#Bài tập 11 11 2023 Lê Minh Thuận 

library(dplyr); library(tidyverse); library(psych); library(plotly)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ readr     2.1.4
## ✔ ggplot2   3.4.4     ✔ stringr   1.5.0
## ✔ lubridate 1.9.3     ✔ tibble    3.2.1
## ✔ purrr     1.0.2     ✔ tidyr     1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## 
## Attaching package: 'psych'
## 
## 
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## 
## 
## 
## Attaching package: 'plotly'
## 
## 
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## 
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## 
## The following object is masked from 'package:graphics':
## 
##     layout
cyber = read.csv("E:\\OneDrive - UMP\\R - lenh 2016\\538cyberTRAM.csv", header=T)
attach(cyber)

DÁN NHÃN

cyber = cyber %>% mutate(Giới=recode(gioi,"1"="nam","2"="nữ"),
      Dân_tộc = recode(dantoc,"1"="kinh","2"="khac"),
      Tôn_giáo = recode(tongiao,"1"="không","2"="phật giáo","3" = "công giáo", "4" ="khác"),
      Năm_học= recode(namhoc, "1"= "năm 1", "2" = "năm 2", "3" = "năm 3","4" = "năm 4","5" = "năm 5"),
     Xếp_loai = recode(xeploai, "4"="Xuất sắc", "3"="Giỏi", "2"="Khá","1" = "trung bình"),
     internet = recode(internet,"4"="4 giờ", "3"="3 giờ", "2" = "2 giờ", "1"=" 1 giờ"),
     BATNAT = recode(BATNAT,"0"="KHÔNG","1"="CO"))
cyber$Công_nghệ = cabc.congnge
cyber$Điều_chỉnh = cabc.dieuchinh
cyber$Làm_ngơ = cabc.lamngo
cyber$Phân_tách = cabc.phantach
cyber$NT_né_tránh = cabc.nhanthucnetranh
cyber$Hành_vi_nt = cabc.hanhvitranhne
cyber$Hổ_trợ = cabc.hotro
cyber$Đương_đầu = cabc.duongdau
cyber$Trả_thù = cabc.trathu
cyber$Lời_nói = cvbs.loinoi
cyber$Ẩn_danh = cvbs.andanh
cyber$Giả_mạo = cvbs.giamao
cyber$Giới_tính=gioi
cyber$Tuổi=tuoi
cyber$Trường=truong
cyber$Ngành_học= nganh
cyber$Năm_học= namhoc
cyber$Dân_tộc = dantoc
cyber$Tôn_giáo=tongiao
cyber$Xếp_loại = xeploai
cyber$Mức_độ = mucdo
cyber$Thiết_bị=thietbi
cyber$Tương_tác=tuongtac
attach(cyber)
## The following objects are masked from cyber (pos = 3):
## 
##     BATNAT, cabc.congnge, cabc.dieuchinh, cabc.duongdau,
##     cabc.hanhvitranhne, cabc.hotro, cabc.lamngo, cabc.nhanthucnetranh,
##     cabc.phantach, cabc.trathu, cabc1, cabc10, cabc11, cabc12, cabc13,
##     cabc14, cabc15, cabc16, cabc17, cabc18, cabc19, cabc2, cabc20,
##     cabc21, cabc22, cabc23, cabc24, cabc25, cabc26, cabc3, cabc4,
##     cabc5, cabc6, cabc7, cabc8, cabc9, cabcT, cvbs.andanh, cvbs.giamao,
##     cvbs.loinoi, cvbs.tong, cvbs1, cvbs10, cvbs11, cvbs12, cvbs13,
##     cvbs14, cvbs15, cvbs16, cvbs17, cvbs18, cvbs19, cvbs2, cvbs20,
##     cvbs21, cvbs22, cvbs3, cvbs4, cvbs5, cvbs6, cvbs7, cvbs8, cvbs9,
##     cvs.tong, cvs0, cvs1, cvs2, cvs3, cvs4, cvs5, cvs6, cvs7, cvs8,
##     dantoc, gioi, id, internet, mucdo, namhoc, nganh, thietbi, tongiao,
##     truong, tuoi, tuongtac, xeploai
names(cyber)
##   [1] "id"                   "gioi"                 "tuoi"                
##   [4] "truong"               "nganh"                "namhoc"              
##   [7] "dantoc"               "tongiao"              "xeploai"             
##  [10] "mucdo"                "internet"             "thietbi"             
##  [13] "tuongtac"             "BATNAT"               "cvs0"                
##  [16] "cvs1"                 "cvs2"                 "cvs3"                
##  [19] "cvs4"                 "cvs5"                 "cvs6"                
##  [22] "cvs7"                 "cvs8"                 "cvs.tong"            
##  [25] "cvbs1"                "cvbs2"                "cvbs3"               
##  [28] "cvbs4"                "cvbs5"                "cvbs6"               
##  [31] "cvbs7"                "cvbs8"                "cvbs9"               
##  [34] "cvbs10"               "cvbs11"               "cvbs12"              
##  [37] "cvbs13"               "cvbs14"               "cvbs15"              
##  [40] "cvbs16"               "cvbs17"               "cvbs18"              
##  [43] "cvbs19"               "cvbs20"               "cvbs21"              
##  [46] "cvbs22"               "cvbs.tong"            "cvbs.loinoi"         
##  [49] "cvbs.andanh"          "cvbs.giamao"          "cabc1"               
##  [52] "cabc2"                "cabc3"                "cabc4"               
##  [55] "cabc5"                "cabc6"                "cabc7"               
##  [58] "cabc8"                "cabc9"                "cabc10"              
##  [61] "cabc11"               "cabc12"               "cabc13"              
##  [64] "cabc14"               "cabc15"               "cabc16"              
##  [67] "cabc17"               "cabc18"               "cabc19"              
##  [70] "cabc20"               "cabc21"               "cabc22"              
##  [73] "cabc23"               "cabc24"               "cabc25"              
##  [76] "cabc26"               "cabcT"                "cabc.congnge"        
##  [79] "cabc.dieuchinh"       "cabc.lamngo"          "cabc.phantach"       
##  [82] "cabc.nhanthucnetranh" "cabc.hanhvitranhne"   "cabc.hotro"          
##  [85] "cabc.duongdau"        "cabc.trathu"          "Giới"                
##  [88] "Dân_tộc"              "Tôn_giáo"             "Năm_học"             
##  [91] "Xếp_loai"             "Công_nghệ"            "Điều_chỉnh"          
##  [94] "Làm_ngơ"              "Phân_tách"            "NT_né_tránh"         
##  [97] "Hành_vi_nt"           "Hổ_trợ"               "Đương_đầu"           
## [100] "Trả_thù"              "Lời_nói"              "Ẩn_danh"             
## [103] "Giả_mạo"              "Giới_tính"            "Tuổi"                
## [106] "Trường"               "Ngành_học"            "Xếp_loại"            
## [109] "Mức_độ"               "Thiết_bị"             "Tương_tác"
cyber = subset(cyber, BATNAT== "CO")
attach(cyber)
## The following objects are masked from cyber (pos = 3):
## 
##     Ẩn_danh, BATNAT, cabc.congnge, cabc.dieuchinh, cabc.duongdau,
##     cabc.hanhvitranhne, cabc.hotro, cabc.lamngo, cabc.nhanthucnetranh,
##     cabc.phantach, cabc.trathu, cabc1, cabc10, cabc11, cabc12, cabc13,
##     cabc14, cabc15, cabc16, cabc17, cabc18, cabc19, cabc2, cabc20,
##     cabc21, cabc22, cabc23, cabc24, cabc25, cabc26, cabc3, cabc4,
##     cabc5, cabc6, cabc7, cabc8, cabc9, cabcT, Công_nghệ, cvbs.andanh,
##     cvbs.giamao, cvbs.loinoi, cvbs.tong, cvbs1, cvbs10, cvbs11, cvbs12,
##     cvbs13, cvbs14, cvbs15, cvbs16, cvbs17, cvbs18, cvbs19, cvbs2,
##     cvbs20, cvbs21, cvbs22, cvbs3, cvbs4, cvbs5, cvbs6, cvbs7, cvbs8,
##     cvbs9, cvs.tong, cvs0, cvs1, cvs2, cvs3, cvs4, cvs5, cvs6, cvs7,
##     cvs8, Dân_tộc, dantoc, Điều_chỉnh, Đương_đầu, Giả_mạo, gioi, Giới,
##     Giới_tính, Hành_vi_nt, Hổ_trợ, id, internet, Làm_ngơ, Lời_nói,
##     Mức_độ, mucdo, Năm_học, namhoc, nganh, Ngành_học, NT_né_tránh,
##     Phân_tách, Thiết_bị, thietbi, Tôn_giáo, tongiao, Trả_thù, truong,
##     Trường, tuoi, Tuổi, Tương_tác, tuongtac, Xếp_loai, Xếp_loại,
##     xeploai
## The following objects are masked from cyber (pos = 4):
## 
##     BATNAT, cabc.congnge, cabc.dieuchinh, cabc.duongdau,
##     cabc.hanhvitranhne, cabc.hotro, cabc.lamngo, cabc.nhanthucnetranh,
##     cabc.phantach, cabc.trathu, cabc1, cabc10, cabc11, cabc12, cabc13,
##     