R Markdown

#pfizer dataset
data=read.csv("Pfizer.csv")
data
##                     Org_Indiv       First_Plus First_Name   Last_Name
## 1    3-D Medical Services Llc     Steven Bruce     Steven Deitelzweig
## 2            Aa Doctors, Inc.     Aakash Mohan     Aakash       Ahuja
## 3      Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo
## 4      Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo
## 5      Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo
## 6       Abdullah Raffee Md Pc         Abdullah   Abdullah      Raffee
## 7             Abebe, Sheila Y         Sheila Y     Sheila       Abebe
## 8             Abebe, Sheila Y         Sheila Y     Sheila       Abebe
## 9  Abilene Family Foot Center      Galen Chris      Galen   Albritton
## 10            Abolnik, Igor Z           Igor Z       Igor     Abolnik
## 11            Abolnik, Igor Z           Igor Z       Igor     Abolnik
##            City State                Category Cash Other Total
## 1   New Orleans    LA   Professional Advising 2625     0  2625
## 2   Paso Robles    CA       Expert-Led Forums 1000     0  1000
## 3         Miami    FL Business Related Travel    0   448   448
## 4         Miami    FL                   Meals    0   119   119
## 5         Miami    FL   Professional Advising 1800     0  1800
## 6         Flint    MI       Expert-Led Forums  750     0   750
## 7  Indianapolis    IN       Educational Items    0    47    47
## 8  Indianapolis    IN       Expert-Led Forums  825     0   825
## 9       Abilene    TX   Professional Advising 3000     0  3000
## 10        Provo    UT Business Related Travel    0   396   396
## 11        Provo    Ut       Expert-Led Forums 1750     0  1750

‘pfizer’ is a sample data.

View the structure of the data and perform conversion operations & Provide a statistical summary of the given data.

