 | 0.0024811 | 351 | 17424 | 17775 |
| Papua New Guinea | 62 | 0.946 | 0.927 | 0.99487 | 0.0000443 | 0.0004581 | 34 | 390 | 424 |
| Paraguay | 75 | 0.981 | 0.978 | 0.99900 | 0.0010563 | 0.0017056 | 92 | 2006 | 2098 |
| Peru | 73 | 0.979 | 0.975 | 0.99813 | 0.0010801 | 0.0006201 | 125 | 4453 | 4578 |
| Philippines | 68 | 0.976 | 0.968 | 0.99568 | 0.0010476 | 0.0055749 | 37 | 882 | 919 |
| Poland | 75 | 0.994 | 0.993 | 0.99973 | 0.0019939 | 0.0052339 | 495 | 21266 | 21761 |
| Portugal | 79 | 0.997 | 0.996 | 0.99976 | 0.0034160 | 0.0046298 | 1800 | 75458 | 77258 |
| Qatar | 77 | 0.991 | 0.989 | 0.99927 | 0.0026188 | 0.0059440 | 2186 | 163680 | 165866 |
| Republic of Korea | 79 | 0.995 | 0.995 | 0.99877 | 0.0015618 | 0.0019159 | 973 | 41715 | 42688 |
| Republic of Moldova | 68 | 0.984 | 0.981 | 0.99846 | 0.0029097 | 0.0067908 | 58 | 1504 | 1562 |
| Romania | 73 | 0.986 | 0.984 | 0.99860 | 0.0019253 | 0.0042122 | 250 | 9504 | 9754 |
| Russian Federation | 66 | 0.990 | 0.987 | 0.99875 | 0.0042884 | 0.0084784 | 277 | 12483 | 12760 |
| Rwanda | 52 | 0.903 | 0.840 | 0.99438 | 0.0000456 | 0.0003854 | 19 | 220 | 239 |
| Saint Kitts and Nevis | 71 | 0.983 | 0.981 | 0.99983 | 0.0009200 | 0.0039600 | 478 | 9933 | 10411 |
| Saint Lucia | 75 | 0.988 | 0.986 | 0.99978 | 0.0045951 | 0.0020307 | 323 | 5068 | 5391 |
| Saint Vincent and the Grenadines | 70 | 0.983 | 0.980 | 0.99953 | 0.0007417 | 0.0037250 | 218 | 6302 | 6520 |
| Samoa | 68 | 0.977 | 0.972 | 0.99975 | 0.0002703 | 0.0016757 | 113 | 2093 | 2206 |
| San Marino | 82 | 0.997 | 0.997 | 0.99995 | 0.0351290 | 0.0708387 | 3490 | 278163 | 281653 |
| Sao Tome and Principe | 61 | 0.937 | 0.904 | 0.99748 | 0.0005226 | 0.0019871 | 49 | 2419 | 2468 |
| Saudi Arabia | 70 | 0.979 | 0.974 | 0.99938 | 0.0014172 | 0.0030657 | 448 | 27621 | 28069 |
| Senegal | 59 | 0.940 | 0.884 | 0.99496 | 0.0000492 | 0.0002723 | 38 | 504 | 542 |
| Serbia | 73 | 0.993 | 0.992 | 0.99959 | 0.0019877 | 0.0042873 | 212 | 7956 | 8168 |
| Seychelles | 72 | 0.988 | 0.987 | 0.99944 | 0.0014070 | 0.0073721 | 557 | 20502 | 21059 |
| Sierra Leone | 40 | 0.841 | 0.731 | 0.99023 | 0.0000293 | 0.0004371 | 8 | 164 | 172 |
| Singapore | 80 | 0.997 | 0.997 | 0.99975 | 0.0014560 | 0.0043565 | 944 | 30100 | 31044 |
| Slovakia | 74 | 0.993 | 0.992 | 0.99982 | 0.0031307 | 0.0066364 | 626 | 26096 | 26722 |
| Slovenia | 78 | 0.997 | 0.996 | 0.99985 | 0.0023603 | 0.0078516 | 1495 | 55233 | 56728 |
| Solomon Islands | 67 | 0.945 | 0.928 | 0.99806 | 0.0001240 | 0.0013492 | 28 | 442 | 470 |
| South Africa | 51 | 0.944 | 0.931 | 0.99002 | 0.0007214 | 0.0038205 | 437 | 10920 | 11357 |