cabc14, cabc15, cabc16, cabc17, cabc18, cabc19, cabc2, cabc20,
##     cabc21, cabc22, cabc23, cabc24, cabc25, cabc26, cabc3, cabc4,
##     cabc5, cabc6, cabc7, cabc8, cabc9, cabcT, cvbs.andanh, cvbs.giamao,
##     cvbs.loinoi, cvbs.tong, cvbs1, cvbs10, cvbs11, cvbs12, cvbs13,
##     cvbs14, cvbs15, cvbs16, cvbs17, cvbs18, cvbs19, cvbs2, cvbs20,
##     cvbs21, cvbs22, cvbs3, cvbs4, cvbs5, cvbs6, cvbs7, cvbs8, cvbs9,
##     cvs.tong, cvs0, cvs1, cvs2, cvs3, cvs4, cvs5, cvs6, cvs7, cvs8,
##     dantoc, gioi, id, internet, mucdo, namhoc, nganh, thietbi, tongiao,
##     truong, tuoi, tuongtac, xeploai
names(cyber)
##   [1] "id"                   "gioi"                 "tuoi"                
##   [4] "truong"               "nganh"                "namhoc"              
##   [7] "dantoc"               "tongiao"              "xeploai"             
##  [10] "mucdo"                "internet"             "thietbi"             
##  [13] "tuongtac"             "BATNAT"               "cvs0"                
##  [16] "cvs1"                 "cvs2"                 "cvs3"                
##  [19] "cvs4"                 "cvs5"                 "cvs6"                
##  [22] "cvs7"                 "cvs8"                 "cvs.tong"            
##  [25] "cvbs1"                "cvbs2"                "cvbs3"               
##  [28] "cvbs4"                "cvbs5"                "cvbs6"               
##  [31] "cvbs7"                "cvbs8"                "cvbs9"               
##  [34] "cvbs10"               "cvbs11"               "cvbs12"              
##  [37] "cvbs13"               "cvbs14"               "cvbs15"              
##  [40] "cvbs16"               "cvbs17"               "cvbs18"              
##  [43] "cvbs19"               "cvbs20"               "cvbs21"              
##  [46] "cvbs22"               "cvbs.tong"            "cvbs.loinoi"         
##  [49] "cvbs.andanh"          "cvbs.giamao"          "cabc1"               
##  [52] "cabc2"                "cabc3"                "cabc4"               
##  [55] "cabc5"                "cabc6"                "cabc7"               
##  [58] "cabc8"                "cabc9"                "cabc10"              
##  [61] "cabc11"               "cabc12"               "cabc13"              
##  [64] "cabc14"               "cabc15"               "cabc16"              
##  [67] "cabc17"               "cabc18"               "cabc19"              
##  [70] "cabc20"               "cabc21"               "cabc22"              
##  [73] "cabc23"               "cabc24"               "cabc25"              
##  [76] "cabc26"               "cabcT"                "cabc.congnge"        
##  [79] "cabc.dieuchinh"       "cabc.lamngo"          "cabc.phantach"       
##  [82] "cabc.nhanthucnetranh" "cabc.hanhvitranhne"   "cabc.hotro"          
##  [85] "cabc.duongdau"        "cabc.trathu"          "Giới"                
##  [88] "Dân_tộc"              "Tôn_giáo"             "Năm_học"             
##  [91] "Xếp_loai"             "Công_nghệ"            "Điều_chỉnh"          
##  [94] "Làm_ngơ"              "Phân_tách"            "NT_né_tránh"         
##  [97] "Hành_vi_nt"           "Hổ_trợ"               "Đương_đầu"           
## [100] "Trả_thù"              "Lời_nói"              "Ẩn_danh"             
## [103] "Giả_mạo"              "Giới_tính"            "Tuổi"                
## [106] "Trường"               "Ngành_học"            "Xếp_loại"            
## [109] "Mức_độ"               "Thiết_bị"             "Tương_tác"

KẾT QUẢ

library(OpenMx) ; library(semPlot); library(semptools); library(lavaan) ;library(lavaanPlot); library(plotly)
