Using the “cars” dataset in R, build a linear model for stopping distance as a function of speed and replicate the analysis of your textbook chapter 3 (visualization, quality evaluation of the model, and residual analysis.)
## speed dist
## 1 4 2
## 2 4 10
## 3 7 4
## 4 7 22
## 5 8 16
## 6 9 10
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
##
## Call:
## lm(formula = speed ~ dist, data = cars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.5293 -2.1550 0.3615 2.4377 6.4179
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.28391 0.87438 9.474 1.44e-12 ***
## dist 0.16557 0.01749 9.464 1.49e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.156 on 48 degrees of freedom
## Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
## F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
So, we have a formula
\[ y = 8.28 + 0.16(dist) \]
This simple linear model has R-squared of 0.65 meaning the model explains 65% of the data. Looking at the residual statistics, it has seemingly center around around and the iqr is even.
The qq plot tells us that the most of the residual follow the theoretical normal where we see some of the points on top deviate from the line.