| Spain | 81 | 0.996 | 0.996 | 0.99976 | 0.0030829 | 0.0074940 | 2152 | 118426 | 120578 |
| Sri Lanka | 72 | 0.989 | 0.987 | 0.99920 | 0.0005456 | 0.0017303 | 51 | 360 | 411 |
| Sudan | 60 | 0.938 | 0.911 | 0.99581 | 0.0002939 | 0.0008846 | 29 | 462 | 491 |
| Suriname | 68 | 0.971 | 0.961 | 0.99905 | 0.0004198 | 0.0015121 | 209 | 7326 | 7535 |
| Swaziland | 42 | 0.888 | 0.836 | 0.98916 | 0.0001508 | 0.0060212 | 146 | 2256 | 2402 |
| Sweden | 81 | 0.997 | 0.996 | 0.99995 | 0.0032155 | 0.0106857 | 3727 | 255696 | 259423 |
| Switzerland | 82 | 0.996 | 0.995 | 0.99995 | 0.0038648 | 0.0106174 | 5694 | 258248 | 263942 |
| Syrian Arab Republic | 72 | 0.988 | 0.987 | 0.99960 | 0.0005329 | 0.0014060 | 61 | 1581 | 1642 |
| Tajikistan | 64 | 0.944 | 0.932 | 0.99702 | 0.0019980 | 0.0049947 | 18 | 100 | 118 |
| Thailand | 72 | 0.993 | 0.992 | 0.99803 | 0.0003536 | 0.0027186 | 98 | 2079 | 2177 |
| The former Yugoslav Republic of Macedonia | 73 | 0.985 | 0.983 | 0.99967 | 0.0025476 | 0.0043384 | 224 | 11060 | 11284 |
| Timor-Leste | 66 | 0.953 | 0.945 | 0.99211 | 0.0000709 | 0.0016113 | 45 | 1053 | 1098 |
| Togo | 57 | 0.931 | 0.893 | 0.99213 | 0.0000351 | 0.0003022 | 18 | 205 | 223 |
| Tonga | 71 | 0.980 | 0.976 | 0.99966 | 0.0003000 | 0.0035000 | 104 | 1896 | 2000 |
| Trinidad and Tobago | 69 | 0.967 | 0.962 | 0.99990 | 0.0007560 | 0.0027508 | 513 | 3575 | 4088 |
| Tunisia | 72 | 0.981 | 0.977 | 0.99972 | 0.0013049 | 0.0027936 | 158 | 4620 | 4778 |
| Turkey | 73 | 0.976 | 0.974 | 0.99968 | 0.0015694 | 0.0029448 | 383 | 18632 | 19015 |
| Turkmenistan | 63 | 0.955 | 0.949 | 0.99922 | 0.0024923 | 0.0047001 | 156 | 4888 | 5044 |
| Tuvalu | 65 | 0.969 | 0.962 | 0.99496 | 0.0010000 | 0.0050000 | 212 | 8786 | 8998 |
| Uganda | 50 | 0.922 | 0.866 | 0.99439 | 0.0000739 | 0.0006344 | 22 | 78 | 100 |
| Ukraine | 67 | 0.980 | 0.976 | 0.99886 | 0.0030871 | 0.0083434 | 128 | 4624 | 4752 |
| United Arab Emirates | 78 | 0.992 | 0.992 | 0.99976 | 0.0011676 | 0.0024341 | 833 | 45969 | 46802 |
| United Kingdom | 79 | 0.995 | 0.994 | 0.99988 | 0.0022085 | 0.0122411 | 3064 | 240120 | 243184 |
| United Republic of Tanzania | 50 | 0.926 | 0.882 | 0.99541 | 0.0000208 | 0.0003369 | 17 | 225 | 242 |
| United States of America | 78 | 0.993 | 0.992 | 0.99997 | 0.0024132 | 0.0088152 | 6350 | 231822 | 238172 |
| Uruguay | 75 | 0.987 | 0.985 | 0.99969 | 0.0037178 | 0.0008646 | 404 | 15824 | 16228 |
| Uzbekistan | 68 | 0.962 | 0.956 | 0.99855 | 0.0026153 | 0.0107543 | 26 | 444 | 470 |
| Vanuatu | 69 | 0.970 | 0.964 | 0.99935 | 0.0001357 | 0.0016290 | 67 | 1056 | 1123 |
