Clean
rm(list = ls()); graphics.off()
Set R packages path and load packages
.libPaths("C:/Rpack")
library(DistatisR)
## Warning: package 'DistatisR' was built under R version 4.3.2
library(prettyGraphs)
library(car)
## Loading required package: carData
library(openxlsx)
Import data
SortSpice <- read.xlsx("Sortdata.xlsx", sheet = 1, rowNames = T)
Create the set of distance matrices
DistanceCube <- DistanceFromSort(SortSpice)
Metric MDS
All the assessors’ distance matrices
TotalDistance = apply(DistanceCube,c(1,2),sum)
Analyze Total Distance
mdsRes <- mmds(TotalDistance)
Plot
PlotMDS <- prettyPlot(mdsRes$FactorScore,
display_names = TRUE,
display_points = TRUE,
contributionCircles = TRUE,
contributions = mdsRes$Contributions)
Distatis
Analyze
testDistatis <- distatis(DistanceCube)
Products via bootstrap
BootF <- BootFactorScores(testDistatis$res4Splus$PartialF,niter=1000)
## [1] Bootstrap On Factor Scores. Iterations #:
## [2] 1000
Plot the Observations (Bootstrapped CI)
PlotOfObs <- GraphDistatisBoot(testDistatis$res4Splus$F,BootF)
Plot the RV map
PlotOfRvMat <- GraphDistatisRv(testDistatis$res4Cmat$G,ZeTitle='Rv Mat')
MCA
Calculate chi2 distance
DistanceCube <- Chi2DistanceFromSort(SortSpice)
Metric MDS
All the assessors’ distance matrices
TotalDistance = apply(DistanceCube,c(1,2),sum)
Analyze Total Distance
mdsRes <- mmds(TotalDistance)
Plot
PlotMDS <- prettyPlot(mdsRes$FactorScore,
display_names = TRUE,
display_points = TRUE,
contributionCircles = TRUE,
contributions = mdsRes$Contributions)
Distatis
Analyze
testDistatis <- distatis(DistanceCube)
Products via bootstrap
BootF <- BootFactorScores(testDistatis$res4Splus$PartialF,niter=1000)
## [1] Bootstrap On Factor Scores. Iterations #:
## [2] 1000
Plot the Observations (Bootstrapped CI)
PlotOfObs <- GraphDistatisBoot(testDistatis$res4Splus$F,BootF)
Plot the RV map
PlotOfRvMat <- GraphDistatisRv(testDistatis$res4Cmat$G,ZeTitle='Rv Mat')