## Country Year Y X1 X2 X3
## 1 1 2000 6.0 7.8 5.8 1.3
## 2 1 2001 4.6 0.6 7.9 7.8
## 3 1 2002 9.4 2.1 5.4 1.1
## 4 2 2000 9.1 1.3 6.7 4.1
## 5 2 2001 8.3 0.9 6.6 5.0
## 6 2 2002 0.6 9.8 0.4 7.2
## 7 3 2000 9.1 0.2 2.6 6.4
## 8 3 2001 4.8 5.9 3.2 6.4
## 9 3 2002 9.1 5.2 6.9 2.1
library(ggplot2)
ggplot(Panel, aes(x = Year, y = Y, group = Country, color = Country)) +
geom_line() +
facet_wrap(~Country)library(foreign)
Panel <- read.dta("http://dss.princeton.edu/training/Panel101.dta")
coplot(y ~ year|country, type="l", data=Panel) # Lines# Bars at top indicates corresponding graph (i.e. countries) from left to right starting on the bottom row (Muenchen/Hilbe:355)library(foreign)
Panel <- read.dta("http://dss.princeton.edu/training/Panel101.dta")
library(car)
scatterplot(y~year|country, boxplots=FALSE, smooth=TRUE, reg.line=FALSE, data=Panel)library(foreign)
Panel <- read.dta("http://dss.princeton.edu/training/Panel101.dta")
# install.packages("gplots")
library(gplots)
plotmeans(y ~ country, main="Heterogeineity across countries", data=Panel)library(foreign)
Panel <- read.dta("http://dss.princeton.edu/training/Panel101.dta")
library(gplots)
plotmeans(y ~ year, main="Heterogeineity across years", data=Panel)library(foreign)
Panel <- read.dta("http://dss.princeton.edu/training/Panel101.dta")
ols <-lm(y ~ x1, data=Panel)
summary(ols)##
## Call:
## lm(formula = y ~ x1, data = Panel)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.546e+09 -1.578e+09 1.554e+08 1.422e+09 7.183e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.524e+09 6.211e+08 2.454 0.0167 *
## x1 4.950e+08 7.789e+08 0.636 0.5272
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.028e+09 on 68 degrees of freedom
## Multiple R-squared: 0.005905, Adjusted R-squared: -0.008714
## F-statistic: 0.4039 on 1 and 68 DF, p-value: 0.5272
yhat <- ols$fitted
plot(Panel$x1, Panel$y, pch=19, xlab="x1", ylab="y")
abline(lm(Panel$y~Panel$x1),lwd=3, col="magenta")Commentary : Regular OLS regression does not consider heterogeneity across groups or time
library(foreign)
Panel <- read.dta("http://dss.princeton.edu/training/Panel101.dta")
fixed.dum <-lm(y ~ x1 + factor(country) - 1, data=Panel)
summary(fixed.dum)##
## Call:
## lm(formula = y ~ x1 + factor(country) - 1, data = Panel)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.634e+09 -9.697e+08 5.405e+08 1.386e+09 5.612e+09
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x1 2.476e+09 1.107e+09 2.237 0.02889 *
## factor(country)A 8.805e+08 9.618e+08 0.916 0.36347
## factor(country)B -1.058e+09 1.051e+09 -1.006 0.31811
## factor(country)C -1.723e+09 1.632e+09 -1.056 0.29508
## factor(country)D 3.163e+09 9.095e+08 3.478 0.00093 ***
## factor(country)E -6.026e+08 1.064e+09 -0.566 0.57329
## factor(country)F 2.011e+09 1.123e+09 1.791 0.07821 .
## factor(country)G -9.847e+08 1.493e+09 -0.660 0.51190
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.796e+09 on 62 degrees of freedom
## Multiple R-squared: 0.4402, Adjusted R-squared: 0.368
## F-statistic: 6.095 on 8 and 62 DF, p-value: 8.892e-06
yhat <- fixed.dum$fitted
library(car)
scatterplot(yhat~Panel$x1|Panel$country, boxplots=FALSE, xlab="x1", ylab="yhat",smooth=FALSE)
abline(lm(Panel$y~Panel$x1),lwd=3, col="red")Each component of the factor variable (country) is absorbing the effects particular to each country. Predictor x1 was not significant in the OLS model, once controlling for differences across countries, x1 became significant in the OLS_DUM (i.e. LSDV model).