#a. and b. structure and summary of the data
str(data)#structure
## 'data.frame':    11 obs. of  10 variables:
##  $ Org_Indiv : chr  "3-D Medical Services Llc" "Aa Doctors, Inc." "Abbo, Lilian Margarita" "Abbo, Lilian Margarita" ...
##  $ First_Plus: chr  "Steven Bruce" "Aakash Mohan" "Lilian Margarita" "Lilian Margarita" ...
##  $ First_Name: chr  "Steven" "Aakash" "Lilian" "Lilian" ...
##  $ Last_Name : chr  "Deitelzweig" "Ahuja" "Abbo" "Abbo" ...
##  $ City      : chr  "New Orleans" "Paso Robles" "Miami" "Miami" ...
##  $ State     : chr  "LA" "CA" "FL" "FL" ...
##  $ Category  : chr  "Professional Advising" "Expert-Led Forums" "Business Related Travel" "Meals" ...
##  $ Cash      : int  2625 1000 0 0 1800 750 0 825 3000 0 ...
##  $ Other     : int  0 0 448 119 0 0 47 0 0 396 ...
##  $ Total     : int  2625 1000 448 119 1800 750 47 825 3000 396 ...
summary(data)#summary
##   Org_Indiv          First_Plus         First_Name         Last_Name        
##  Length:11          Length:11          Length:11          Length:11         
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##      City              State             Category              Cash     
##  Length:11          Length:11          Length:11          Min.   :   0  
##  Class :character   Class :character   Class :character   1st Qu.:   0  
##  Mode  :character   Mode  :character   Mode  :character   Median : 825  
##                                                           Mean   :1068  
##                                                           3rd Qu.:1775  
##                                                           Max.   :3000  
##      Other            Total     
##  Min.   :  0.00   Min.   :  47  
##  1st Qu.:  0.00   1st Qu.: 422  
##  Median :  0.00   Median : 825  
##  Mean   : 91.82   Mean   :1160  
##  3rd Qu.: 83.00   3rd Qu.:1775  
##  Max.   :448.00   Max.   :3000
#conversion functions 
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.2.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# Example 1: Convert a column to a different data type (e.g., from character to numeric)
my_data <- as.numeric(data$Total)
my_data
##  [1] 2625 1000  448  119 1800  750   47  825 3000  396 1750
# Example 2: Convert a column to a factor
my_data <- as.factor(data$Category)
my_data
##  [1] Professional Advising   Expert-Led Forums       Business Related Travel
##  [4] Meals                   Professional Advising   Expert-Led Forums      
##  [7] Educational Items       Expert-Led Forums       Professional Advising  
## [10] Business Related Travel Expert-Led Forums      
## 5 Levels: Business Related Travel Educational Items ... Professional Advising
# Example 3: Perform some data transformations using dplyr (e.g., calculate a new column)
my_data <- data %>%
  mutate(TotalSquared = Total^2)
my_data
##                     Org_Indiv       First_Plus First_Name   Last_Name
## 1    3-D Medical Services Llc     Steven Bruce     Steven Deitelzweig
## 2            Aa Doctors, Inc.     Aakash Mohan     Aakash       Ahuja
## 3      Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo
## 4      Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo
## 5      Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo
## 6       Abdullah Raffee Md Pc         Abdullah   Abdullah      Raffee
## 7             Abebe, Sheila Y         Sheila Y     Sheila       Abebe
## 8             Abebe, Sheila Y         Sheila Y     Sheila       Abebe
## 9  Abilene Family Foot Center      Galen Chris      Galen   Albritton
## 10            Abolnik, Igor Z           Igor Z       Igor     Abolnik
## 11            Abolnik, Igor Z           Igor Z       Igor     Abolnik
##            City State                Category Cash Other Total TotalSquared
## 1   New Orleans    LA   Professional Advising 2625     0  2625      6890625
## 2   Paso Robles    CA       Expert-Led Forums 1000     0  1000      1000000
## 3         Miami    FL Business Related Travel    0   448   448       200704
## 4         Miami    FL                   Meals    0   119   119        14161
## 5         Miami    FL   Professional Advising 1800     0  1800      3240000
## 6         Flint    MI       Expert-Led Forums  750     0   750       562500
## 7  Indianapolis    IN       Educational Items    0    47    47         2209
## 8  Indianapolis    IN       Expert-Led Forums  825     0   825       680625
## 9       Abilene    TX   Professional Advising 3000     0  3000      9000000
## 10        Provo    UT Business Related Travel    0   396   396       156816
## 11        Provo    Ut       Expert-Led Forums 1750     0  1750      3062500
# After performing the desired conversion and transformation operations, you can view the modified data frame:
str(my_data)
## 'data.frame':    11 obs. of  11 variables:
##  $ Org_Indiv   : chr  "3-D Medical Services Llc" "Aa Doctors, Inc." "Abbo, Lilian Margarita" "Abbo, Lilian Margarita" ...
##  $ First_Plus  : chr  "Steven Bruce" "Aakash Mohan" "Lilian Margarita" "Lilian Margarita" ...
##  $ First_Name  : chr  "Steven" "Aakash" "Lilian" "Lilian" ...
##  $ Last_Name   : chr  "Deitelzweig" "Ahuja" "Abbo" "Abbo" ...
##  $ City        : chr  "New Orleans" "Paso Robles" "Miami" "Miami" ...
##  $ State       : chr  "LA" "CA" "FL" "FL" ...
##  $ Category    : chr  "Professional Advising" "Expert-Led Forums" "Business Related Travel" "Meals" ...
##  $ Cash        : int  2625 1000 0 0 1800 750 0 825 3000 0 ...
##  $ Other       : int  0 0 448 119 0 0 47 0 0 396 ...
##  $ Total       : int  2625 1000 448 119 1800 750 47 825 3000 396 ...
##  $ TotalSquared: num  6890625 1000000 200704 14161 3240000 ...

dplyr is an R package for efficient data manipulation. It offers easy-to-use functions like filtering, sorting, and summarizing data, following tidy data principles for analysis.

#c.head of the data
head(data)
##                  Org_Indiv       First_Plus First_Name   Last_Name        City
## 1 3-D Medical Services Llc     Steven Bruce     Steven Deitelzweig New Orleans
## 2         Aa Doctors, Inc.     Aakash Mohan     Aakash       Ahuja Paso Robles
## 3   Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo       Miami
## 4   Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo       Miami
## 5   Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo       Miami
## 6    Abdullah Raffee Md Pc         Abdullah   Abdullah      Raffee       Flint
##   State                Category Cash Other Total
## 1    LA   Professional Advising 2625     0  2625
## 2    CA       Expert-Led Forums 1000     0  1000
## 3    FL Business Related Travel    0   448   448
## 4    FL                   Meals    0   119   119
## 5    FL   Professional Advising 1800     0  1800
## 6    MI       Expert-Led Forums  750     0   750
# d) Filter the data for payments related to 'Expert-Led Forums' or 'Professional Advising' and arrange alphabetically by doctor
filtered_data <- data %>%
  filter(Category %in% c("Expert-Led Forums", "Professional Advising")) %>%
  arrange(Last_Name, First_Name)