| Venezuela (Bolivarian Republic of) | 74 | 0.982 | 0.979 | 0.99948 | 0.0017653 | 0.0010298 | 247 | 10528 | 10775 |
| Viet Nam | 72 | 0.985 | 0.983 | 0.99775 | 0.0005215 | 0.0007170 | 37 | 270 | 307 |
| Yemen | 61 | 0.925 | 0.900 | 0.99868 | 0.0003101 | 0.0006325 | 39 | 448 | 487 |
| Zambia | 43 | 0.898 | 0.818 | 0.99432 | 0.0001081 | 0.0018818 | 36 | 595 | 631 |
| Zimbabwe | 43 | 0.945 | 0.915 | 0.99403 | 0.0001577 | 0.0007074 | 21 | 324 | 345 |
Glipmse of the data
glimpse(who_raw)
## Rows: 190
## Columns: 10
## $ Country <chr> "Afghanistan", "Albania", "Algeria", "Andorra", "Angola…
## $ LifeExp <dbl> 42, 71, 71, 82, 41, 73, 75, 69, 82, 80, 64, 74, 75, 63,…
## $ InfantSurvival <dbl> 0.835, 0.985, 0.967, 0.997, 0.846, 0.990, 0.986, 0.979,…
## $ Under5Survival <dbl> 0.743, 0.983, 0.962, 0.996, 0.740, 0.989, 0.983, 0.976,…
## $ TBFree <dbl> 0.99769, 0.99974, 0.99944, 0.99983, 0.99656, 0.99991, 0…
## $ PropMD <dbl> 0.000228841, 0.001143127, 0.001060478, 0.003297297, 0.0…
## $ PropRN <dbl> 0.000572294, 0.004614439, 0.002091362, 0.003500000, 0.0…
## $ PersExp <dbl> 20, 169, 108, 2589, 36, 503, 484, 88, 3181, 3788, 62, 1…
## $ GovtExp <dbl> 92, 3128, 5184, 169725, 1620, 12543, 19170, 1856, 18761…
## $ TotExp <dbl> 112, 3297, 5292, 172314, 1656, 13046, 19654, 1944, 1907…
Summary of the data
summary(who_raw)
## Country LifeExp InfantSurvival Under5Survival
## Length:190 Min. :40.00 Min. :0.8350 Min. :0.7310
## Class :character 1st Qu.:61.25 1st Qu.:0.9433 1st Qu.:0.9253
## Mode :character Median :70.00 Median :0.9785 Median :0.9745
## Mean :67.38 Mean :0.9624 Mean :0.9459
## 3rd Qu.:75.00 3rd Qu.:0.9910 3rd Qu.:0.9900
## Max. :83.00 Max. :0.9980 Max. :0.9970
## TBFree PropMD PropRN PersExp
## Min. :0.9870 Min. :0.0000196 Min. :0.0000883 Min. : 3.00
## 1st Qu.:0.9969 1st Qu.:0.0002444 1st Qu.:0.0008455 1st Qu.: 36.25
## Median :0.9992 Median :0.0010474 Median :0.0027584 Median : 199.50
## Mean :0.9980 Mean :0.0017954 Mean :0.0041336 Mean : 742.00
## 3rd Qu.:0.9998 3rd Qu.:0.0024584 3rd Qu.:0.0057164 3rd Qu.: 515.25
## Max. :1.0000 Max. :0.0351290 Max. :0.0708387 Max. :6350.00
## GovtExp TotExp
## Min. : 10.0 Min. : 13
## 1st Qu.: 559.5 1st Qu.: 584
## Median : 5385.0 Median : 5541
## Mean : 40953.5 Mean : 41696
## 3rd Qu.: 25680.2 3rd Qu.: 26331
## Max. :476420.0 Max. :482750
Provide a scatterplot of LifeExp~TotExp, and run simple linear
regression. Do not transform the variables. Provide and interpret the F
statistics, R^2, standard error,and p-values only. Discuss whether the
assumptions of simple linear regression met.