## 
## Attaching package: 'OpenMx'
## The following object is masked from 'package:psych':
## 
##     tr
## Warning: package 'semptools' was built under R version 4.3.2
## This is lavaan 0.6-16
## lavaan is FREE software! Please report any bugs.
## 
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
## 
##     cor2cov
mohinh.1a <- '
  # ĐỊNH NGHĨA 
  LỜI_NÓI =~ cvbs1 + cvbs2 + cvbs3 + cvbs4  + cvbs5 + cvbs6 + cvbs7
  ẨN_DANH =~ cvbs8 + cvbs9 +cvbs10 +  cvbs11  +  cvbs12  +  cvbs13
  GIẢ_MẠO =~ cvbs14 + cvbs15+ cvbs16 +cvbs17 + cvbs18 + cvbs19 + cvbs20 + cvbs21 + cvbs22
  NỀN =~ Giới_tính + Dân_tộc + Tôn_giáo + Năm_học + Trường
  ỨNG_PHÓ =~ Công_nghệ + Điều_chỉnh + Làm_ngơ + Phân_tách + NT_né_tránh + Hành_vi_nt + Hổ_trợ + Đương_đầu + Trả_thù
  HÀNH_VI =~ Xếp_loại + Mức_độ + internet + Thiết_bị + Tương_tác
# TƯƠNG QUAN 
    NỀN ~ LỜI_NÓI
    NỀN ~ ẨN_DANH
    NỀN ~ GIẢ_MẠO
    HÀNH_VI ~ LỜI_NÓI
    HÀNH_VI ~ ẨN_DANH
    HÀNH_VI ~ GIẢ_MẠO
    ỨNG_PHÓ ~ HÀNH_VI
     ỨNG_PHÓ ~ NỀN   '

mohinh.1a <- cfa(mohinh.1a , data = cyber, std.lv=T)
summary(mohinh.1a, std=T)
## lavaan 0.6.16 ended normally after 101 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        93
## 
##   Number of observations                           148
## 
## Model Test User Model:
##                                                       
##   Test statistic                              1422.461
##   Degrees of freedom                               768
##   P-value (Chi-square)                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   LỜI_NÓI =~                                                            
##     cvbs1             0.740    0.074    9.961    0.000    0.740    0.720
##     cvbs2             0.694    0.071    9.839    0.000    0.694    0.714
##     cvbs3             0.646    0.077    8.433    0.000    0.646    0.635
##     cvbs4             0.987    0.077   12.794    0.000    0.987    0.853
##     cvbs5             0.890    0.073   12.130    0.000    0.890    0.825
##     cvbs6             1.031    0.077   13.428    0.000    1.031    0.879
##     cvbs7             1.067    0.083   12.848    0.000    1.067    0.856
##   ẨN_DANH =~                                                            
##     cvbs8             1.138    0.089   12.734    0.000    1.138    0.848
##     cvbs9             0.541    0.084    6.429    0.000    0.541    0.503
##     cvbs10            0.782    0.091    8.600    0.000    0.782    0.641
##     cvbs11            1.203    0.092   13.070    0.000    1.203    0.862
##     cvbs12            1.163    0.095   12.250    0.000    1.163    0.827
##     cvbs13            1.320    0.098   13.460    0.000    1.320    0.878
##   GIẢ_MẠO =~                                                            
##     cvbs14            1.240    0.096   12.866    0.000    1.240    0.850
##     cvbs15            1.388    0.101   13.773    0.000    1.388    0.887
##     cvbs16            1.393    0.091   15.255    0.000    1.393    0.940
##     cvbs17            1.278    0.091   13.965    0.000    1.278    0.894
##     cvbs18            1.380    0.092   14.934    0.000    1.380    0.929
##     cvbs19            1.224    0.095   12.904    0.000    1.224    0.852
##     cvbs20            1.328    0.096   13.793    0.000    1.328    0.887
##     cvbs21            1.027    0.091   11.281    0.000    1.027    0.780
##     cvbs22            1.030    0.092   11.134    0.000    1.030    0.772
##   NỀN =~                                                                
##     Giới_tính         0.059    0.054    1.101    0.271    0.070    0.147
##     Dân_tộc           0.055    0.029    1.883    0.060    0.065    0.271
##     Tôn_giáo          0.035    0.069    0.506    0.613    