# Print filtered data
print("Filtered Data:")
## [1] "Filtered Data:"
print(filtered_data)
##                    Org_Indiv       First_Plus First_Name   Last_Name
## 1     Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo
## 2            Abebe, Sheila Y         Sheila Y     Sheila       Abebe
## 3            Abolnik, Igor Z           Igor Z       Igor     Abolnik
## 4           Aa Doctors, Inc.     Aakash Mohan     Aakash       Ahuja
## 5 Abilene Family Foot Center      Galen Chris      Galen   Albritton
## 6   3-D Medical Services Llc     Steven Bruce     Steven Deitelzweig
## 7      Abdullah Raffee Md Pc         Abdullah   Abdullah      Raffee
##           City State              Category Cash Other Total
## 1        Miami    FL Professional Advising 1800     0  1800
## 2 Indianapolis    IN     Expert-Led Forums  825     0   825
## 3        Provo    Ut     Expert-Led Forums 1750     0  1750
## 4  Paso Robles    CA     Expert-Led Forums 1000     0  1000
## 5      Abilene    TX Professional Advising 3000     0  3000
## 6  New Orleans    LA Professional Advising 2625     0  2625
## 7        Flint    MI     Expert-Led Forums  750     0   750
# Load the stringr package to use str_detect
library(stringr)
## Warning: package 'stringr' was built under R version 4.2.3
# e) Use pattern matching to filter text
pattern_matched_data <- data %>%
  filter(str_detect(Category, "Professional Advising"))

# Print pattern matched data
print("Pattern Matched Data:")
## [1] "Pattern Matched Data:"
print(pattern_matched_data)
##                    Org_Indiv       First_Plus First_Name   Last_Name
## 1   3-D Medical Services Llc     Steven Bruce     Steven Deitelzweig
## 2     Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo
## 3 Abilene Family Foot Center      Galen Chris      Galen   Albritton
##          City State              Category Cash Other Total
## 1 New Orleans    LA Professional Advising 2625     0  2625
## 2       Miami    FL Professional Advising 1800     0  1800
## 3     Abilene    TX Professional Advising 3000     0  3000

The stringr package is an R package that provides a set of functions for working with strings, making string manipulation and pattern matching more convenient and intuitive.

# f) Append one data frame to another
# Assuming df2 is another dataframe
df2 <- data.frame(Org_Indiv = c("Sample Org"), 
                  First_Plus = c("John Doe"), 
                  First_Name = c("John"), 
                  Last_Name = c("Doe"), 
                  City = c("Sample City"), 
                  State = c("XX"), 
                  Category = c("Professional Advising"), 
                  Cash = c(1500), 
                  Other = c(200), 
                  Total = c(1700))

appended_data <- rbind(data, df2)

