Data

filename <- file.choose()
bike_orderlines <- readRDS(filename)
View(bike_orderlines)

Libraries

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.3     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.4     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.0
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lubridate)

1. Fix typos found in Feature Engineering

bike_orderlines_fixed <- bike_orderlines %>% mutate(
  model = case_when(
  str_detect(str_trim(model), "CAAD Disc Ultegra") ~ "CAAD12 Disc Ultegra",
  str_detect(str_trim(model), "Syapse Carbon Tiagra") ~ "Synapse Carbon Tiagra",
  str_detect(str_trim(model), "Supersix Evo Hi-Mod Utegra") ~ "Supersix Evo Hi-Mod Ultegra",
  TRUE ~ model)) %>% 
  glimpse()
## Rows: 15,644
## Columns: 13
## $ order_date     <dttm> 2011-01-07, 2011-01-07, 2011-01-10, 2011-01-10, 2011-0…
## $ order_id       <dbl> 1, 1, 2, 2, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7…
## $ order_line     <dbl> 1, 2, 1, 2, 1, 2, 3, 4, 5, 1, 1, 2, 3, 4, 1, 2, 3, 4, 1…
## $ quantity       <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1…
## $ price          <dbl> 6070, 5970, 2770, 5970, 10660, 3200, 12790, 5330, 1570,…
## $ total_price    <dbl> 6070, 5970, 2770, 5970, 10660, 3200, 12790, 5330, 1570,…
## $ model          <chr> "Jekyll Carbon 2", "Trigger Carbon 2", "Beast of the Ea…
## $ category_1     <chr> "Mountain", "Mountain", "Mountain", "Mountain", "Road",…
## $ category_2     <chr> "Over Mountain", "Over Mountain", "Trail", "Over Mounta…
## $ frame_material <chr> "Carbon", "Carbon", "Aluminum", "Carbon", "Carbon", "Ca…
## $ bikeshop_name  <chr> "Ithaca Mountain Climbers", "Ithaca Mountain Climbers",…
## $ city           <chr> "Ithaca", "Ithaca", "Kansas City", "Kansas City", "Loui…
## $ state          <chr> "NY", "NY", "KS", "KS", "KY", "KY", "KY", "KY", "KY", "…

2. Which month has the highest bike sales?

sales_by_month <- bike_orderlines_fixed %>% 
  select(order_date, total_price) %>% 
  mutate(Month = month(order_date, label = TRUE, abbr = FALSE)) %>% 
  group_by(Month) %>% 
  summarise(Sales = sum(total_price)) %>% 
  ungroup() %>% 
  mutate(Sales = scales::dollar(Sales))
sales_by_month 
## # A tibble: 12 × 2
##    Month     Sales     
##    <ord>     <chr>     
##  1 January   $4,089,460
##  2 February  $5,343,295
##  3 March     $7,282,280
##  4 April     $8,386,170
##  5 May       $7,935,055
##  6 June      $7,813,105
##  7 July      $7,602,005
##  8 August    $5,346,125
##  9 September $5,556,055
## 10 October   $4,394,300
## 11 November  $4,169,755
## 12 December  $3,114,725

The shop should be focusing on the summer season, from March to July

3. What is the median orderline sale value by Bike Attribute?

a) Black Inc

bike_orderlines_fixed %>% 
  mutate(`Black Inc` = str_detect(
    str_to_lower(model), "black inc")) %>% 
  select(`Black Inc`, total_price) %>% 
  group_by(`Black Inc`) %>% 
  summarise(`Median Orderline` = median(total_price)) %>% 
  ungroup() %>% 
  mutate(`Median Orderline` = scales::dollar(`Median Orderline`))
## # A tibble: 2 × 2
##   `Black Inc` `Median Orderline`
##   <lgl>       <chr>             
## 1 FALSE       $2,880            
## 2 TRUE        $12,250

The Black Inc feature generates more sales than the other features

b) Ultegra

bike_orderlines_fixed %>% 
  mutate(`Ultegra` = str_detect(
    str_to_lower(model), "ultegra")) %>% 
  select(`Ultegra`, total_price) %>% 
  group_by(`Ultegra`) %>% 
  summarise(`Median Orderline` = median(total_price)) %>% 
  ungroup() %>% 
  mutate(`Median Orderline` = scales::dollar(`Median Orderline`))
## # A tibble: 2 × 2
##   Ultegra `Median Orderline`
##   <lgl>   <chr>             
## 1 FALSE   $3,200            
## 2 TRUE    $3,200

