R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

# Define variables with different data types
numeric_var <- 42
character_var <- "Hello, World!"
logical_var <- TRUE
date_time_var <- as.POSIXct("2023-01-15 14:30:00")

# Print variables
cat("Numeric Variable:", numeric_var, "\n")
## Numeric Variable: 42
cat("Character Variable:", character_var, "\n")
## Character Variable: Hello, World!
cat("Logical Variable:", logical_var, "\n")
## Logical Variable: TRUE
cat("Date and Time Variable:", date_time_var, "\n")
## Date and Time Variable: 1673773200
# Create data structures
vector_example <- c(1, 2, 3, 4, 5)
matrix_example <- matrix(1:6, nrow = 2, ncol = 3)
list_example <- list(1, "apple", TRUE)
data_frame_example <- data.frame(
  Name = c("Alice", "Bob", "Charlie"),
  Age = c(25, 30, 22),
  Score = c(90, 85, 92)
)

# Print data structures
cat("Vector Example:", vector_example, "\n")
## Vector Example: 1 2 3 4 5
cat("Matrix Example:\n")
## Matrix Example:
print(matrix_example)
##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    6
cat("List Example:\n")
## List Example:
print(list_example)
## [[1]]
## [1] 1
## 
## [[2]]
## [1] "apple"
## 
## [[3]]
## [1] TRUE
cat("Data Frame Example:\n")
## Data Frame Example:
print(data_frame_example)
##      Name Age Score
## 1   Alice  25    90
## 2     Bob  30    85
## 3 Charlie  22    92
# a.Create two vectors of integers
vector1 <- c(1, 2, 3)
vector2 <- c(4, 5, 6)

# Add the two vectors element-wise
result_vector <- vector1 + vector2

# Print the result
print(result_vector)
## [1] 5 7 9

we have added 2 vectors successfully.

# b.Create a vector
my_vector <- c(2, 4, 6, 8, 10)

# Calculate the sum, mean, and product
sum_result <- sum(my_vector)
mean_result <- mean(my_vector)
product_result <- prod(my_vector)

# Print the results
print(paste("Sum:", sum_result))
## [1] "Sum: 30"
print(paste("Mean:", mean_result))
## [1] "Mean: 6"
print(paste("Product:", product_result))
## [1] "Product: 3840"

we have found sum,mean and product of vector elements.

# c.Create a vector
my_vector <- c(3, 1, 7, 2, 9)

# Find the minimum and maximum
min_value <- min(my_vector)
max_value <- max(my_vector)

# Print the results
print(paste("Minimum:", min_value))
## [1] "Minimum: 1"
print(paste("Maximum:", max_value))
## [1] "Maximum: 9"
#d. Create a list
my_list <- list(
  string_element = "Hello, World",
  numeric_element = 42,
  vector_element = c(1, 2, 3),
  logical_element = TRUE
)

# Print the list
print(my_list)
## $string_element
## [1] "Hello, World"
## 
## $numeric_element
## [1] 42
## 
## $vector_element
## [1] 1 2 3
## 
## $logical_element
## [1] TRUE

a heterogeneous list is made.

#e. Create a list with named elements
my_list <- list(
  vector_element = c(1, 2, 3),
  matrix_element = matrix(1:6, nrow = 2),
  nested_list = list(a = "apple", b = "banana")
)

# Access the first and second elements of the list
first_element <- my_list$vector_element
second_element <- my_list$matrix_element

# Print the accessed elements
print(first_element)
## [1] 1 2 3
print(second_element)
##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    6
#f. Create a 3x5 matrix filled with zeros
my_matrix <- matrix(0, nrow = 3, ncol = 5)

# Print the matrix
print(my_matrix)
##      [,1] [,2] [,3] [,4] [,5]
## [1,]    0    0    0    0    0
## [2,]    0    0    0    0    0
## [3,]    0    0    0    0    0
#g. Create a sample matrix
my_matrix <- matrix(1:12, nrow = 3)

# Access specific elements
element_1 <- my_matrix[2, 3]  # 3rd column, 2nd row
element_2 <- my_matrix[3, ]    # 3rd row
element_3 <- my_matrix[, 4]    # 4th column