Scatter Plot
p = ggplot(who_raw, aes(x=TotExp, y=LifeExp)) + geom_point() + theme_minimal() +
theme(panel.grid.major = element_line(colour = "lemonchiffon3"),
panel.grid.minor = element_line(colour = "lemonchiffon3"),
axis.title = element_text(size = 13),
axis.text = element_text(size = 11),
axis.text.x = element_text(family = "sans",
size = 11), axis.text.y = element_text(family = "sans",
size = 11), plot.title = element_text(size = 15,
hjust = 0.5), panel.background = element_rect(fill = "gray85"),
plot.background = element_rect(fill = "antiquewhite")) +labs(title = "LifeExp vs TotExp",
x = "TotExp", y = "LifeExp")
p
Simple Linear Regression
lm_who <- lm(LifeExp ~ TotExp, data = who_raw)
summary(lm_who)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = who_raw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
Residual vs Fitted
plot(fitted(lm_who),resid(lm_who), main="Residuals vs Fitted", xlab = "Fitted", ylab = "Residuals")
abline(0, 0)
Q-Q Plot
qqnorm(resid(lm_who))
qqline(resid(lm_who))
The observations should be independent of each other. This may be
difficult to determine from looking at the data and we may have to rely
on the assumptions provided by the data collector.
Since the Linearity, Homoscedacity, and Normality conditions are not
satisfied, we can conclude that the assumptions for Linear Regression
are not met.
Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise
total expenditures to the 0.06 power (nearly a log transform,
TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run
the simple regression model using the transformed variables. Provide and
interpret the F statistics, R^2, standard error, and p-values. Which
model is “better?”
who_raw2 <- who_raw %>%
mutate(LifeExp2 = LifeExp^(4.6),
TotExp2 = TotExp^(0.06))
Scatter Plot - Q2
p2 = ggplot(who_raw2, aes(x=TotExp2, y=LifeExp2)) + geom_point() + theme_minimal() +
theme(panel.grid.major = element_line(colour = "lemonchiffon3"),
panel.grid.minor = element_line(colour = "lemonchiffon3"),
axis.title = element_text(size = 13),
axis.text = element_text(size = 11),
axis.text.x = element_text(family = "sans",
size = 11), axis.text.y = element_text(family = "sans",
size = 11), plot.title = element_text(size = 15,
hjust = 0.5), panel.background = element_rect(fill = "gray85"),
plot.background = element_rect(fill = "antiquewhite")) +labs(title = "LifeExp2 vs TotExp2",
x = "TotExp2", y = "LifeExp2")
p2
Simple Linear Regression - Q2
lm_who2 <- lm(LifeExp2 ~ TotExp2, data = who_raw2)
summary(lm_who2)
##
## Call:
## lm(formula = LifeExp2 ~ TotExp2, data = who_raw2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## TotExp2 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
Residual vs Fitted - Q2
plot(fitted(lm_who2),resid(lm_who2), main="Residuals vs Fitted - Q2", xlab = "Fitted", ylab = "Residuals")
abline(0, 0)
Q-Q Plot
qqnorm(resid(lm_who2))
qqline(resid(lm_who2))
The observations should be independent of each other. This may be
difficult to determine from looking at the data and we may have to rely
on the assumptions provided by the data collector. Also, we can see from
the residual plot that the data points do not appear to be dependent on
one another.
Since the Linearity, Homoscedacity, Normality, and Independence
conditions are satisfied, we can conclude that the assumptions for
Linear Regression are met.
Clearly, the second model that involves a transformation is better.
This goes to tell us that sometimes even if the data does not appear to
satisfy the assumptions of linear regression, with some transformations,
we may be able to get a transformed data that will satisfy the criteria
for linear regression and still make using linear regression possible on
the dataset.