# Print appended data
print("Appended Data:")
## [1] "Appended Data:"
print(appended_data)
##                     Org_Indiv       First_Plus First_Name   Last_Name
## 1    3-D Medical Services Llc     Steven Bruce     Steven Deitelzweig
## 2            Aa Doctors, Inc.     Aakash Mohan     Aakash       Ahuja
## 3      Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo
## 4      Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo
## 5      Abbo, Lilian Margarita Lilian Margarita     Lilian        Abbo
## 6       Abdullah Raffee Md Pc         Abdullah   Abdullah      Raffee
## 7             Abebe, Sheila Y         Sheila Y     Sheila       Abebe
## 8             Abebe, Sheila Y         Sheila Y     Sheila       Abebe
## 9  Abilene Family Foot Center      Galen Chris      Galen   Albritton
## 10            Abolnik, Igor Z           Igor Z       Igor     Abolnik
## 11            Abolnik, Igor Z           Igor Z       Igor     Abolnik
## 12                 Sample Org         John Doe       John         Doe
##            City State                Category Cash Other Total
## 1   New Orleans    LA   Professional Advising 2625     0  2625
## 2   Paso Robles    CA       Expert-Led Forums 1000     0  1000
## 3         Miami    FL Business Related Travel    0   448   448
## 4         Miami    FL                   Meals    0   119   119
## 5         Miami    FL   Professional Advising 1800     0  1800
## 6         Flint    MI       Expert-Led Forums  750     0   750
## 7  Indianapolis    IN       Educational Items    0    47    47
## 8  Indianapolis    IN       Expert-Led Forums  825     0   825
## 9       Abilene    TX   Professional Advising 3000     0  3000
## 10        Provo    UT Business Related Travel    0   396   396
## 11        Provo    Ut       Expert-Led Forums 1750     0  1750
## 12  Sample City    XX   Professional Advising 1500   200  1700
# g) Write data to a CSV file
write.csv(data, file = "data.csv", row.names = FALSE)
# h) View the structure and summary of the given data
str(data)
## 'data.frame':    11 obs. of  10 variables:
##  $ Org_Indiv : chr  "3-D Medical Services Llc" "Aa Doctors, Inc." "Abbo, Lilian Margarita" "Abbo, Lilian Margarita" ...
##  $ First_Plus: chr  "Steven Bruce" "Aakash Mohan" "Lilian Margarita" "Lilian Margarita" ...
##  $ First_Name: chr  "Steven" "Aakash" "Lilian" "Lilian" ...
##  $ Last_Name : chr  "Deitelzweig" "Ahuja" "Abbo" "Abbo" ...
##  $ City      : chr  "New Orleans" "Paso Robles" "Miami" "Miami" ...
##  $ State     : chr  "LA" "CA" "FL" "FL" ...
##  $ Category  : chr  "Professional Advising" "Expert-Led Forums" "Business Related Travel" "Meals" ...
##  $ Cash      : int  2625 1000 0 0 1800 750 0 825 3000 0 ...
##  $ Other     : int  0 0 448 119 0 0 47 0 0 396 ...
##  $ Total     : int  2625 1000 448 119 1800 750 47 825 3000 396 ...
summary(data)
##   Org_Indiv          First_Plus         First_Name         Last_Name        
##  Length:11          Length:11          Length:11          Length:11         
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##      City              State             Category              Cash     
##  Length:11          Length:11          Length:11          Min.   :   0  
##  Class :character   Class :character   Class :character   1st Qu.:   0  
##  Mode  :character   Mode  :character   Mode  :character   Median : 825  
##                                                           Mean   :1068  
##                                                           3rd Qu.:1775  
##                                                           Max.   :3000  
##      Other            Total     
##  Min.   :  0.00   Min.   :  47  
##  1st Qu.:  0.00   1st Qu.: 422  
##  Median :  0.00   Median : 825  
##  Mean   : 91.82   Mean   :1160  
##  3rd Qu.: 83.00   3rd Qu.:1775  
##  Max.   :448.00   Max.   :3000
# i) Convert the 'Total' column to a numeric variable
data$Total <- as.numeric(data$Total)
data$Total
##  [1] 2625 1000  448  119 1800  750   47  825 3000  396 1750
#mtcars dataset
data("mtcars")
mtcars
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
summary(mtcars)
##       mpg             cyl             disp             hp       
##  Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0  
##  1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5  
##  Median :19.20   Median :6.000   Median :196.3   Median :123.0  
##  Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7  
##  3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0  
##  Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0  
##       drat             wt             qsec             vs        
##  Min.   :2.760   Min.   :1.513   Min.   :14.50   Min.   :0.0000  
##  1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89   1st Qu.:0.0000  
##  Median :3.695   Median :3.325   Median :17.71   Median :0.0000  
##  Mean   :3.597   Mean   :3.217   Mean   :17.85   Mean   :0.4375  
##  3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90   3rd Qu.:1.0000  
##  Max.   :4.930   Max.   :5.424   Max.   :22.90   Max.   :1.0000  
##        am              gear            carb      
##  Min.   :0.0000   Min.   :3.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
##  Median :0.0000   Median :4.000   Median :2.000  
##  Mean   :0.4062   Mean   :3.688   Mean   :2.812  
##  3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :5.000   Max.   :8.000
str(mtcars)
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...
is.null(mtcars)
## [1] FALSE

mtcars is an in-built dataset of rstudio. no null values are there in this dataset.

selecting specific columns using select function:

# Select the mpg and cyl columns
mtcars_select <- select(mtcars, mpg, cyl)
mtcars_select
##                      mpg cyl
## Mazda RX4           21.0   6
## Mazda RX4 Wag       21.0   6
## Datsun 710          22.8   4
## Hornet 4 Drive      21.4   6
## Hornet Sportabout   18.7   8
## Valiant             18.1   6
## Duster 360          14.3   8
## Merc 240D           24.4   4
## Merc 230            22.8   4
## Merc 280            19.2   6
## Merc 280C           17.8   6
## Merc 450SE          16.4   8
## Merc 450SL          17.3   8
## Merc 450SLC         15.2   8
## Cadillac Fleetwood  10.4   8
## Lincoln Continental 10.4   8
## Chrysler Imperial   14.7   8
## Fiat 128            32.4   4
## Honda Civic         30.4   4
## Toyota Corolla      33.9   4
## Toyota Corona       21.5   4
## Dodge Challenger    15.5   8
## AMC Javelin         15.2   8
## Camaro Z28          13.3   8
## Pontiac Firebird    19.2   8
## Fiat X1-9           27.3   4
## Porsche 914-2       26.0   4
## Lotus Europa        30.4   4
## Ford Pantera L      15.8   8
## Ferrari Dino        19.7   6
## Maserati Bora       15.0   8
## Volvo 142E          21.4   4

filtering the data through filter function using a condition:

# Filter for cars with more than 6 cylinders
mtcars_filter <- filter(mtcars, cyl > 6)
mtcars_filter
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8

sorting using arrange function:

# Arrange the dataset by descending mpg
mtcars_arrange <- arrange(mtcars, desc(mpg))
mtcars_arrange
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4

desc function sorts data in descending order.

renaming a column using rename function:

# Rename the mpg column to miles_per_gallon
mtcars_rename <- rename(mtcars, miles_per_gallon = mpg)
mtcars_rename
##                     miles_per_gallon cyl  disp  hp drat    wt  qsec vs am gear
## Mazda RX4                       21.0   6 160.0 110 3.90 2.620 16.46  0  1    4
## Mazda RX4 Wag                   21.0   6 160.0 110 3.90 2.875 17.02  0  1    4
## Datsun 710                      22.8   4 108.0  93 3.85 2.320 18.61  1  1    4
## Hornet 4 Drive                  21.4   6 258.0 110 3.08 3.215 19.44  1  0    3
## Hornet Sportabout               18.7   8 360.0 175 3.15 3.440 17.02  0  0    3
## Valiant                         18.1   6 225.0 105 2.76 3.460 20.22  1  0    3
## Duster 360                      14.3   8 360.0 245 3.21 3.570 15.84  0  0    3
## Merc 240D                       24.4   4 146.7  62 3.69 3.190 20.00  1  0    4
## Merc 230                        22.8   4 140.8  95 3.92 3.150 22.90  1  0    4
## Merc 280                        19.2   6 167.6 123 3.92 3.440 18.30  1  0    4
## Merc 280C                       17.8   6 167.6 123 3.92 3.440 18.90  1  0    4
## Merc 450SE                      16.4   8 275.8 180 3.07 4.070 17.40  0  0    3
## Merc 450SL                      17.3   8 275.8 180 3.07 3.730 17.60  0  0    3
## Merc 450SLC                     15.2   8 275.8 180 3.07 3.780 18.00  0  0    3
## Cadillac Fleetwood              10.4   8 472.0 205 2.93 5.250 17.98  0  0    3
## Lincoln Continental             10.4   8 460.0 215 3.00 5.424 17.82  0  0    3
## Chrysler Imperial               14.7   8 440.0 230 3.23 5.345 17.42  0  0    3
## Fiat 128                        32.4   4  78.7  66 4.08 2.200 19.47  1  1    4
## Honda Civic                     30.4   4  75.7  52 4.93 1.615 18.52  1  1    4
## Toyota Corolla                  33.9   4  71.1  65 4.22 1.835 19.90  1  1    4
## Toyota Corona                   21.5   4 120.1  97 3.70 2.465 20.01  1  0    3
## Dodge Challenger                15.5   8 318.0 150 2.76 3.520 16.87  0  0    3
## AMC Javelin                     15.2   8 304.0 150 3.15 3.435 17.30  0  0    3
## Camaro Z28                      13.3   8 350.0 245 3.73 3.840 15.41  0  0    3
## Pontiac Firebird                19.2   8 400.0 175 3.08 3.845 17.05  0  0    3
## Fiat X1-9                       27.3   4  79.0  66 4.08 1.935 18.90  1  1    4
## Porsche 914-2                   26.0   4 120.3  91 4.43 2.140 16.70  0  1    5
## Lotus Europa                    30.4   4  95.1 113 3.77 1.513 16.90  1  1    5
## Ford Pantera L                  15.8   8 351.0 264 4.22 3.170 14.50  0  1    5
## Ferrari Dino                    19.7   6 145.0 175 3.62 2.770 15.50  0  1    5
## Maserati Bora                   15.0   8 301.0 335 3.54 3.570 14.60  0  1    5
## Volvo 142E                      21.4   4 121.0 109 4.11 2.780 18.60  1  1    4
##                     carb
## Mazda RX4              4
## Mazda RX4 Wag          4
## Datsun 710             1
## Hornet 4 Drive         1
## Hornet Sportabout      2
## Valiant                1
## Duster 360             4
## Merc 240D              2
## Merc 230               2
## Merc 280               4
## Merc 280C              4
## Merc 450SE             3
## Merc 450SL             3
## Merc 450SLC            3
## Cadillac Fleetwood     4
## Lincoln Continental    4
## Chrysler Imperial      4
## Fiat 128               1
## Honda Civic            2
## Toyota Corolla         1
## Toyota Corona          1
## Dodge Challenger       2
## AMC Javelin            2
## Camaro Z28             4
## Pontiac Firebird       2
## Fiat X1-9              1
## Porsche 914-2          2
## Lotus Europa           2
## Ford Pantera L         4
## Ferrari Dino           6
## Maserati Bora          8
## Volvo 142E             2

