This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.
packages <- c("tidyverse", "infer", "fst") # add any you need here
new_packages <- packages[!(packages %in% installed.packages()[,"Package"])]
if(length(new_packages)) install.packages(new_packages)
lapply(packages, library, character.only = TRUE)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.3 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## [[1]]
## [1] "lubridate" "forcats" "stringr" "dplyr" "purrr" "readr"
## [7] "tidyr" "tibble" "ggplot2" "tidyverse" "stats" "graphics"
## [13] "grDevices" "utils" "datasets" "methods" "base"
##
## [[2]]
## [1] "infer" "lubridate" "forcats" "stringr" "dplyr" "purrr"
## [7] "readr" "tidyr" "tibble" "ggplot2" "tidyverse" "stats"
## [13] "graphics" "grDevices" "utils" "datasets" "methods" "base"
##
## [[3]]
## [1] "fst" "infer" "lubridate" "forcats" "stringr" "dplyr"
## [7] "purrr" "readr" "tidyr" "tibble" "ggplot2" "tidyverse"
## [13] "stats" "graphics" "grDevices" "utils" "datasets" "methods"
## [19] "base"
ess <- read_fst("All-ESS-Data7.fst")
Task 1
switzerland_data <- ess %>%
filter(cntry == "CH") %>%
mutate(
brncntr = case_when(
brncntr == 1 ~ "Yes",
brncntr == 2 ~ "No",
brncntr %in% c(7, 8, 9) ~ NA_character_,
TRUE ~ as.character(brncntr)
),
edulvla = case_when(
essround < 5 & edulvla == 55 ~ NA_real_,
TRUE ~ edulvla
),
edulvlb = case_when(
essround >= 5 & edulvlb == 5555 ~ NA_real_,
TRUE ~ edulvlb
),
educ_level = case_when(
essround < 5 & edulvla == 5 ~ "BA",
essround >= 5 & edulvlb > 600 ~ "BA",
TRUE ~ "No BA"
)
)
tab_dat <- switzerland_data
mytab <- table(tab_dat$brncntr, tab_dat$educ_level)
rsums <- rowSums(mytab)
csums <- colSums(mytab)
N <- sum(mytab)
ptab <- tcrossprod(rsums/N, csums/N)
cat("Table of Expected Proportions:\n")
## Table of Expected Proportions:
print(ptab)
## [,1] [,2]
## [1,] 0.05206627 0.1764393
## [2,] 0.17578931 0.5957051
ftab <- N * ptab
cat("Table of Expected Frequencies:\n")
## Table of Expected Frequencies:
print(ftab)
## [,1] [,2]
## [1,] 881.1175 2985.882
## [2,] 2974.8825 10081.118
alpha <- 0.05
c_val <- qchisq(alpha, df = 1, lower.tail = FALSE)
cat("Critical Value:", round(c_val, 3), "\n")
## Critical Value: 3.841
Interpreting the Critical Value: If the Chi-squared test statistic that you compute (from the chisq.test function) exceeds 3.841, then we reject the null hypothesis at the 0.05 significance level. This would mean that there is a statistically significant association between feeling close to a party and education level in your dataset.
test_stat <- sum((mytab - ftab)^2 / ftab)
cat("Pearson's X^2:", round(test_stat, 4), "\n")
## Pearson's X^2: 65.1218
Interpretation: The difference between our observed data and what we’d expect under the assumption of independence is statistically significant. Thus, there is a statistically significant association between born in country and one’s educational level. This means that the probability of born in country is not the same across different education levels.
p_val <- pchisq(test_stat, df = 1, lower.tail = F)
cat("p-value:", round(p_val, 4), "\n")
## p-value: 0
cat("Chi-squared test result:\n")
## Chi-squared test result:
print(chisq.test(mytab, correct = F))
##
## Pearson's Chi-squared test
##
## data: mytab
## X-squared = 65.122, df = 1, p-value = 7.041e-16
Task 2
netherlands_data <- ess %>%
filter(cntry == "NL") %>%
mutate(
gincdif = case_when(
gincdif == 1 ~ "Agree strongly",
gincdif == 2 ~ "Agree",
gincdif == 3 ~ "Neither agree nor disagree",
gincdif == 4 ~ "Disagree",
gincdif == 5 ~ "Disagree strongly",
gincdif %in% c(7, 8, 9) ~ NA_character_,
TRUE ~ as.character(gincdif)
),
domicila = case_when(
essround < 5 & domicil == 55 ~ NA_real_,
TRUE ~ domicil
),
domicilb = case_when(
essround >= 5 & domicil == 5555 ~ NA_real_,
TRUE ~ domicil
),
domicil = case_when(
essround < 5 & domicila == 5 ~ "BA",
essround >= 5 & domicilb > 600 ~ "BA",
TRUE ~ "No BA"
)
)
test_stat <- netherlands_data %>%
specify(explanatory = domicil,
response = gincdif) %>%
hypothesize(null = "independence") %>%
calculate(stat = "chisq")