Using the results from 3, forecast life expectancy when TotExp^.06 =
1.5. Then forecast life expectancy when TotExp^.06 = 2.5
Based on the results of the model with the transformed data above,
the linear relationship is given by:
\(LifeExp2 = -736527910 +
620060216*TotExp2\)
Using the equation above, we can forcast the values for life expectancy
for the given TotExp.
When TotExp^.06 = 1.5
TotExp2 = 1.5
LifeExp2 = -736527910 + 620060216*TotExp2
LifeExp = LifeExp2 ^ (1/4.6) # We have to transform back to get the actual LifeExp
LifeExp
## [1] 63.31153
Therefore, for TotExp^.06 = 1.5, the LifeExp will be about 63.3 after
transforming back to the original units.
When TotExp^.06 = 2.5
TotExp2 = 2.5
LifeExp2 = -736527910 + 620060216*TotExp2
LifeExp = LifeExp2 ^ (1/4.6) # We have to transform back to get the actual LifeExp
LifeExp
## [1] 86.50645
Therefore, for TotExp^.06 = 2.5, the LifeExp will be about 86.5 after
transforming back to the original units.Build the following multiple regression model and interpret the F
Statistics, R^2, standard error, and p-values. How good is the model?
LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp
Scatter Plot - Q4
p4 = ggplot(who_raw, aes(x=(TotExp + PropMD + (PropMD * TotExp)), y=LifeExp2)) + geom_point() + theme_minimal() +
theme(panel.grid.major = element_line(colour = "lemonchiffon3"),
panel.grid.minor = element_line(colour = "lemonchiffon3"),
axis.title = element_text(size = 13),
axis.text = element_text(size = 11),
axis.text.x = element_text(family = "sans",
size = 11), axis.text.y = element_text(family = "sans",
size = 11), plot.title = element_text(size = 15,
hjust = 0.5), panel.background = element_rect(fill = "gray85"),
plot.background = element_rect(fill = "antiquewhite")) +labs(title = "LifeExp - Multi Regression",
x = "TotExp + PropMD + (PropMD * TotExp)", y = "LifeExp")
p4
Simple Linear Regression - Q4
lm_who4 <- lm(LifeExp ~ TotExp + PropMD + (PropMD * TotExp), data = who_raw)
summary(lm_who4)
##
## Call:
## lm(formula = LifeExp ~ TotExp + PropMD + (PropMD * TotExp), data = who_raw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp:PropMD -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
Residual vs Fitted - Q4
plot(fitted(lm_who4),resid(lm_who4), main="Residuals vs Fitted - Q4", xlab = "Fitted", ylab = "Residuals")
abline(0, 0)
Q-Q Plot
qqnorm(resid(lm_who2))
qqline(resid(lm_who2))
LifeExp vs TotExp + PropMD + (PropMD * TotExp) does not
have a linear relationship and this condition is not satisfied.The observations should be independent of each other. This may be
difficult to determine from looking at the data and we may have to rely
on the assumptions provided by the data collector.
Since the Linearity, Homoscedacity, and Normality conditions are not
satisfied, we can conclude that the assumptions for Linear Regression
are not met.
Comparing the results of the three models, the second model is still the best and the third model is by no means better at all. Although the third model is slightly better than the first model without any transformation, it still falls far short when compared to the second model. This still tells us that even if the data can be transformed to produce better results, not all transformations will make sense and will produce better models.
Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast
seem realistic? Why or why not?
Based on the results of the model with the transformed data above, the
linear relationship is given by:
\(LifeExp = 6.277e+01 + 1.497e+03 * PropMd +
7.233e-05 * TotExp - 6.026e-03 * PropMD * TotExp\) Using the
equation above, we can forcast the values for life expectancy for the
given TotExp.
When TotExp^.06 = 1.5
PropMD = 0.03
TotExp = 14
LifeExp5 = 6.277 * 10^(1) + (1.497 * 10^(3) * PropMD) + (7.233 * 10^(-5) * TotExp) - (6.026 * 10^(-3) * PropMD * TotExp)
LifeExp5
## [1] 107.6785
From the data provided, the max LifeExp is about 83, and the mean LifeExp is about 67. Hence, a value of 107 for LifeExp is not realistic based on the given data.