# Print the accessed elements
print(element_1)
## [1] 8
print(element_2)
## [1]  3  6  9 12
print(element_3)
## [1] 10 11 12
#h. Create vectors
name <- c("Alice", "Bob", "Charlie")
age <- c(25, 30, 35)

# Create a DataFrame
df <- data.frame(Name = name, Age = age)

# Display the DataFrame
print(df)
##      Name Age
## 1   Alice  25
## 2     Bob  30
## 3 Charlie  35
#i. Create a DataFrame
df <- data.frame(Name = c("Alice", "Bob"), Age = c(25, 30))

# New data to insert
new_data <- data.frame(Name = c("Charlie", "David"), Age = c(35, 40))

# Insert new rows
df <- rbind(df, new_data)

# Display the updated DataFrame
print(df)
##      Name Age
## 1   Alice  25
## 2     Bob  30
## 3 Charlie  35
## 4   David  40
#j. Create a DataFrame
df <- data.frame(Name = c("Alice", "Bob"), Age = c(25, 30))

# Add a new column
df$Salary <- c(50000, 60000)

# Display the updated DataFrame
print(df)
##    Name Age Salary
## 1 Alice  25  50000
## 2   Bob  30  60000
#k. Create a DataFrame
df <- data.frame(Name = c("Alice", "Bob", "Charlie", "David"), Age = c(25, 30, 35, 40))

# Extract the first 2 rows
first_two_rows <- df[1:2, ]

# Display the extracted rows
print(first_two_rows)
##    Name Age
## 1 Alice  25
## 2   Bob  30
#l. Create a DataFrame
df <- data.frame(Name = c("Charlie", "Alice", "Bob"), Age = c(35, 25, 30))

# Sort the DataFrame by the "Age" column
sorted_df <- df[order(df$Age), ]

# Display the sorted DataFrame
print(sorted_df)
##      Name Age
## 2   Alice  25
## 3     Bob  30
## 1 Charlie  35
#m. Create two DataFrames
df1 <- data.frame(ID = 1:3, Name = c("Alice", "Bob", "Charlie"))
df2 <- data.frame(ID = 2:4, Salary = c(50000, 60000, 70000))

# Merge the DataFrames based on the "ID" column
merged_df <- merge(df1, df2, by = "ID", all = TRUE)

# Display the merged DataFrame
print(merged_df)
##   ID    Name Salary
## 1  1   Alice     NA
## 2  2     Bob  50000
## 3  3 Charlie  60000
## 4  4    <NA>  70000
#n. Create two DataFrames
df1 <- data.frame(Name = c("Alice", "Bob"), Age = c(25, 30))
df2 <- data.frame(Name = c("Charlie", "David"), Age = c(35, 40))

# Append df2 to the end of df1
appended_df <- rbind(df1, df2)

# Display the appended DataFrame
print(appended_df)
##      Name Age
## 1   Alice  25
## 2     Bob  30
## 3 Charlie  35
## 4   David  40
#o. Load the dplyr package
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.2.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# Create a sample DataFrame
df <- data.frame(Group = c("A", "A", "B", "B", "C"),
                 Value = c(10, 15, 25, 20, 30))

# Select rows with maximum value in each group
result <- df %>%
  group_by(Group) %>%
  filter(Value == max(Value))

# Display the result
print(result)
## # A tibble: 3 × 2
## # Groups:   Group [3]
##   Group Value
##   <chr> <dbl>
## 1 A        15
## 2 B        25
## 3 C        30
#p. Create two dataframes
df1 <- data.frame(ID = 1:4, Name = c("Alice", "Bob", "Charlie", "David"))
df2 <- data.frame(ID = 2:5, Salary = c(50000, 60000, 70000, 55000))

# Merge the dataframes based on the "ID" column
merged_df <- merge(df1, df2, by = "ID", all = TRUE)

# Display the merged dataframe
print(merged_df)
##   ID    Name Salary
## 1  1   Alice     NA
## 2  2     Bob  50000
## 3  3 Charlie  60000
## 4  4   David  70000
## 5  5    <NA>  55000
#q.a. Read data from the console
data <- as.numeric(readline("Enter a number: "))
## Enter a number:
print(data)
## [1] NA
x=mtcars
print(x)
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2