0.041    0.066
##     Năm_học           0.103    0.128    0.809    0.419    0.122    0.107
##     Trường           -0.573    0.249   -2.307    0.021   -0.680   -0.484
##   ỨNG_PHÓ =~                                                            
##     Công_nghệ         0.832    0.206    4.043    0.000    0.869    0.332
##     Điều_chỉnh        0.264    0.145    1.822    0.068    0.276    0.152
##     Làm_ngơ           0.360    0.100    3.609    0.000    0.376    0.297
##     Phân_tách         0.550    0.156    3.516    0.000    0.575    0.290
##     NT_né_tránh       0.237    0.089    2.657    0.008    0.248    0.220
##     Hành_vi_nt        0.420    0.122    3.432    0.001    0.438    0.283
##     Hổ_trợ            0.647    0.050   13.055    0.000    0.675    0.940
##     Đương_đầu         1.269    0.093   13.669    0.000    1.325    0.978
##     Trả_thù           0.565    0.095    5.926    0.000    0.590    0.477
##   HÀNH_VI =~                                                            
##     Xếp_loại          0.253    0.080    3.165    0.002    0.274    0.327
##     Mức_độ            0.341    0.063    5.385    0.000    0.368    0.726
##     internet          0.315    0.072    4.362    0.000    0.340    0.464
##     Thiết_bị          0.038    0.101    0.376    0.707    0.041    0.039
##     Tương_tác         0.222    0.075    2.975    0.003    0.240    0.307
## 
## Regressions:
##                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NỀN ~                                                                
##     LỜI_NÓI          0.766    0.506    1.514    0.130    0.646    0.646
##     ẨN_DANH         -2.234    1.403   -1.592    0.111   -1.885   -1.885
##     GIẢ_MẠO          1.365    1.068    1.278    0.201    1.152    1.152
##   HÀNH_VI ~                                                            
##     LỜI_NÓI          0.029    0.251    0.117    0.907    0.027    0.027
##     ẨN_DANH         -0.289    0.617   -0.468    0.640   -0.267   -0.267
##     GIẢ_MẠO          0.655    0.538    1.216    0.224    0.606    0.606
##   ỨNG_PHÓ ~                                                            
##     HÀNH_VI          0.034    0.101    0.336    0.737    0.035    0.035
##     NỀN             -0.252    0.138   -1.828    0.068   -0.286   -0.286
## 
## Covariances:
##                  Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   LỜI_NÓI ~~                                                          
##     ẨN_DANH         0.853    0.029   28.964    0.000    0.853    0.853
##     GIẢ_MẠO         0.815    0.032   25.414    0.000    0.815    0.815
##   ẨN_DANH ~~                                                          
##     GIẢ_MẠO         0.954    0.013   73.389    0.000    0.954    0.954
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .cvbs1             0.507    0.063    8.021    0.000    0.507    0.481
##    .cvbs2             0.463    0.058    8.042    0.000    0.463    0.490
##    .cvbs3             0.619    0.075    8.240    0.000    0.619    0.597
##    .cvbs4             0.363    0.051    7.144    0.000    0.363    0.272
##    .cvbs5             0.371    0.050    7.446    0.000    0.371    0.319
##    .cvbs6             0.313    0.046    6.748    0.000    0.313    0.227
##    .cvbs7             0.416    0.058    7.115    0.000    0.416    0.268
##    .cvbs8             0.506    0.067    7.578    0.000    0.506    0.281
##    .cvbs9             0.863    0.102    8.472    0.000    0.863    0.747
##    .cvbs10            0.876    0.105    8.333    0.000    0.876    0.589
##    .cvbs11            0.501    0.067    7.438    0.000    0.501    0.257
##    .cvbs12            0.623    0.081    7.742    0.000    0.623    0.316
##    .cvbs13            