# Install and load the stargazer package
# install.packages("stargazer")
library(stargazer)
# Fit your linear regression model
ols_model <- lm(y ~ x1 + x2, data = Panel)
# Display the regression table using stargazer
stargazer(ols_model, title = "OLS Regression Results", type = "latex")##
## % Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com
## % Date and time: mar., nov. 14, 2023 - 12:04:07
## \begin{table}[!htbp] \centering
## \caption{OLS Regression Results}
## \label{}
## \begin{tabular}{@{\extracolsep{5pt}}lc}
## \\[-1.8ex]\hline
## \hline \\[-1.8ex]
## & \multicolumn{1}{c}{\textit{Dependent variable:}} \\
## \cline{2-2}
## \\[-1.8ex] & y \\
## \hline \\[-1.8ex]
## x1 & 551,342,424.000 \\
## & (909,095,389.000) \\
## & \\
## x2 & 38,082,006.000 \\
## & (310,349,698.000) \\
## & \\
## Constant & 1,482,703,947.000$^{**}$ \\
## & (711,630,745.000) \\
## & \\
## \hline \\[-1.8ex]
## Observations & 70 \\
## R$^{2}$ & 0.006 \\
## Adjusted R$^{2}$ & $-$0.024 \\
## Residual Std. Error & 3,050,448,878.000 (df = 67) \\
## F Statistic & 0.207 (df = 2; 67) \\
## \hline
## \hline \\[-1.8ex]
## \textit{Note:} & \multicolumn{1}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
## \end{tabular}
## \end{table}
The coefficient of x1 indicates how much Y changes when X increases by one unit. Notice x1 is not significant in the OLS model.
The coefficient of x1 indicates how much Y changes overtime, controlling by differences in countries, when X increases by one unit. Notice x1 is significant in the LSDV model.
# install.packages("plm")
library(plm)
fixed <- plm(y ~ x1, data=Panel, index=c("country", "year"), model="within")
summary(fixed)## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = y ~ x1, data = Panel, model = "within", index = c("country",
## "year"))
##
## Balanced Panel: n = 7, T = 10, N = 70
##
## Residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -8.63e+09 -9.70e+08 5.40e+08 0.00e+00 1.39e+09 5.61e+09
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## x1 2475617827 1106675594 2.237 0.02889 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 5.2364e+20
## Residual Sum of Squares: 4.8454e+20
## R-Squared: 0.074684
## Adj. R-Squared: -0.029788
## F-statistic: 5.00411 on 1 and 62 DF, p-value: 0.028892
n = # of groups/panels, T = # years, N = total # of observations.
The coeff of x1 indicates how much Y changes overtime, on average per country, when X increases by one unit.
Pr(>|t|)= Two-tail p-values test the hypothesis that each coefficient is different from 0. To reject this, the p-value has to be lower than 0.05 (95%, you could choose also an alpha of 0.10), if this is the case then you can say that the variable has a significant influence on your dependent variable (y).
If the p-value is < 0.05 then your model is ok. This is a test (F) to see whether all the coefficients in the model are different than zero.
## A B C D E F
## 880542404 -1057858363 -1722810755 3162826897 -602622000 2010731793
## G
## -984717493
##
## F test for individual effects
##
## data: y ~ x1
## F = 2.9655, df1 = 6, df2 = 62, p-value = 0.01307
## alternative hypothesis: significant effects
Commentary : If the p-value is < 0.05 then the fixed effects model is a better choice.
## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = y ~ x1, data = Panel, model = "random", index = c("country",
## "year"))
##
## Balanced Panel: n = 7, T = 10, N = 70
##
## Effects:
## var std.dev share
## idiosyncratic 7.815e+18 2.796e+09 0.873
## individual 1.133e+18 1.065e+09 0.127
## theta: 0.3611
##
## Residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -8.94e+09 -1.51e+09 2.82e+08 0.00e+00 1.56e+09 6.63e+09
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1037014284 790626206 1.3116 0.1896
## x1 1247001782 902145601 1.3823 0.1669
##
## Total Sum of Squares: 5.6595e+20
## Residual Sum of Squares: 5.5048e+20
## R-Squared: 0.02733
## Adj. R-Squared: 0.013026
## Chisq: 1.91065 on 1 DF, p-value: 0.16689
n = # of groups/panels, T = # years, N = total # of observations.
Interpretation of the coefficients is tricky since they include both the within-entity and between-entity effects. In the case of TSCS data represents the average effect of X over Y when X changes across time and between countries by one unit.
Pr(>|t|)= Two-tail p-values test the hypothesis that each coefficient is different from 0. To reject this, the p-value has to be lower than 0.05 (95%, you could choose also an alpha of 0.10), if this is the case then you can say that the variable has a significant influence on your dependent variable (y).