The Ultegra feature generates the same amount of sales as the other features

c) Disc

bike_orderlines_fixed %>% 
  mutate(`Disc` = str_detect(
    str_to_lower(model), "disc")) %>% 
  select(`Disc`, total_price) %>% 
  group_by(`Disc`) %>% 
  summarise(`Median Orderline` = median(total_price)) %>% 
  ungroup() %>% 
  mutate(`Median Orderline` = scales::dollar(`Median Orderline`))
## # A tibble: 2 × 2
##   Disc  `Median Orderline`
##   <lgl> <chr>             
## 1 FALSE $3,200            
## 2 TRUE  $2,660

The Disc feature generates less sales as the other features

4. What are the average, min, and max prices by Base Model?

model_base <- bike_orderlines_fixed %>% select(model, category_1, category_2, price) %>% 
  separate(col = model,
           into = str_c("model",1:6),
           sep = " ",
           remove = FALSE,
           fill = "right",
           extra = "drop") %>% 
  mutate(model_base = case_when(
    str_detect(str_to_lower(model1), "supersix") ~ str_c(model1, model2, sep = " "),
    str_detect(str_to_lower(model1), "fat") ~ str_c(model1, model2, sep = " "),
    str_detect(str_to_lower(model2), "29") ~ str_c(model1, model2, sep = " "),
    str_detect(str_to_lower(model1), "beast") ~ str_c(model1, model2, model3, model4, sep = " "),
    str_detect(str_to_lower(model1), "bad") ~ str_c(model1, model2, sep = " "),
    TRUE ~ model1)) %>% 
  select(category_1, category_2, model_base, price)

model_base <- model_base %>% 
  rename(`Category 1` = category_1) %>% 
  rename(`Category 2` = category_2) %>%
  rename(`Model Base`= model_base)

model_base %>% group_by(`Category 1`, `Category 2`, `Model Base`) %>% 
  summarise(`Mean Price` = round(mean(price)),
            `Min Price` = min(price),
            `Max Price` = max(price)) %>% 
  arrange(desc(`Mean Price`)) %>% 
  ungroup() %>% 
  mutate(`Mean Price` = scales::dollar(`Mean Price`),
         `Min Price` = scales::dollar(`Min Price`),
         `Max Price` = scales::dollar(`Max Price`))
## `summarise()` has grouped output by 'Category 1', 'Category 2'. You can
## override using the `.groups` argument.
## # A tibble: 18 × 6
##    `Category 1` `Category 2`   `Model Base` `Mean Price` `Min Price` `Max Price`
##    <chr>        <chr>          <chr>        <chr>        <chr>       <chr>      
##  1 Mountain     Cross Country… Scalpel-Si   $6,695       $3,200      $12,790    
##  2 Mountain     Over Mountain  Jekyll       $5,042       $3,200      $7,990     
##  3 Road         Elite Road     Supersix Evo $4,978       $1,840      $12,790    
##  4 Mountain     Over Mountain  Trigger      $4,970       $3,200      $8,200     
##  5 Mountain     Trail          Habit        $4,611       $1,950      $12,250    
##  6 Mountain     Cross Country… F-Si         $4,504       $1,840      $11,190    
##  7 Mountain     Cross Country… Scalpel 29   $4,499       $3,200      $6,390     
##  8 Mountain     Fat Bike       Fat CAAD1    $3,730       $3,730      $3,730     
##  9 Road         Triathalon     Slice        $3,527       $1,950      $7,000     
## 10 Road         Endurance Road Synapse      $3,080       $870        $9,590     
## 11 Mountain     Trail          Bad Habit    $2,954       $2,660      $3,200     
## 12 Road         Elite Road     CAAD12       $2,926       $1,680      $5,860     
## 13 Road         Cyclocross     SuperX       $2,339       $1,750      $3,500     
## 14 Mountain     Trail          Beast of th… $2,194       $1,620      $2,770     
## 15 Mountain     Fat Bike       Fat CAAD2    $2,130       $2,130      $2,130     
## 16 Mountain     Sport          Trail        $1,153       $815        $1,520     
## 17 Road         Elite Road     CAAD8        $1,136       $815        $1,410     
## 18 Mountain     Sport          Catalyst     $541         $415        $705

The bikes are priced based on the Model Base, each one have a different price range