add a column using mutate function:

# Add a new column for horsepower per weight
mtcars_mutate <- mutate(mtcars, hp_per_wt = hp / wt)
mtcars_mutate
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
##                     hp_per_wt
## Mazda RX4            41.98473
## Mazda RX4 Wag        38.26087
## Datsun 710           40.08621
## Hornet 4 Drive       34.21462
## Hornet Sportabout    50.87209
## Valiant              30.34682
## Duster 360           68.62745
## Merc 240D            19.43574
## Merc 230             30.15873
## Merc 280             35.75581
## Merc 280C            35.75581
## Merc 450SE           44.22604
## Merc 450SL           48.25737
## Merc 450SLC          47.61905
## Cadillac Fleetwood   39.04762
## Lincoln Continental  39.63864
## Chrysler Imperial    43.03087
## Fiat 128             30.00000
## Honda Civic          32.19814
## Toyota Corolla       35.42234
## Toyota Corona        39.35091
## Dodge Challenger     42.61364
## AMC Javelin          43.66812
## Camaro Z28           63.80208
## Pontiac Firebird     45.51365
## Fiat X1-9            34.10853
## Porsche 914-2        42.52336
## Lotus Europa         74.68605
## Ford Pantera L       83.28076
## Ferrari Dino         63.17690
## Maserati Bora        93.83754
## Volvo 142E           39.20863
# Combine two datasets with the same columns
mtcars_combined <- bind_rows(mtcars, mtcars)
mtcars_combined
##                           mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4...1            21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag...2        21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710...3           22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive...4       21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout...5    18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant...6              18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360...7           14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D...8            24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230...9             22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280...10            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C...11           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE...12          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL...13          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC...14         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood...15  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental...16 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial...17   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128...18            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic...19         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla...20      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona...21       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger...22    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin...23         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28...24          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird...25    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9...26           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2...27       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa...28        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L...29      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino...30        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora...31       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E...32          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
## Mazda RX4...33           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag...34       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710...35          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive...36      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout...37   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant...38             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360...39          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D...40           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230...41            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280...42            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C...43           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE...44          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL...45          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC...46         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood...47  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental...48 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial...49   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128...50            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic...51         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla...52      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona...53       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger...54    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin...55         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28...56          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird...57    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9...58           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2...59       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa...60        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L...61      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino...62        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora...63       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E...64          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
# Group the dataset by number of cylinders and summarize the mean mpg
mtcars_grouped <- group_by(mtcars, cyl)
mtcars_summarized <- summarize(mtcars_grouped, mean_mpg = mean(mpg))
mtcars_grouped
## # A tibble: 32 × 11
## # Groups:   cyl [3]
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
##  2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
##  3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
##  4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
##  5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
##  6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
##  7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
##  8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
##  9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
## 10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
## # ℹ 22 more rows
mtcars_summarized
## # A tibble: 3 × 2
##     cyl mean_mpg
##   <dbl>    <dbl>
## 1     4     26.7
## 2     6     19.7
## 3     8     15.1

the above functions are called data manipulation functions. these functions are available in dplyr package.