If the p-value is < 0.05 then your model is ok. This is a test (F) to see whether all the coefficients in the model are different than zero.
# Setting as panel data (an alternative way to run the above model
Panel.set <- plm.data(Panel, index = c("country", "year"))## Warning: use of 'plm.data' is discouraged, better use 'pdata.frame' instead
# Random effects using panel setting (same output as above)
random.set <- plm(y ~ x1, data = Panel.set, model="random")
summary(random.set)## Oneway (individual) effect Random Effect Model
## (Swamy-Arora's transformation)
##
## Call:
## plm(formula = y ~ x1, data = Panel.set, model = "random")
##
## Balanced Panel: n = 7, T = 10, N = 70
##
## Effects:
## var std.dev share
## idiosyncratic 7.815e+18 2.796e+09 0.873
## individual 1.133e+18 1.065e+09 0.127
## theta: 0.3611
##
## Residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -8.94e+09 -1.51e+09 2.82e+08 0.00e+00 1.56e+09 6.63e+09
##
## Coefficients:
## Estimate Std. Error z-value Pr(>|z|)
## (Intercept) 1037014284 790626206 1.3116 0.1896
## x1 1247001782 902145601 1.3823 0.1669
##
## Total Sum of Squares: 5.6595e+20
## Residual Sum of Squares: 5.5048e+20
## R-Squared: 0.02733
## Adj. R-Squared: 0.013026
## Chisq: 1.91065 on 1 DF, p-value: 0.16689
To make an informed choice between fixed or random effects specifications, one can conduct a Hausman test, as articulated by Green (2008) in chapter 9 of the relevant literature. The test hypothesizes the appropriateness of the random effects model against the null hypothesis that the fixed effects model is preferred. In essence, it examines whether the unique errors (ui) exhibit correlation with the regressors. The null hypothesis posits that such correlation does not exist.
Operationalizing the test involves initially estimating the fixed effects model and preserving the parameter estimates. Subsequently, the random effects model is estimated, and its parameter estimates are also retained. The ensuing statistical test then evaluates the significance of the correlation between the unique errors and the regressors. If the resulting p-value is notably small, for instance, below the conventional significance level of 0.05, the evidence suggests a rejection of the null hypothesis, thereby favoring the fixed effects model. Conversely, a non-significant p-value would imply a preference for the random effects model. This systematic process aids in discerning the most suitable model specification based on empirical evidence.
##
## Hausman Test
##
## data: y ~ x1
## chisq = 3.674, df = 1, p-value = 0.05527
## alternative hypothesis: one model is inconsistent
Commentary : If the p-value is < 0.05 then use fixed effects
library(plm)
fixed <- plm(y ~ x1, data=Panel, index=c("country", "year"),
model="within")
fixed.time <- plm(y ~ x1 + factor(year), data=Panel, index=c("country",
"year"), model="within")
summary(fixed.time)## Oneway (individual) effect Within Model
##
## Call:
## plm(formula = y ~ x1 + factor(year), data = Panel, model = "within",
## index = c("country", "year"))
##
## Balanced Panel: n = 7, T = 10, N = 70
##
## Residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -7.92e+09 -1.05e+09 -1.40e+08 0.00e+00 1.63e+09 5.49e+09
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## x1 1389050354 1319849567 1.0524 0.29738
