# Load packages
# Core
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.3 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.3 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
##
## ######################### Warning from 'xts' package ##########################
## # #
## # The dplyr lag() function breaks how base R's lag() function is supposed to #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or #
## # source() into this session won't work correctly. #
## # #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop #
## # dplyr from breaking base R's lag() function. #
## # #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning. #
## # #
## ###############################################################################
##
## Attaching package: 'xts'
##
## The following objects are masked from 'package:dplyr':
##
## first, last
##
##
## Attaching package: 'PerformanceAnalytics'
##
## The following object is masked from 'package:graphics':
##
## legend
##
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(nycflights13)
# For reproducible work
set.seed(1234)
# Create a data frame
df <- tibble::tibble(
a = rnorm(10),
b = rnorm(10),
c = rnorm(10),
d = rnorm(10),
)
# Rescale each column
df$a <- (df$a - min(df$a, na.rm = TRUE)) /
(max(df$a, na.rm = TRUE) - min(df$a, na.rm = TRUE))
df$b <- (df$b - min(df$b, na.rm = TRUE)) /
(max(df$b, na.rm = TRUE) - min(df$b, na.rm = TRUE))
df$c <- (df$c - min(df$c, na.rm = TRUE)) /
(max(df$c, na.rm = TRUE) - min(df$c, na.rm = TRUE))
df$d <- (df$d - min(df$d, na.rm = TRUE)) /
(max(df$d, na.rm = TRUE) - min(df$d, na.rm = TRUE))
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.332 0.153 0.782 1
## 2 0.765 0 0.473 0.519
## 3 1 0.0651 0.498 0.448
## 4 0 0.311 0.943 0.511
## 5 0.809 0.573 0.373 0.168
## 6 0.831 0.260 0 0.308
## 7 0.516 0.143 1 0
## 8 0.524 0.0255 0.210 0.256
## 9 0.519 0.0472 0.708 0.575
## 10 0.424 1 0.253 0.522
rescale <- function(x) {
# body
x <- (x - min(x, na.rm = TRUE)) /
(max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
# return values
return(x)
}
df$a <- rescale(df$a)
df$b <- rescale(df$b)
df$c <- rescale(df$c)
df$d <- rescale(df$d)
df
## # A tibble: 10 × 4
## a b c d
## <dbl> <dbl> <dbl> <dbl>
## 1 0.332 0.153 0.782 1
## 2 0.765 0 0.473 0.519
## 3 1 0.0651 0.498 0.448
## 4 0 0.311 0.943 0.511
## 5 0.809 0.573 0.373 0.168
## 6 0.831 0.260 0 0.308
## 7 0.516 0.143 1 0
## 8 0.524 0.0255 0.210 0.256
## 9 0.519 0.0472 0.708 0.575
## 10 0.424 1 0.253 0.522
detect_sign <- function(x) {
if(x > 0) {
message("Value is positive")
print(x)
} else if(x==0) {
warning("Value is not positive, but it can be accepted")
print(x)
} else {
stop("Value is negative, the function must stop")
print(x)
}
}
3 %>% detect_sign()
## Value is positive
## [1] 3
0 %>% detect_sign()
## Warning in detect_sign(.): Value is not positive, but it can be accepted
## [1] 0
# -1 %>% detect_sign
?mean
## starting httpd help server ... done
x <- c(1:10, 100, NA)
x
## [1] 1 2 3 4 5 6 7 8 9 10 100 NA
x %>% mean()
## [1] NA
x %>% mean(na.rm = TRUE)
## [1] 14.09091
x %>% mean(na.rm = TRUE, trim = 0.1)
## [1] 6
mean_remove_na <- function(x, na.rm = TRUE, ...) {
avg <- mean(x, na.rm = na.rm, ...)
return(avg)
}
x %>% mean_remove_na()
## [1] 14.09091
x %>% mean_remove_na(na.rm = FALSE)
## [1] NA
x %>% mean_remove_na(trim = 0.1)
## [1] 6
two types of functions