0.520    0.072    7.239    0.000    0.520    0.230
##    .cvbs14            0.589    0.073    8.031    0.000    0.589    0.277
##    .cvbs15            0.524    0.067    7.796    0.000    0.524    0.214
##    .cvbs16            0.255    0.037    6.923    0.000    0.255    0.116
##    .cvbs17            0.410    0.053    7.729    0.000    0.410    0.201
##    .cvbs18            0.301    0.042    7.210    0.000    0.301    0.137
##    .cvbs19            0.566    0.071    8.023    0.000    0.566    0.274
##    .cvbs20            0.476    0.061    7.790    0.000    0.476    0.213
##    .cvbs21            0.681    0.082    8.264    0.000    0.681    0.392
##    .cvbs22            0.717    0.087    8.279    0.000    0.717    0.403
##    .Giới_tính         0.223    0.027    8.314    0.000    0.223    0.978
##    .Dân_tộc           0.053    0.007    7.534    0.000    0.053    0.927
##    .Tôn_giáo          0.391    0.046    8.545    0.000    0.391    0.996
##    .Năm_học           1.299    0.154    8.453    0.000    1.299    0.989
##    .Trường            1.507    0.340    4.427    0.000    1.507    0.765
##    .Công_nghệ         6.111    0.713    8.565    0.000    6.111    0.890
##    .Điều_chỉnh        3.225    0.375    8.596    0.000    3.225    0.977
##    .Làm_ngơ           1.459    0.170    8.574    0.000    1.459    0.912
##    .Phân_tách         3.602    0.420    8.575    0.000    3.602    0.916
##    .NT_né_tránh       1.203    0.140    8.587    0.000    1.203    0.951
##    .Hành_vi_nt        2.205    0.257    8.577    0.000    2.205    0.920
##    .Hổ_trợ            0.060    0.019    3.132    0.002    0.060    0.116
##    .Đương_đầu         0.081    0.069    1.176    0.240    0.081    0.044
##    .Trả_thù           1.184    0.139    8.509    0.000    1.184    0.773
##    .Xếp_loại          0.627    0.079    7.959    0.000    0.627    0.893
##    .Mức_độ            0.122    0.041    2.944    0.003    0.122    0.472
##    .internet          0.421    0.061    6.902    0.000    0.421    0.785
##    .Thiết_bị          1.120    0.130    8.595    0.000    1.120    0.999
##    .Tương_tác         0.555    0.069    8.051    0.000    0.555    0.906
##     LỜI_NÓI           1.000                               1.000    1.000
##     ẨN_DANH           1.000                               1.000    1.000
##     GIẢ_MẠO           1.000                               1.000    1.000
##    .NỀN               1.000                               0.712    0.712
##    .ỨNG_PHÓ           1.000                               0.917    0.917
##    .HÀNH_VI           1.000                               0.856    0.856
fit <- sem(mohinh.1a , data = cyber)
semPaths(fit,"est",
         nCharNodes = 20, edge.label.cex = 0.7, thresholds = T,
         rotation = 2, borders = F,
         nDigits = 2,
         groups = "latents", pastel = T,
         sizeMan = 5,
         sizeLat = 5,
         curve = .8,
         as.expression ="nodes",
         mar = c(3, 3, 3, 3),
         asize = 3, esize = 4, label.cex = 2,
         edge.label.position = .5)


# DÁN THÊM TRỊ SỐ P VÀO MÔ HÌNH


```r
fit.mohinh.1a  <- lavaan::parameterEstimates(mohinh.1a)[,c("est", "pvalue")]

p.1 <- semPaths(mohinh.1a, "col","est", borders = F,
                nCharNodes = 25,
                rotation = 2,
                sizeMan = 6,
                node.width = 1,
                edge.label.cex = .8,
                style = "ram", mar = c(2, 4, 2, 4),
                groups = "latents", pastel = T,
                layoutSplit = F, optimizeLatRes = F,
                shapeLat = "circle",
                shapeMan = "rectangle")

p.2 <- mark_sig(p.1, mohinh.1a, alpha = c(`*` = 0.05, `**` = 0.01, `***` = 0.001))
plot(p.2)

HẾT