## factor(year)1991 296381559 1503368528 0.1971 0.84447
## factor(year)1992 145369666 1547226548 0.0940 0.92550
## factor(year)1993 2874386795 1503862554 1.9113 0.06138 .
## factor(year)1994 2848156288 1661498927 1.7142 0.09233 .
## factor(year)1995 973941306 1567245748 0.6214 0.53698
## factor(year)1996 1672812557 1631539254 1.0253 0.30988
## factor(year)1997 2991770063 1627062032 1.8388 0.07156 .
## factor(year)1998 367463593 1587924445 0.2314 0.81789
## factor(year)1999 1258751933 1512397632 0.8323 0.40898
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 5.2364e+20
## Residual Sum of Squares: 4.0201e+20
## R-Squared: 0.23229
## Adj. R-Squared: 0.00052851
## F-statistic: 1.60365 on 10 and 53 DF, p-value: 0.13113
# Testing time-fixed effects. The null is that no time-fixed effects needed
pFtest(fixed.time, fixed)##
## F test for individual effects
##
## data: y ~ x1 + factor(year)
## F = 1.209, df1 = 9, df2 = 53, p-value = 0.3094
## alternative hypothesis: significant effects
##
## Lagrange Multiplier Test - time effects (Breusch-Pagan)
##
## data: y ~ x1
## chisq = 0.16532, df = 1, p-value = 0.6843
## alternative hypothesis: significant effects
# Regular OLS (pooling model) using plm
pool <- plm(y ~ x1, data=Panel, index=c("country", "year"), model="pooling")
summary(pool)## Pooling Model
##
## Call:
## plm(formula = y ~ x1, data = Panel, model = "pooling", index = c("country",
## "year"))
##
## Balanced Panel: n = 7, T = 10, N = 70
##
## Residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -9.55e+09 -1.58e+09 1.55e+08 0.00e+00 1.42e+09 7.18e+09
##
## Coefficients:
## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 1524319070 621072624 2.4543 0.01668 *
## x1 494988914 778861261 0.6355 0.52722
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares: 6.2729e+20
## Residual Sum of Squares: 6.2359e+20
## R-Squared: 0.0059046
## Adj. R-Squared: -0.0087145
## F-statistic: 0.403897 on 1 and 68 DF, p-value: 0.52722
Commentary : If the p-value is < 0.05 then use time-fixed effects. In this example, no need to use time-fixed effects.
The LM test helps you decide between a random effects regression and a simple OLS regression.
The null hypothesis in the LM test is that variances across entities is zero. This is, no significant difference across units (i.e. no panel effect).
# Breusch-Pagan Lagrange Multiplier for random effects. Null is no panel effect (i.e. OLS better)
plmtest(pool, type=c("bp"))##
## Lagrange Multiplier Test - (Breusch-Pagan)
##
## data: y ~ x1
## chisq = 2.6692, df = 1, p-value = 0.1023
## alternative hypothesis: significant effects
Commentary : Here we failed to reject the null and conclude that random effects is not appropriate. This is, no evidence of significant differences across countries, therefore you can run a simple OLS regression.
As posited by Baltagi, the issue of cross-sectional dependence tends to manifest as a challenge predominantly in macro panels characterized by extensive time series data. Conversely, its impact is comparatively less pronounced in micro panels typified by a limited temporal span and a substantial number of cases.
The null hypothesis intrinsic to both the Baltagi-Peters (B-P) and Levin–Lin–Chu (LM) tests, as well as the Pesaran CD test of independence, centers on the absence of correlation among residuals across distinct entities. Specifically, these tests are designed to scrutinize whether residuals exhibit correlation across entities within a panel dataset. The presence of cross-sectional dependence, often denoted as contemporaneous correlation, introduces a potential for bias in the results of statistical tests.
It is crucial to underscore that the Baltagi-Peters/LM and Pesaran CD tests serve as diagnostic tools to assess the presence of such cross-sectional dependence. A rejection of the null hypothesis in these tests would imply evidence of correlated residuals across entities, thereby signaling the need to address or account for cross-sectional dependence in the subsequent analysis. The recognition and mitigation of cross-sectional dependence are pivotal steps in ensuring the reliability and robustness of empirical findings derived from panel data analysis.
fixed <- plm(y ~ x1, data=Panel, index=c("country", "year"), model="within")
pcdtest(fixed, test = c("lm"))##
## Breusch-Pagan LM test for cross-sectional dependence in panels
##
## data: y ~ x1
## chisq = 28.914, df = 21, p-value = 0.1161
## alternative hypothesis: cross-sectional dependence
##
## Pesaran CD test for cross-sectional dependence in panels
##
## data: y ~ x1
## z = 1.1554, p-value = 0.2479
## alternative hypothesis: cross-sectional dependence
No cross-sectional dependence.
Serial correlation tests apply to macro panels with long time series. Not a problem in micro panels (with very few years). The null is that there is not serial correlation.
##
## Breusch-Godfrey/Wooldridge test for serial correlation in panel models
##
## data: y ~ x1
## chisq = 14.137, df = 10, p-value = 0.1668
## alternative hypothesis: serial correlation in idiosyncratic errors
No serial correlation
The Dickey-Fuller test to check for stochastic trends. The null hypothesis is that the series has a unit root (i.e. non-stationary). If unit root is present you can take the first difference of the variable.
Panel.set <- plm.data(Panel, index = c("country", "year"))
# install.packages("tseries")
library(tseries)
adf.test(Panel.set$y, k=2)##
## Augmented Dickey-Fuller Test
##
## data: Panel.set$y
## Dickey-Fuller = -3.9051, Lag order = 2, p-value = 0.0191
## alternative hypothesis: stationary
If p-value < 0.05 then no unit roots present.
The null hypothesis for the Breusch-Pagan test is homoskedasticity.
