Nama : Mutiara Arsyillah
NIM : 230605110132
Jurusan : Teknik Informatika
library(mosaicCalc)
## Loading required package: mosaic
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
## Loading required package: mosaicCore
##
## Attaching package: 'mosaicCore'
## The following objects are masked from 'package:dplyr':
##
## count, tally
## The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
## which was just loaded, will retire in October 2023.
## Please refer to R-spatial evolution reports for details, especially
## https://r-spatial.org/r/2023/05/15/evolution4.html.
## It may be desirable to make the sf package available;
## package maintainers should consider adding sf to Suggests:.
## The sp package is now running under evolution status 2
## (status 2 uses the sf package in place of rgdal)
##
## Attaching package: 'mosaicCalc'
## The following object is masked from 'package:stats':
##
## D
library(r2symbols)
##
## Attaching package: 'r2symbols'
## The following object is masked from 'package:dplyr':
##
## sym
## The following object is masked from 'package:ggplot2':
##
## sym
Metode Iterasi
Metode Iterasi adlah metode yang memisahkan χ dengan sebagian χ lainnya sehinhga diperoleh χ = g(χ). Dikenal juga dengan metode χ = g(χ). Bentuk iterasi dapat juga dituliskan dalam bentuk
*χi + 1 = g(χi)*
Dimana i = 0,1,2,3,...
Mengulangi suatu tindakan berarti melakukan tindakan itu berulang kali. (“Iterate” berasal dari kata Latin iterum , yang berarti “lagi.”) Seekor burung mengulangi seruannya, menyanyikannya berulang-ulang. Dalam matematika, “iterasi” memiliki keunikan.
Berikut adalah langkah-langkah dalam memecahkan soal dengan metode iterasi.
Contoh Soal:
Hitung akar persamaan berikut dengan Metode Iterasi.
f(x) = χ³ + χ² - 3χ - 3 = 0
1. Bentuk kemungkinan persamaan
3χ = χ³ + χ² - 3 → χ = (χ³ + χ² - 3)/3
χ³ = -χ² + 3χ + 3 → χ = (-χ² + 3χ + 3 )⅓
χ² = -χ³ + 3χ + 3 → χ = (-χ³ + 3χ + 3)½
2. Cek Konvergensi
library(EBImage)
Image <- readImage("C://Users/WINDOWS 11/Pictures/Konvergensi.png")
print(Image)
## Image
## colorMode : Color
## storage.mode : double
## dim : 1824 726 4
## frames.total : 4
## frames.render: 1
##
## imageData(object)[1:5,1:6,1]
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1
## [3,] 1 1 1 1 1 1
## [4,] 1 1 1 1 1 1
## [5,] 1 1 1 1 1 1
Image1 <- Image + 0
par(mfrow= c(1,1))
plot(Image1)
3. Tentukan Perkiraan χ awal
ditentukan perkiraan awal χ = 2
χi + 1(2) = (-χ² + 3χ + 3)⅓
χi + 1(2) = (-2² + 3.2 + 3)⅓ = 1,70998
4. Tentukan Error
Image <- readImage("C://Users/WINDOWS 11/Pictures/rms_error.png")
print(Image)
## Image
## colorMode : Color
## storage.mode : double
## dim : 412 154 4
## frames.total : 4
## frames.render: 1
##
## imageData(object)[1:5,1:6,1]
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.8862745 0.8862745 0.8862745 0.8823529 0.8823529 0.8823529
## [2,] 0.8862745 0.8862745 0.8862745 0.8823529 0.8823529 0.8823529
## [3,] 0.8862745 0.8862745 0.8862745 0.8823529 0.8823529 0.8823529
## [4,] 0.8823529 0.8823529 0.8823529 0.8784314 0.8784314 0.8784314
## [5,] 0.8823529 0.8823529 0.8823529 0.8784314 0.8784314 0.8784314
Image1 <- Image + 0
par(mfrow= c(1,1))
plot(Image1)
Setelahnya lakukan iterasi berikutnya. Iterasi berikutnya semakin mendekati akar persamaan (konvergen).