## Warning: Removed 173 rows containing missing values.
print(test_stat$stat)
## X-squared
## 4.256857
null_distribution <- netherlands_data %>%
specify(explanatory = domicil,
response = gincdif) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "chisq")
## Warning: Removed 173 rows containing missing values.
p_value <- null_distribution %>%
get_pvalue(obs_stat = test_stat, direction = "two-sided")
p_value
## # A tibble: 1 × 1
## p_value
## <dbl>
## 1 0.722
null_distribution %>%
visualize() +
shade_p_value(obs_stat = test_stat, direction = "two-sided")
## Warning: Chi-Square usually corresponds to right-tailed tests. Proceed with
## caution.
null_distribution
## Response: gincdif (factor)
## Explanatory: domicil (factor)
## Null Hypothesis: independence
## # A tibble: 1,000 × 2
## replicate stat
## <int> <dbl>
## 1 1 4.37
## 2 2 5.72
## 3 3 2.59
## 4 4 2.66
## 5 5 7.58
## 6 6 3.96
## 7 7 1.42
## 8 8 5.57
## 9 9 4.99
## 10 10 4.16
## # ℹ 990 more rows
conf_int <- null_distribution %>%
get_confidence_interval(level = 0.95, type = "percentile")
null_distribution %>%
visualize() +
shade_p_value(obs_stat = test_stat, direction = "two-sided") +
shade_confidence_interval(endpoints = conf_int)
## Warning: Chi-Square usually corresponds to right-tailed tests. Proceed with
## caution.
null_distribution
## Response: gincdif (factor)
## Explanatory: domicil (factor)
## Null Hypothesis: independence
## # A tibble: 1,000 × 2
## replicate stat
## <int> <dbl>
## 1 1 4.37
## 2 2 5.72
## 3 3 2.59
## 4 4 2.66
## 5 5 7.58
## 6 6 3.96
## 7 7 1.42
## 8 8 5.57
## 9 9 4.99
## 10 10 4.16
## # ℹ 990 more rows
Task 3
germany_data <- ess %>%
filter(cntry == "DE") %>%
mutate(
gincdif = case_when(
gincdif == 1 ~ "Agree strongly",
gincdif == 2 ~ "Agree",
gincdif == 3 ~ "Neither agree nor disagree",
gincdif == 4 ~ "Disagree",
gincdif == 5 ~ "Disagree strongly",
gincdif %in% c(7, 8, 9) ~ NA_character_,
TRUE ~ as.character(gincdif)
),
domicila = case_when(
essround < 5 & domicil == 55 ~ NA_real_,
TRUE ~ domicil
),
domicilb = case_when(
essround >= 5 & domicil == 5555 ~ NA_real_,
TRUE ~ domicil
),
domicil = case_when(
essround < 5 & domicila == 5 ~ "BA",
essround >= 5 & domicilb > 600 ~ "BA",
TRUE ~ "No BA"
)
)
test_stat <- germany_data %>%
specify(explanatory = domicil,
response = gincdif) %>%
hypothesize(null = "independence") %>%
calculate(stat = "chisq")
## Warning: Removed 534 rows containing missing values.
print(test_stat$stat)
## X-squared
## 24.43407
null_distribution <- germany_data %>%
specify(explanatory = domicil,
response = gincdif) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "chisq")
## Warning: Removed 534 rows containing missing values.
p_value <- null_distribution %>%
get_pvalue(obs_stat = test_stat, direction = "two-sided")
## Warning: Please be cautious in reporting a p-value of 0. This result is an
## approximation based on the number of `reps` chosen in the `generate()` step.
## See `?get_p_value()` for more information.
p_value
## # A tibble: 1 × 1
## p_value
## <dbl>
## 1 0
null_distribution %>%
visualize() +
shade_p_value(obs_stat = test_stat, direction = "two-sided")
## Warning: Chi-Square usually corresponds to right-tailed tests. Proceed with
## caution.
null_distribution
## Response: gincdif (factor)
## Explanatory: domicil (factor)
## Null Hypothesis: independence
## # A tibble: 1,000 × 2
## replicate stat
## <int> <dbl>
## 1 1 4.52
## 2 2 4.43
## 3 3 6.65
## 4 4 1.90
## 5 5 10.3
## 6 6 1.12
## 7 7 2.44
## 8 8 2.66
## 9 9 3.02
## 10 10 1.98
## # ℹ 990 more rows
conf_int <- null_distribution %>%
get_confidence_interval(level = 0.95, type = "percentile")
null_distribution %>%
visualize() +
shade_p_value(obs_stat = test_stat, direction = "two-sided") +
shade_confidence_interval(endpoints = conf_int)
## Warning: Chi-Square usually corresponds to right-tailed tests. Proceed with
## caution.
null_distribution
## Response: gincdif (factor)
## Explanatory: domicil (factor)
## Null Hypothesis: independence
## # A tibble: 1,000 × 2
## replicate stat
## <int> <dbl>
## 1 1 4.52
## 2 2 4.43
## 3 3 6.65
## 4 4 1.90
## 5 5 10.3
## 6 6 1.12
## 7 7 2.44
## 8 8 2.66
## 9 9 3.02
## 10 10 1.98
## # ℹ 990 more rows