##
## Breusch-Pagan test
##
## data: y ~ x1 + factor(country)
## BP = 14.606, df = 7, p-value = 0.04139
Presence of heteroskedasticity.
If hetersokedaticity is detected you can use robust covariance matrix to account for it. See the following pages.
The –vcovHC– function estimates three heteroskedasticity-consistent covariance estimators:
• “white1” - for general heteroskedasticity but no serial correlation. Recommended for random effects.
• “white2” - is “white1” restricted to a common variance within groups. Recommended for random effects.
• “arellano” - both heteroskedasticity and serial correlation. Recommended for fixed effects.
The following options apply*:
• HC0 - heteroskedasticity consistent. The default.
• HC1,HC2, HC3 – Recommended for small samples. HC3 gives less weight to influential observations.
• HC4 - small samples with influential observations.
• HAC - heteroskedasticity and autocorrelation consistent (type ?vcovHAC for more details).
See the following pages for examples
For more details see:
• http://cran.r-project.org/web/packages/plm/vignettes/plm.pdf
• http://cran.r-project.org/web/packages/sandwich/vignettes/sandwich.pdf (see page 4)
• Stock and Watson 2006.
• *Kleiber and Zeileis, 2008.
random <- plm(y ~ x1, data=Panel, index=c("country", "year"), model="random")
coeftest(random) # Original coefficients##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1037014284 790626206 1.3116 0.1941
## x1 1247001782 902145601 1.3823 0.1714
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1037014284 907983029 1.1421 0.2574
## x1 1247001782 828970247 1.5043 0.1371
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1037014284 943438284 1.0992 0.2756
## x1 1247001782 867137585 1.4381 0.1550
# The following shows the HC standard errors of the coefficients
t(sapply(c("HC0", "HC1", "HC2", "HC3", "HC4"), function(x) sqrt(diag(vcovHC(random, type = x)))))## (Intercept) x1
## HC0 907983029 828970247
## HC1 921238957 841072643
## HC2 925403820 847733474
## HC3 943438284 867137584
## HC4 941376033 866024033
Standard errors given different types of HC.
fixed <- plm(y ~ x1, data=Panel, index=c("country", "year"), model="within")
coeftest(fixed) # Original coefficients##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## x1 2475617827 1106675594 2.237 0.02889 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## x1 2475617827 1358388942 1.8225 0.07321 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(fixed, vcovHC(fixed, method = "arellano")) # Heteroskedasticity consistent coefficients (Arellano)##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## x1 2475617827 1358388942 1.8225 0.07321 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## x1 2475617827 1439083523 1.7203 0.09037 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# The following shows the HC standard errors of the coefficients
t(sapply(c("HC0", "HC1", "HC2", "HC3", "HC4"), function(x) sqrt(diag(vcovHC(fixed, type = x)))))## HC0.x1 HC1.x1 HC2.x1 HC3.x1 HC4.x1
## [1,] 1358388942 1368196931 1397037369 1439083523 1522166034
Standard errors given different types of HC.
• An R Companion to Applied Regression, Second Edition / John Fox , Sanford Weisberg, Sage Publications, 2011
• Data Manipulation with R / Phil Spector, Springer, 2008
• Applied Econometrics with R / Christian Kleiber, Achim Zeileis, Springer, 2008
• Introductory Statistics with R / Peter Dalgaard, Springer, 2008
• Complex Surveys. A guide to Analysis Using R / Thomas Lumley, Wiley, 2010
• Applied Regression Analysis and Generalized Linear Models / John Fox, Sage, 2008
• R for Stata Users / Robert A. Muenchen, Joseph Hilbe, Springer, 2010
• Introduction to econometrics / James H. Stock, Mark W. Watson. 2nd ed., Boston: Pearson Addison Wesley, 2007.
• Data analysis using regression and multilevel/hierarchical models / Andrew Gelman, Jennifer Hill. Cambridge ; New York : Cambridge University Press, 2007.
• Econometric analysis / William H. Greene. 6th ed., Upper Saddle River, N.J. : Prentice Hall, 2008.
• Designing Social Inquiry: Scientific Inference in Qualitative Research / Gary King, Robert O. Keohane, Sidney Verba, Princeton University Press, 1994.
• Unifying Political Methodology: The Likelihood Theory of Statistical Inference / Gary King, Cambridge University Press, 1989
• Statistical Analysis: an interdisciplinary introduction to univariate & multivariate methods / Sam Kachigan, New York : Radius Press, c1986
• Statistics with Stata (updated for version 9) /Lawrence Hamilton, Thomson Books/Cole, 2006
Merci!
My Gmail : hicham.eladel@usmba.ac.ma (Hisham El Adel)